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ABSTRACT. We extend the multifractal formalism for the local dimension spectrum of a Gibbs measure µ

supported on the attractor Λ of a conformal iterated functions system on the real line. Namely, for α ∈ R, we

establish the multifractal formalism for the Hausdorff dimension of the set of x ∈ Λ for which the µ-measure

of a ball of radius rn centred at x obeys a power law rn
α , for a sequence rn → 0. This allows us to investigate

the Hölder regularity of various fractal functions, such as distribution functions and conjugacy maps associated

with conformal iterated function systems.

1. INTRODUCTION AND STATEMENT OF RESULTS

Multifractal analysis has its origin in statistical physics (see [Man74, FP85, HJK+86]). For the mathemat-
ical theory of multifractal formalism and its relation to thermodynamic formalism, we recommend [Pes97].
In this article we extend the multifractal formalism for local dimension spectra of Gibbs measures supported
on the attractor Λ⊂R of a conformal iterated function system on the real line. For a Borel measure µ on R
and with B(x,r) := {y ∈ R | |y− x|< r}, the local dimension spectrum of µ is given by the level sets

F (α) :=
{

x ∈ Λ | lim
r→0

log µ (B(x,r))
logr

= α

}
, α ∈ R.

It is well known ([Pat97, PW97a, PW97b, Pes97]) for finitely generated contracting conformal iterated
function systems satisfying the open set condition that, if µ is the Gibbs measure of a Hölder continuous
potential, then the dimension spectrum f given by

f (α) := dimH F (α)

is equal to the Legendre transformation of a certain function t defined implicitly by solving a topological
pressure equation. To denote this state of affairs, we say that the multifractal formalism holds. In our setting,
the function t will be given by equation (1.1) below. For related results on the multifractal formalism for
non-uniformly hyperbolic systems and graph-directed constructions, we refer to [JR11, RU09].

For self-conformal measures of finitely generated contracting conformal iterated function systems it is also
known ([BS00]) that the set of divergence points{

x ∈ Λ | liminf
r→∞

log µ (B(x,r))
logr

< limsup
r→∞

log µ (B(x,r))
logr

}
has full Hausdorff dimension, unless the the spectrum f is degenerate. In [LWX12] it is shown that, for
x ∈ Λ, the set of accumulation points A(x) of

(
log(r)−1 log µ (B(x,r))

)
r≥0 is either a singleton or a closed

interval. Moreover, it is shown that

dimH {x ∈ Λ | A(x) = [a,b]}= inf
α∈[a,b]

dimH F (α).
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Recently, the following modified level sets have attracted a lot of attention in studying the regularity of
various fractal functions ([JS15], [JS18], [Ota18], [BKK18], [All18]). For α ∈ R, we define

R∗(α) :=
{

x ∈ Λ | liminf
r→0

log µ (B(x,r))
logr

= α

}
, R∗(α) :=

{
x ∈ Λ | limsup

r→0

log µ (B(x,r))
logr

= α

}
.

In [JS15] it is shown that the level sets R∗(α) and R∗(α) satisfy the multifractal formalism in the context of
semigroups of rational maps on the Riemann sphere satisfying the separating condition. Allaart ([All18])
proved the multifractal formalism for the level sets R∗(α) for self-similar measures satisfying the open
set condition. In [JS18] we established the multifractal formalism for R∗(α) for self-similar measures
supported on attractors of conformal iterated function systems satisfying the open set condition. Allaart
([All18]) raised the question whether the multifractal formalism holds for R∗(α). Moreover, it is of interest
whether the formalism for R∗ and R∗ extends to arbitrary Gibbs measures of Hölder continuous potentials.

In this article we establish the multifractal formalism for the generalised level sets

F ∗(α) :=
{

x ∈ Λ | ∃(rk)→ ∞ as k→ ∞ : lim
k→∞

log µ (B(x,rk))

logrk
= α

}
, α ∈ R,

for Gibbs measures of Hölder continuous potentials supported on attractors of conformal iterated function
systems satisfying the open set condition. Combining with the previously known results for F (α), we thus
obtain that the multifractal formalism holds in particular for the level sets R∗(α) and R∗(α).

Let us now introduce the necessary terminology to state our main theorem precisely. For an index set I

with #I < ∞ let Φ = (φi)i∈I , φi : X → X , be a (contracting) orientation-preserving C 1+ε conformal iterated
function system on a compact interval X ⊂ R with non-empty interior. Here, by orientation-preserving
C 1+ε conformal we mean that each φi extends to a C 1+ε differentiable map on a neighborhood of X which
satisfies 0 < φ ′i (x)< 1 for every x ∈ X and for each i ∈ I. We refer to [MU96] for further details and basic
properties of conformal iterated function systems. Let π : IN→ R denote the coding map of Φ which is for
ω = (ω1,ω2, . . .) ∈ IN given by ⋂

n≥1

φω1 ◦ · · · ◦φωn(X) = {π(ω)} .

Let Λ := π(IN). We say that Φ satisfies the open set condition if there exists a non-empty open interval
U ⊂ R such that φi(U) ⊂U , for all i ∈ I, and φi(U)∩φ j(U) = ∅ for all i, j ∈ I with i 6= j. To utilize the
symbolic thermodynamic formalism (see [Bow75]) we will also need the following definitions. We denote
by σ : IN→ IN the left-shift on IN which becomes a compact metric space endowed with the shift metric.
Let ϕ : IN→ R be the geometric potential of Φ given by

ϕ(ω) := logφ
′
ω1
(π(σ(ω))), ω = (ω1,ω2, . . .) ∈ IN.

Since each φi is C 1+ε differentiable, it is easy to verify that ϕ is Hölder continuous. Let ψ : IN → R be
Hölder continuous and let µψ denote the unique Gibbs measure for ψ in the sense of Bowen ([Bow75]).
For n ≥ 1 we denote by Snψ := ∑

n−1
k=0 ψ ◦σ k the ergodic sum. The range of the multifractal spectrum is

defined by

α− := inf
ω∈IN

liminf
n→∞

Snψ(ω)

Snϕ(ω)
, α+ := sup

ω∈IN
limsup

n→∞

Snψ(ω)

Snϕ(ω)
.

Recall that α− ≤ dimH Λ with equality if and only if α− = α+ (see [Pes97]). Since ϕ < 0 we have that for
each β ∈ R there exists a unique t(β ) such that

(1.1) P(t(β )ϕ +βψ) = 0,
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where P( f ) refers to the topological pressure of a continuous function f : IN→ R with respect to σ . We
denote by

t∗(α) := sup
x∈R

(αx− t(x))

the Legendre transform of t.

Theorem 1.1. Let Φ = (φi : X → X)i∈I be an orientation-preserving C 1+ε conformal iterated function

system on X ⊂ R satisfying the open set condition. Let ψ : IN → R be Hölder continuous and let µ :=
µψ ◦π−1. Then we have for all α ∈ [α−,α+],

dimH R∗(α) = dimH R∗(α) = dimH F (α) = dimH F ∗(α) =−t∗(−α),

and for α 6/∈ [α−,α+] we have R∗(α) = R∗(α) = F (α) = F ∗(α) =∅.

We proceed with two applications of our main result to the regularity of fractal functions.

1.1. Distribution functions of Gibbs measures. For a function F : R→R we define the pointwise Hölder
exponent of F at x ∈ R by

Höl(F,x) := sup
{

α > 0 | limsup
y→x

|F(y)−F(x)|
|y− x|α

< ∞

}
.

It is shown in [JS15, Lemma 5.1] that for any bounded function F : R→ R we have

(1.2) Höl(F,x) = liminf
r→0

logsupy∈B(x,r) |F(y)−F(x)|
logr

.

Under the assumptions of Theorem 1.1, we consider the distribution function of µ = µψ ◦π−1 given by

Fµ : R→ [0,1] , Fµ(x) := µ ((−∞,x]) .

By (1.2) we have

(1.3) Höl(Fµ ,x) = liminf
r→0

log µ (B(x,r))
logr

.

Corollary 1.2. Under the assumptions of Theorem 1.1, the distribution function Fµ : R→ [0,1] of µ =

µψ ◦π−1 satisfies for every α ∈ [α−,α+]

dimH
{

x ∈ Λ | Höl(Fµ ,x) = α
}
=−t∗(−α),

where t : R→ R is defined implicitly by P(t(β )ϕ +βψ) = 0.

For results on points of non-differentiability and related properties of Fµ we refer to [Fal04, KS09, Tro14].

1.2. Conjugacy maps between expanding piecewise C 1+ε interval maps. In this section we apply the
multifractal formalism to conjugacy maps between expanding piecewise C 1+ε interval maps as considered
in [JKPS09]. In fact, we slightly extend the framework by allowing one of the repellers of the expanding
interval maps to be a proper subset of [0,1], whereas in [JKPS09] both repellers are equal to [0,1].

Let us now briefly introduce the setting. Let f be an expanding piecewise C 1+ε interval map with s≥ 2 full
branches, i.e., there exist closed intervals J1, . . . ,Js ⊂ [0,1] with non-empty, pairwise disjoint interiors such
that f|Ji has a C 1+ε extension to a neighbourhood of Ji satisfying f ′|Ji

> 1 and f (Ji) = [0,1], for 1 ≤ i ≤ s.
We will always assume that the intervals J1, . . . ,Js are given in increasing order (i.e., supJi ≤ infJ j if i < j).
The repeller of f is denoted by Λ and the restriction f|Λ : Λ→ Λ is semi conjugate to the shift σ : IN→ IN

with I := {1, . . . ,s}. The semi conjugacy is given by the coding map π f : IN→ Λ of the conformal iterated
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function systems Φ f , which is given by the contracting inverse branches ( f|Ji)
−1 : [0,1]→ [0,1], 1≤ i≤ s.

Similarly, let g : [0,1]→ [0,1] be an expanding C 1+ε interval map with s full branches. We assume that
the repeller of g is the interval [0,1]. Again, g is semi conjugate to (IN,σ) with conjugacy map given by
the coding map πg : IN→ [0,1] of the associated conformal iterated function system Φg. Note that π

−1
f {x}

has at most two elements, for every x ∈ Λ, and that πg(π
−1
f {x}) is always a singleton. We can thus define a

conjugacy map Θ : Λ→ [0,1] satisfying Θ◦ f|Λ = g◦Θ which is given by {Θ(x)}= πg(π
−1
f {x}) for x ∈ Λ

(see [JKPS09] for the case Λ = [0,1]). Θ is a non-decreasing function on the real line, which is strictly
increasing function on Λ. We have for x ∈ Λ

(1.4) π
−1
g ((−∞,Θ(x)]) = π

−1
f ((−∞,x]) .

Denote by ϕg : IN→ R (resp. ϕ f : IN→ R) the geometric potential of Φg (resp. Φ f ) given by

ϕg :=− logg′ ◦πg, ϕ f :=− log f ′ ◦π f .

Let λ denote the Lebesgue measure on [0,1] and recall that λ = µϕg ◦π−1
g where µϕg is the unique Gibbs

measure for ϕg on IN. By (1.4) we then have for x ∈ Λ,

Θ(x) = µϕg ◦π
−1
g ((−∞,Θ(x)]) = µϕg ◦π

−1
f ((−∞,x]) .

So, the conjugacy Θ : Λ→ [0,1] coincides with the distribution function of µϕg ◦π
−1
f (cf. [JKPS09] for the

case Λ = [0,1]). Therefore, we have

{x ∈ Λ | Höl(Θ,x) = α}=
{

x ∈ Λ | Höl(Fµ ,x) = α
}
,

where µ = µϕg ◦π
−1
f . Hence, with

α− = inf
ω∈IN

liminf
n→∞

Snϕg(ω)

Snϕ f (ω)
, α+ := sup

ω∈IN
limsup

n→∞

Snϕg(ω)

Snϕ f (ω)
,

we obtain the following corollary as a consequence of Corollary 1.2.

Corollary 1.3. Let f and g be two expanding piecewise C 1+ε interval maps with s ≥ 2 orientation-

preserving full branches and coding maps π f ,πg : IN→ [0,1]. Let Λ := π f (IN) and suppose that πg(IN) =

[0,1]. Then the conjugacy map Θ : Λ→ [0,1], given by {Θ(x)}= πg(π
−1
f {x}) for x ∈ Λ, satisfies for every

α ∈ [α−,α+]

dimH {x ∈ Λ | Höl(Θ,x) = α}=−t∗(−α),

where t : R→ R is defined implicitly by P(t(β )ϕ f +βϕg) = 0.

2. PROOF OF THEOREM 1.1

Proof. First observe that F (α) is a subset of each of the level sets considered in the theorem. Therefore, the
lower bound for the Hausdorff dimension follows from the well-known multifractal formalism for F (α).
Therefore, to complete the proof of the theorem, it suffices to show the upper bound for the Hausdorff
dimension of F ∗(α). Throughout, we may assume I = {1, . . . ,s}, for s ≥ 2, and φi(x) ≤ φ j(y) for all
i, j ∈ I with i < j and for all x,y ∈U , where U is the open set in the open set condition.

Denote by I∗ :=
⋃

k≥1 Ik the set of finite words in the alphabet I. It is well known that Φ has the bounded
distortion property, i.e.

sup
k≥1

sup
ω∈Ik

sup
x,y∈X

(φω1 ◦ · · · ◦φωk)
′(x)

(φω1 ◦ · · · ◦φωk)
′(y)

< ∞.
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From this one derives the existence of C > 1 such that for all γ ∈ I∗ and i ∈ I,

C ·diam(π [γi])≥ diam(π [γ]) ,

where diam(A) := sup{|x− y| | x,y ∈ A} refers to the diameter of a set A⊂ R.

Let x ∈F ∗(α), x = π(ω) for some ω ∈ IN. There exists a sequence rk→ 0 such that

lim
k→∞

log µ (B(x,rk))

logrk
= α.

We define for k ≥ 1
nk := min

{
n≥ 1 | diam(π [ω1, . . . ,ωn])<C2rk

}
.

For a ∈ I and m ∈ N we denote am := (a, . . . ,a) ∈ Im. We define two sequences of words (νk), (ν ′k) ∈ I∗,
k ≥ 1, as follows. If (ω1, . . . ,ωnk) takes the form

(ω1, . . . ,ωnk) = (τ js`k),

for some τ ∈ I∗, j ≤ s−1 and `k ≥ 1 then let

`′k := max
{
`≥ 1 | diam

(
π

[
τ( j+1)1`

])
≥ rk

}
.

Note that `′k is well defined, since our definition of nk implies that diam(π [τ])≥C2rk, and thus, diam(π [τ( j+1)1])≥
rk. We then define

νk := (τ js`k−1) = (ω1, . . . ,ωnk−1), ν
′
k := (τ( j+1)1`

′
k).

If (ω1, . . . ,ωnk) takes the form (ω1, . . . ,ωnk) = (τ( j + 1)1`k), then we define νk := (ω1, . . . ,ωnk−1) and
ν ′k := (τ js`

′
k) where

`′k := max
{
`≥ 1 | diam

(
π

[
τ js`

])
≥ rk

}
.

Finally, if (ω1, . . . ,ωnk) satisfies ωnk /∈ {1,s} then we define νk := ν ′k := (ω1, . . . ,ωnk−1). Let n′k := |ν ′k|.

It is important to note that, by the definition of νk and ν ′k, we have as k→ ∞,

(2.1) diam(π [νk])� diam
(
π
[
ν
′
k
])
� rk,

where, for sequences of positive numbers (ak) and (bk) the notation ak � bk means that ak/bk is bounded
away from zero and infinity. We will show that this implies the existence of a uniform constant D such that

(2.2) `′k ·ϕ(1)−D≤ `k ·ϕ(s)≤ `′k ·ϕ(1)+D,

where we have set γ := (γγ . . .) ∈ IN, for γ ∈ I∗. To prove (2.2) suppose that (ω1, . . . ,ωnk) = (τ js`k). The
other case (ω1, . . . ,ωnk) = (τ( j+ 1)1`k), can be handled analogously. By the bounded distortion property
of the geometric potential we have, as k→ ∞,

diam(π [νk]) = diam
(

π

[
(τ js`k−1)

])
� diam(π [τ])eS`k ϕ(s)

diam
(
π
[
ν
′
k
])

= diam
(

π

[
τ( j+1)1`

′
k

])
� diam(π [τ])e

S`′k
ϕ(1)

,

which proves (2.2).

We will show that for x ∈ Λ = π(IN) and k ≥ 1 we have

B(x,rk)∩Λ⊂ π([νk])∪π([ν ′k]).
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First suppose that (ω1, . . . ,ωnk)= (τ js`k). Then π [νk] = π
[
(τ js`k−1)

]
⊃ π

[
(τ js`k−11)

]
. Since x∈ π

[
(τ js`k)

]
we have x≥maxπ

[
(τ js`k−11)

]
. By the definition of C and nk we have

diam
(

π

[
(τ js`k−11)

])
≥C−1diam

(
π

[
(τ js`k−1)

])
=C−1diam

(
π
[
(ω1, . . . ,ωnk−1)

])
≥Crk.

Hence,
π [νk]⊃ [x,x− rk]∩Λ.

Further, by the definition of `′k we have

diam
(
π
[
ν
′
k
])

= diam
(

π

[
τ( j+1)1`

′
k

])
≥ rk,

so [x,x+ rk]∩Λ⊂ π [νk]∪π
[
ν ′k
]
. This proves that B(x,rk)∩Λ⊂ π([νk])∪π([ν ′k]).

Let ε > 0. We will derive from our assumption x ∈F ∗(α) that there exists N ≥ 1 such that for all k ≥ N,

(2.3)
S|νk|ψ(νk)

S|νk|ϕ(νk)
≤ α + ε or

S|ν ′k|ψ(ν ′k)

S|ν ′k|ϕ(ν
′
k)
≤ α + ε.

To prove (2.3), we first note that by the Gibbs property of µψ we have for every γ ∈ I∗,

µψ ([γ])≤Cψ exp(S|γ|ψ(γ)),

where Cψ ≥ 0 is a uniform constant depending on ψ . Suppose for a contradiction that (2.3) does not hold.
Then, by passing to a subsequence of (nk) we may assume that for all k and for all ν ∈ {νk,ν

′
k} we have

S|ν |ψ(ν)
/

S|ν |ϕ(ν) > α + ε , and so, by the bounded distortion property of Hölder continuous potentials,
taking C′ large enough we have

µψ ([ν ])≤Cψ exp(S|ν |ψ(ν))≤C′rα+ε

k .

Since B(x,rk)⊂ π([νk])∪π([ν ′k]), we conclude that

lim
k→∞

log µ (B(x,rk))

logrk
≥ α + ε.

This contradiction proves (2.3).

We will prove the theorem only in the case when α ≤ α0 :=
∫

ψ dµt(0)ϕ
/∫

ϕ dµt(0)ϕ . The case α ≥ α0 can
be considered in a similar fashion (see also Remark 2.1 below). Let β > 0, η > 0 and let b = t(β )+β (α +

ε)+η . We define

Cα+ε :=
{

τ ∈ I∗ |
S|τ|ψ(τ)

S|τ|ϕ(τ)
≤ α + ε

}
.

We obtain a covering of F ∗(α) by cylinders C of sufficiently small diameters as follows. For each x ∈
F ∗(α) we define the sequences (nk), (νk) and (ν ′k) as above. We then pick ν(x) := νk such that π ([νk]) is
sufficiently small, x ∈ π ([νk]) and (2.3) holds. We define

C := {ν(x) | x ∈F ∗(α)} .

To verify that the corresponding sum of diameters ∑ν∈C diam(π ([ν ]))b converges, we proceed as follows.
If ν /∈Cα+ε then, by (2.3), we can replace ν by ν ′ ∈Cα+ε , because diam(π ([ν ]))� diam(π ([ν ′])) by (2.1).
This defines a map ν 7→ ν ′ from C \Cα+ε to Cα+ε . Since the involved numbers `k and `′k in the definition
of ν and ν ′ satisfy (2.2), we have that the map ν 7→ ν ′ is at most M-to-1 for some uniform constant M ∈N.
Since

(2.4) ∑
ω∈Cα+ε

diam(π([ω]))b � ∑
ω∈Cα+ε

e(t(β )+β (α+ε)+η)S|ω|ϕ(ω) ≤ ∑
ω∈Cα+ε

e(t(β )+η)S|ω|ϕ(ω)+βS|ω|ψ(ω) < ∞,
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we conclude that the b-dimensional Hausdorff measure of F ∗(α) is bounded by M ·∑ω∈Cα+ε
diam(π([ω]))b <

∞. Now, first assume that α ∈ [α−,α0]. Since ε and η are arbitrary, it follows that

dimH F ∗(α)≤ inf
β>0
{t(β )+βα}=−t∗(−α),

where we have used α ≤ α0 for the last equality. Finally, if α < α− then Cα+ε =∅ if α + ε < α−. By the
above construction of the covering of F ∗(α) it thus follows that F ∗(α) =∅. The proof is complete. �

Remark 2.1. For the dimension spectrum of the level sets R∗(α) with α ≥ α0, the upper bound of the
Hausdorff dimension can also be deduced from [LWX12, Theorem 1.1 (2)] (see also [All18, Proof of
Proposition 7.6 ii]).
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