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Abstract

We consider a family of conformal iterated function systems (for short, CIFSs) of generalized complex
continued fractions which is a generalization of the CIFS of complex continued fractions. We show the
packing dimension and the Hausdorff dimension of the limit set of each CIFS in the family are equal
and the packing measure of the limit set with respect to the packing dimension of the limit set is finite
in order to present new and interesting examples of infinite CIFSs. Note that the Hausdorff measure of
the limit set with respect to the Hausdorff dimension is zero. To prove the above results, we consider
three cases (essentially two cases) and define a ‘nice’ subset of the index set of the CIFS in each case. In
addition, we estimate the cardinality of the ‘nice’ subsets and the conformal measure of the CIFSs. *

1 Introduction and the main results

Fractal geometry has been developed in order to study the geometrical properties of fractals. One of the major
studies in Fractal geometry is the study of estimating the dimensions and measures of fractals. By estimating
the dimensions and measures of fractals, it is possible to explain phenomena that appear in fractals which
are different from the ones that appear in ‘usual figures’ (see [4]). For this reason, the study of estimating
the dimensions and measures of fractals has been the major topic since Fractal geometry began to attract
attention not only in mathematics but also in many other fields.

Mathematically speaking, iterated function systems are a powerful method to construct fractals (more
precisely, limit set) and in many papers the study of estimating the dimensions and measures of the limit
sets has been studied. For example, Mauldin’s and Urbaiiski’s paper [5] presents the general theory of
estimating the dimensions and measures of the limit set constructed by conformal iterated function systems
with finitely many mappings (for short, finite CIFSs). Note that by the formula and results in [5], we obtain
some estimations of the dimensions and measures of the limit sets. Indeed, by the formula on the Hausdorff
dimension of the limit set constructed by finite CIFSs in [5] we obtain the estimation of the Hausdorff
dimension of the limit sets, and by the theorem in [5] we deduce the positiveness and finiteness of the
Hausdorff measure and the packing measure of the limit sets with respect to the Hausdorff dimension of the
limit sets. By these results, we obtain that the packing dimension of the limit set constructed by finite CIF'Ss
equals the Hausdorff dimension of the limit set, we obtain the positiveness and finiteness of the Hausdorff
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measure of the limit set constructed by finite CIFSs with respect to the Hausdorff dimensions of the limit
set, and we obtain the positiveness and finiteness of the packing measure of the limit set with respect to the
packing dimension of the limit set.

In addition, Mauldin’s and Urbanski’s paper [5] presents the general theory of estimating the dimensions
and measures of the fractals (more precisely, limit sets too) constructed by conformal iterated function
systems with infinitely many mappings (for short, infinite CIFSs), and now, there are many results of the
limit set constructed by infinite CIFSs (for example, see [6], [8], [3], [7], [9], [10] and so on). Note that they
generalized the above formula and theorems, and by the generalized theorems in their paper we may obtain
non-positiveness of the Hausdorff measure of the limit set constructed by infinite CIFSs with respect to the
Hausdorff dimension of the limit sets. This theorem indicates we may find a new phenomenon of infinite
CIFSs which cannot hold in finite CIFSs.

Moreover, in Mauldin’s and Urbariski’s paper [5], they constructed an interesting example of an infinite
CIFS and the limit set which is related to the complex continued fractions. The precise construction of the
example is the following. Let X := {z € C | |z — 1/2| < 1/2}. We call S := {(/B(m,n)(z): X = X | (m,n) €
Z x N} the CIFS of complex continued fractions, where Z is the set of integers, N is the set of positive integers
and

Smmy(2) = ———— (z€ X),

z+m+ni
Let .J be the limit set of S (see Definition 2.1) and & be the Hausdorff dimension of .J. For each s > 0, we
denote by H*® the s-dimensional Hausdorff measure and denoted by P*® the s-dimensional packing measure.
For this example, Mauldin and Urbanski showed the following theorem.

Theorem 1.1 (D. Mauldin, M. Urbanski (1996)). Let S be the CIFS of complex continued fractions as
above. Then, we have that #"(J) =0 and 0 < P"(J) < oc.

Note that they obtained an example of infinite CIFS for which the Hausdorff measure of the limit set
with respect to the Hausdorff dimension of the limit set is zero and the packing measure of the limit set with
respect to the packing dimension of the limit set is positive and finite. That is, they found a new phenomenon
of infinite CIFSs which cannot hold in finite CIFSs.

In our previous papers [1] and [2], we considered a family of CIFSs of generalized complex continued
fractions which is a generalization of the CIFS S of complex continued fractions, in order to present new
and interesting examples of infinite CIFSs. We estimated the Hausdorff dimension of the limit set of each
CIFS of the generalized complex continued fractions and showed non-positiveness of the Hausdorff measure
and positiveness of the packing measure of the limit set with respect to the Hausdorff dimension of the limit
set. Note that the family of the CIFSs introduced in the papers [1] and [2] has uncountably many elements.
On the other hand, we did not obtain results on the relationship between the Hausdorff dimension and the
packing dimension and the finiteness of the packing measure of the limit set with respect to the packing
dimensions of the limit set in [1] and [2], and we have been interested in the relationship and the finiteness
of the packing measure of the limit set. The aim of this paper is to show the relationship between the
Hausdorff dimension and the packing dimension of each limit set and the finiteness of the packing measure of
each limit set with respect to the packing dimensions in the family of the CIFSs of the generalized complex
continued fractions, in order to find new, interesting and uncountably infinite examples of infinite CIFSs with
the phenomenon which cannot hold in finite CIFSs.

The precise statement is the following. Let

Ay ={r=u+iveC|lu>0andv>1} and X:={ze€C||z—-1/2|<1/2},
and we set I, := {m +n7r € C | m,n € N} for each 7 € Ay, where N is the set of the positive integers.

Definition 1.2 (The CIFS of generalized complex continued fractions). Let 7 € Ag. Then, we say that
Sy ={¢p: X — X | b€ I} is the CIFS of generalized complex continued fractions. Here, for each 7 € Ay
and b € I, ¢y is defined by

1

Ov(2) = z+b

(z € X).

We call {S;},ca, the family of CIFSs of generalized complex continued fractions. For each 7 € Ay, let
J; be the limit set of the CIFS S, (see Definition 2.1) and let &, be the Hausdor{f dimension of the limit set



J,. We remark that this family of the CIFSs is a generalization of S in some sense. Indeed, S, is related to
‘generalized’ complex continued fractions since each point of the limit set J. of S, is of the form

1

by +
ba +

1
by + -

for some sequence (b1, bg, b3, . ..) in I+ (See Definition 2.1). Note that there are many kinds of general theories
for continued fractions and related iterated function systems ([3], [5], [6], [8]). In [2], we showed the following
theorem.

Theorem 1.3 (2, Theorem 1.3]). Let {S;}-c4, be the family of CIFSs of generalized complex continued
fractions. Then, for each 7 € Ay, we have H"(J;) =0 and 0 < P~ (.J,).

We now present the main theorem in this paper.

Theorem 1.4 (the main theorem). Let {S;};ca, be the family of CIFSs of generalized complex continued
fractions. Then, for each 7 € Ay, we have P"7(J;) < occ.

Combining Theorem 1.3 and Theorem1.4, we obtain the following corollary.

Corollary 1.5. Let {S;},ca, be the family of CIFSs of generalized complex continued fractions. Then, for
each 7 € Ap, we have 0 < P"7(.J,) < co. In particular, for each 7 € Ag, the packing dimension of the limit
set J. equals the Hausdorff dimension A, of the limit set J.

Remark 1.6. By the general theory of finite CIFSs, the Hausdorff measure of the limit set of each finite
CIFS with respect to the Hausdorff dimension of the limit set and the packing measure of the limit set with
respect to the Hausdorff dimension of the limit set is positive and finite. However, Corollary 1.5 indicates that
for each S; of the family of CIFSs of generalized complex continued fractions which consists of uncountably
many elements, the packing dimension of the limit set equals the Hausdorff dimension of the limit set and
the Hausdorff measure of the limit set with respect to the Hausdorff dimension of the limit set is zero and the
packing measure of the limit set with respect to the Hausdorff dimension (which equals the packing dimension
of the limit set) is positive and finite. This is also a new phenomenon which cannot hold in the finite CIFSs.

Remark 1.7. It was shown that for each 7 € Ao, J; \ J; is at most countable and h, = dimy(J;) ([1]).
Thus, for each 7 € Ag, we have 0 < Ph(J,;) = P"(J,) < co. Also, for each 7 € Ay, since the set of
attracting fixed points of elements of the semigroup generated by S. is dense in J., Theorem 1.1 of [11]
implies that .J; is equal to the Julia set of the rational semigroup generated by {qbgl |bel,}.

The ideas and strategies to prove the main theorem are the following. To prove the finiteness of the
packing measure of the limit set J,, we apply Lemma 4.10 in the paper [5] to S, for each 7 € Ag. That is, it
suffices to show that for each r > 0 (which is sufficiently small) and b € I, with diamg¢,(X)/r < 1, we have

my(B(z,r)) > r', (1.0.1)

where = := 1/b, B(x,r) is the open ball with the center x and the radius r with respect to the Euclidean
distance in C, m, is h,-conformal measure of S, (see Theorem 2.8) and ‘f(r) 2 ¢g(r)’ means that there exists
a ‘small’ constant ¢ > 0 such that f(r) > cg(r) for all » > 0. Note that there is a useful inequality for the
conformal measure m. :

m. (U ¢a(X)> = m. (a(X)) = Z/ 6L ma(dy) 2 Jal 7 rme(X) =) a7 (1.0.2)
acl acl acl v X acl acl

for each I C I, where we use the property on the S, (see Lemma 3.2). To prove the above inequality (1.0.1),
we essentially consider the following two cases:

1. r < |z| and

2. > |zl



In the first case, by the assumptions, we deduce that |z|?> < r and r < |z|. We next define I, ; C I, and show
the following inclusions and inequality:

2
T _
> <|m|) and o] < |2

for each a € I ;. Here, for any set A, we denote by |A| the cardinality of A. To prove the above inclusion
and inequalities, we prove some additional lemmas. Therefore, by the above inclusion, the inequality (1.0.2)
and the above inequalities, we have

B(z,r)> |J ¢a(X), L1

acl;

m-(B(z,1)) = m; U $a(X) | 2 Z |a|_2hT 2 Ml |x|2h7
a€l; a€l;
Z 7“2 . |:L,|2h.r—4 Z 7“2 _T}LT—Q _ Th",
where we use the inequality |z|? <7 and h, < 2.
In the second case, since r > |x|, we have B(0,7) C B(z,r), where 7 = c¢r and ¢ > 0 is a ‘small’ positive
number. Next, we define I.(7) C I and show the following inclusion and inequalities:

B(0,7)> |J ¢aX), L@ Zr* and o $r7
a€l,(T)

for each a € I.(7) (see Lemma 3.5). Therefore, by the above inclusion, the inequality (1.0.2) and the above
inequalities, we have

m-(B(x,7)) > m.(B(0,7)) > m; U $a(X) | 2 Z ‘a|_2h7

a€l(7) a€l,(7)
ZAL(F)] -2 22 s

where we use the inequalities 72"7 =2 > rh+ since r is sufficiently small and h, < 2.

The rest of the paper is organized as follows. In Section 2, we summarize the general theory of the CIFSs
and recall some definitions and theorems in the theory. In Section 3, we present some results for the CIFSs
of generalized complex continued fractions in the paper [1] and [2]. Also, we prove a slight modification of
lemmas in the paper [1] and [2] to prove Theorem 1.4. In Section 4, we prove the main theorem (Theorem
1.4). In this section, we first show some additional lemmas to prove Theorem 1.4 and next present the setting
for the proof of the main theorem. Then, we finally show Theorem 1.4. To prove Theorem 1.4, we consider
three cases.

2 Conformal iterated function systems
In this section, we summarize the general theory of CIFSs ([1], [2], [5], [6]). We first recall the definition of
CIFSs and the limit set of the CIFSs.

Definition 2.1 (Conformal iterated function system). Let X C R? be a non-empty compact and connected
set with the Euclidean norm | - | and let I be a finite set or bijective to N. Suppose that I has at least two
elements. We say that S := {¢;: X — X | ¢ € I} is a conformal iterated function system (for short, CIFS)
if S satisfies the following conditions.

1. Injectivity: ¢;: X — X is injective for each i € I.

2. Uniform Contractivity: There exists ¢ € (0,1) such that, for all i € I and x,y € X, the following
inequality holds:

|pi () — ¢i(y)| < ez —yl.

3. Conformality: There exists e > 0 and an open and connected subset V' € R? with X C V such that for
all i € I, ¢; extends to a C'T¢diffeomorphism on V and ¢; is conformal on V i.e. for each z € V and
i € I, there exists C;(x) > 0 such that for each u,v € R%,

|65 (x)u — ¢5(x)v] = Ci(@)|u — vl
Here, ¢;(x) denotes the derivative of ¢; at x € V.



4. Open Set Condition (OSC): For all ¢,j € I (i # j), ¢;(Int(X)) C Int(X) and ¢;(Int(X))N¢;(Int(X)) =
(). Here, Int(X) denotes the set of interior points of X with respect to the topology in R%.

5. Bounded Distortion Property(BDP): There exists K > 1 such that for all 2, € V and for all w €
I* :=Jo_, I", the following inequality holds:

|6 ()] < K - [y, (y)].

Here, for each n € N and w = wyws - - - wy, € I, we set yy := oy, © Puyy © -+ - 0 Gy, and |@,, ()| denotes
the norm of the derivative of ¢, at x € X with respect to the Euclidean norm on R?.

6. Cone Condition: For all z € 90X, there exists an open cone Cone(z, u, o) with a vertex x, a direction
u, an altitude |u| and an angle « such that Cone(z, u, «) is a subset of Int(X).

We endow I with the discrete topology and endow I := I with the product topology. Note that I°° is
Polish in general and I is a compact metrizable space if I is a finite set.

Let S be a CIFS and we set w|, := wiwy---w, € I" and buwl, = Pu; © Gw, © -+ O Py, for each
w = wywaws--- € I, Note that [, .y Pw, (X) is a singleton (denoted by {z,}) and the coding map
mg: [ — X of S defined by mg(w) := x,, is well-defined. Then, the limit set Jg of S is defined by

Js=n(1) = () ) du.(0)(C X CRY.
wel>® neN

We set hg := dimy Jg, where we denote by dimy; A the Hausdorff dimension of a set A C R¢ with respect
to the Euclidean distance.
We next recall the pressure function of CIFS S as follows in order to define the regularity of CIFSs.

Definition 2.2. For each n € N, [0, oo]-valued function 9% is defined by
YEE) = Y oLk (t=0).
weln

Here, for a C! map f: Y — R? (Y C R?), we set

1f' ()] =sup{|f'(W)ul | u e R, Ju| =1} (y € Y) and ||f|ly :==sup{|f ()| | y € Y}.

We set 0 := inf{t > 0| ¥§(t) < oo} and F(S) := {t > 0 | ¥}(t) < co}. Note that by the following
lemma, we deduce that F(S) = (0s,00) or F(S) = [fg,0).

Lemma 2.3 ([5]). Let S be a CIFS. Then, ¢5(t) is non-increasing on [0, 00), and decreasing and convex on
F(9). In addition, we have ¥%(d) < K% In particular, 05 < d.

In addition, by the following proposition, we deduce the basic properties of ¥g.

Proposition 2.4 ([5]). Let S be a CIFS. For all m,n € N and ¢ > 0, we have

K28 (6)05(1) < w5 (8) < vg ()95 (D).

In particular, ¢¥%(t) < oo for each n € N if and only if ¥%(t) < oo for some n € N (or n = 1), and the
function n — log¢%(t) is subadditive for all ¢ > 0. By the subadditivity of log%(t), we now define the
pressure function of S as follows.

Definition 2.5 (Pressure function). The pressure function of S is the function Ps: [0,00) — (—o00, 0]
defined by

Ps(t) i= Tim ~log () € (—o0,00] (¢ > 0).

n—00 M

Proposition 2.6 ([5]). Let S be a CIFS and Pg be the pressure function of S. Then, Pg(t) < oo if and only
if 1§ (t) < oo for each ¢t > 0. In particular, g = inf{t > 0 | Ps(t) < oo}. In addition, Ps is non-increasing
on [0,00), and decreasing and convex on F(S).

Note that Pg(0) = oo if and only if I is infinite. By using the pressure function in Definition 2.5, we
define the regularity of CIFSs.

Definition 2.7 (Regular, Strongly regular, Hereditarily regular). Let S be a CIFS. We say that



e S is regular if there exists ¢ > 0 such that Ps(t) =0,

e S is strongly regular if there exists ¢ > 0 such that Pg(t) € (0,00) and

e S is hereditarily regular if, for all I’ C I with [T\ I'| <00, 8" :={¢;: X — X | i € I'} is regular.
Here, for any set A, we denote by |A| the cardinality of A.

Note that if a CIFS S is hereditarily regular then S is strong regular, and if S is strong regular then S is
regular.

We finally recall the hg-conformal measure of S. If a CIFS S is regular, there is the following ‘nice’
probability measure mg (hg-conformal measure of S) on Jg. Indeed, we often use mg in order to estimate
the packing measure of the limit set of CIFSs.

Theorem 2.8 ([5] Lemma 3.13). Let S be a CIFS. If S is regular, then there exists the unique Borel
probability measure mg on X such that the following properties hold.

1. ms(Js) =1.
2. For all Borel subset A on X and i € I, mg(¢i(A)) = [, |¢5(y)|"sms(dy).
3. For all i, € I with i # j, ms(¢:(X) N é;(X)) = 0.

We call mg the hg-conformal measure of S. As we mentioned above, by the existence of the conformal
measure of CIFSs, we estimate the packing measure and obtain the following key theorem to prove Theorem
1.4.

Theorem 2.9 ([5] Lemma 4.10). Let S be a regular CIFS and mg be the hg-conformal measure of S.
Suppose that there exist L > 0, £ > 0 and v > 1 such that for all b € T and r > 0 with v -diam¢,(X) <r <&,
there exists € ¢,(V) such that mg(B(z,7)) > Lr"s, B(x,r) is the open ball with the center x and the
radius 7 with respect to the Euclidean distance in R%. Then, we have P"s(Jg) < oo.

3 CIFSs of generalized complex continued fractions

In this section, we present some results on the CIFSs of generalized complex continued fractions introduced
in the papers [1] and [2], which are needed to prove the results of this paper. Note that these CIFSs are
important and interesting examples of infinite CIFSs. Rest of this paper, we denote by B(y,r) C R¥(d € N)
the open ball with center y € R? and radius » > 0, with respect to the d-dimensional Euclidean norm and
we identify C with R2.

We first present the following lemma shown in [1] and [2] in order to prove Theorem 1.4.

Lemma 3.1 (Lemmas 3.1, 3.3 and 3.4 in [2]). For all 7 € Ay, S; is a hereditarily regular CIFS . In addition,
we have 1 < h, < 2.

In addition, in order to prove Theorem 1.4, we next prove the following lemma (a slight modification of
Lemma 3.2 in [2]). For the readers, we give a proof of Lemma 3.2.

Lemma 3.2. Let 7 € Ap. Then, there exists Ky > 1 such that for all K > Ky and a € I, the following
properties hold.

1. ¢o(X) C B(0,K|a|™).
2. K7'a|™2 < |¢)(2)| < K|a|=2 for each z € X.
3. K~ Ya|7% < diamg,(X).
Proof. Let T € Ay. Note that by using the BDP, there exists a constant C' > 1 such that for all z,w € X,
16,(2)] < C - 16l (w). (3.0.1)
We set Ko := C(>1) and let K > Ky and a € I;. Then, by the inequality (3.0.1) with w =0 € X, we have

6a(2)] - Ja = oL — [l 166(2)

_ — — <O < Ky < K.
la+ 2| la + z[2 EAC




for each z € X. It follows that ¢,(X) C B(0, K|a|~!). Also, by the inequality (3.0.1), we have
KM a| ™ = K¢, (0)] < CTH@L(0)] < |64 (2)] and  [¢,(2)] < Cl¢,(0)] < K¢, (0)] = Kla|~*

for each z € X, which deduce that K~![a|™? < |¢,(2)| < K|a|~2. Moreover, by the inequality (3.0.1), we
have

y |2:&.‘ |2
|z + al|w + a|

R N N 1 I A
= o= \/|a+z|2\/ ===\ g e A

for all z,w € X = B(1/2,1/2). Since diamX = sup{|z —w| | z,w € X} = 1, we obtain that diamg,(X) >
C~1la|=? > K~ a|~2. Therefore, we have proved our lemma. O

diame, (X) - [af* > |¢a(2) — ¢a(w)] - |a]* =

We recall the following notations used in the paper [2]. We identify I, with {!(s,t) € R* | s + it € I}
and N? with {!(m,n) € R? | m,n € N}, where for any matrix A, we denote by *A the transpose of A. For
each 7 = u +iv € Ay, we set

gL and Fo='EE. =1 “ ).
0 v u |7

Note that by direct calculations, E.N? = I, E, is invertible and there exist the eigenvalues A\; > 0 and
Ao > 0 of F, with A\; < \o. Note that since F, is symmetric, there exist an eigenvector v; € R? of F, with
respect to A; and an eigenvector v, € R? of F, with respect to Ay such that V, := (v1,v2) is an orthogonal
matrix.

For each 7 € Ag, we set N, := v/2Xa/v/A1 + 1 (> 2). In addition, for each 7 € Ay and R > 0, we set

Di(1,R) := {!(z,y) € R* | R?/\; < 2° +9? < (N,R)?/\2} and
Dy(1,R) == {!(z,y) € R? | R? < 22 +y* < (N, R)?}.

Note that R/vA1 < (N:R)/+/Ag for each R > 0 since v/A3/v/ A1 < N; and R < N, R for each R > 0 since
1 < N;. By these notations, we now present the following proposition and lemma shown in the paper [2].

Proposition 3.3 (Proposition 4.3 in [2]). Let R > 0. Then, for each R > 6,

R?—TR+7
0 < % < [{*(m,n) € N? | m? +n® < R?}| < R>.

Lemma 3.4 (Lemmas 4.2 and 4.4 in [2]). Let 7 € Ag. Then, there exist C, >0 and L, > 0 such that for
all R > C,

7N,
R.
2VA2

We finally prove the following lemma (a slight modification of Lemma 3.4). For the readers we give a
proof of Lemma 3.5.

|I. N Dy(1,R)| > L, R* —

Lemma 3.5. Let 7 € Ay. Then, there exist @, > 0 and C; > 0 such that for all R > C.., we have
|I, N Dy(7, R)| > Q, R>. (3.0.2)

Proof. Let T € Ag and we set Q; 1= £7/2~> 0, where L, > 0 is the number in Lemma 3.4. Note that there
exists C; > C; such that for all R > C,, (L, R?)/2 — (TN, R)/(2y/A2) > 0, which is equivalent to

TN
AVON

where C; > 0 is the number in Lemma 3.4. By Lemma 3.4 and the inequality (3.0.3), we deduce that

L.R?

L,
R> 732, (3.0.3)

. 7N L
I.NDy(r,R)| > L,R* - ——=R > —R*=Q,R’
for all R > C;. Therefore, we have proved our lemma. O



4 Proof of the main theorem

In this section, we prove the main theorem (Theorem 1.4). Rest of this paper, we use the notations in Section
3.
4.1 Lemmas for the proof of the main theorem

In this subsection, we prove the following lemmas to prove Theorem 1.4.

Lemma 4.1. Let f(z) :=1/z (2 € C\ {0}). Then, for each B(z,r)(C C) with r < |z|, we have

(B = 5 P 1 _r ).

|z]2 =72 x |x]2 —r2

Proof. Let a € C. Then, |1/a — T/(|z|?> —r?)| = r/(|z|*> — r?) if and only if |r? — Z(z — a)| = r|a|, which is
also equivalent to the following equation:

r* —r2(ZF(z — a) + 2(T — @) + aa) + 27(z — a)(T — @) = 0. (4.1.1)

Since (Z(z—a)+x(T—a)+aa) = 27+ (r—a)(T—a), the equation (4.1.1) is equivalent to (r?2—|z—a|?)(r?—|z|?) =
0. Since 0 < r < |z|, we deduce that |1/a —Z/(|z|* — r?)| = r/(|z|> — r?) if and only if r = |z — a|. In
addition, since f(z) =1/x and r < |z|, we obtain that

||? I T r r
O = 2| SRl
That is, f(z) € B(z/(|z|*> —r?),r/(|z|> — r?)) ). Therefore, we have proved our lemma. O

Lemma 4.2. Let 7 € Ay, Z € R? and R > 0. Then, we have

E.(B(E'Z R/\/\2)) C B(i, R).

Proof. Let ‘(z,y) € B(E;'#, R/vAz). We set § = (z,y) — E;'4. Since V; is orthogonal and [j]? =
|*(z,y) — E;-'%|> < R?/\a, we have

|E-(2,y) — Z° = |E-§)* ="§' E-E.j = "§F.j

N A 0 - _ _ ~
= gV, ( o N ) Weg =Mz + Aazs < No|Vigl? = No|gf® < R,

where (21, 20) := 'V, {j. Therefore, we have proved our lemma. |
Lemma 4.3. Let 7 € A, let w € R? and R > 0 with |w| > R. Then, for each M > 2, we have
R R
E,B|E ' (w— ,
( ’ (w lelw) VAM
E, <N2ﬂB<E1 <w— 1 w) i )) C I. N B(0,|w|) N B(w, R).
T M|w| VA M

In particular, we have
R R
N’NB(E' (w— w),
‘ ( ! ( Mwl ) VA2 M
Proof. Let 7 € Ag, w € R, R > 0 and M > 2, and assume that |w| > R. We first show that the following
inclusion:

) C B(0,|w|) N B(w, R) and

)] <1 1 B(O, Ju]) N B(w, R)|.

R R _
B - —w, — B B .
(v 57 37 ) © BO-lwh 0 B, )

Indeed, Let z € B (w — (Rw)/(M|w|), R/M). Since |w| > R and M > 2, we have 1 > R/(M|w|) and

z— w—iw + w—iw
Mlw] Mlw|

R R R R
<+‘1—‘|w|:+(1—) | = Ju.
w w

2] <

M



In addition, since M > 2, we have (2R)/M < R and

z—|\w— <—+£—§<R
M|w| M M M~

Hence, we have proved the desired inclusion. By Lemma 4.2 with & := w — (Rw)/(M|w|) and R := R/M,
we have

|z —w| <

R R R R _
—1 _ . 2 4
E.B <ET (w |w|w> o ) CB (u} |w|w, ) C B(0,|w|) N B(w, R).

Moreover, since I, = E,(N?) it follows that

E.(N*)NE, (B (ETl (w - M}Fw|w) , \/SM» C I, N B(0,|w|) N B(w, R).

Finally, since E; is injective, we have proved our lemma. O

We finally show the following lemma.

Lemma 4.4. Let 7 € Ag. Then, there exist C. > 0 and @/, > 0 such that for all w € R? and R’ > 0 with
|w| > R’ > CL, we have
I N B(0, |w|) N B(w, R')| > QL(R')?

Proof. Let 7 € Ag. Also, let w € R? and R’ > 0 with |w| > R’ > 2y/2X\y. We set & = 1(&,&) =
E7Y (w— (R'w)/(2|w])) € R? and let ¢; and (5 be minimum integers with ¢; > &; and (o > &. We first show

thTat
where ¢ := *((1,(2) € N2, Indeed, note that R’ > 21/2)\; if and only if R'/(2y/X2)—+v/2 > 0. Since |(; —& | < 1
and |C2 — &| < 1, we have
=P =10 -al? +]k-&* <2
It follows that for each a € B (¢, R'/(2v/X2) — V2),

la—¢&l <la—¢|+1¢—¢l < \ﬁ -V2+V2= ﬁ

Therefore, we have proved the inclusion (4.1.2).
We now set Q. :=1/(32\3) and let C. > 344/\3 be a number such that

(R —2V2)?  (R)?
16X 322

>0 (4.1.3)

for each R > C.
Let R' > C’. Note that | := R'/(2y/X3) — V2 > 17 — 2 = 15 > 6 and by using a geometric observation,
we see that
{'(m,n) € N? | (m = (1) + (n = &2)* < P} = [{"(m,n) € N? | m* + n? <1%}].
By proposition 3.3, we deduce that
{'(m,n) € N? | (m = (1) + (n— (2)* < 1P}
1277l+7> 12 -1l >£
2 2 4’
where we use the following inequality (I* — 71)/2 — 1% /4 = (1> — 141) /4 = I(l — 14)/4 > 0 for each I > 15.
Finally, let w € R? with |w| > R’. Note that R’ > C. > 24/2);. By Lemma 4.3 with R := R’ and M = 2,
the inclusion (4.1.2) and the definition of @/ and C., we have
R R’ R
I.N B(0, NB(w,R)|>|N>NB(E' (w— ,—— || >IN’NB(( ——= —V2
L O B | E Gy = V3
= [{"(m,n) eN* | (m = (1)* + (n — ¢2)* < I*}]
I? (R/ —2v 2)‘2)2 (R/)z 1 (P2
S T T Ve W AL

Thus, we have proved our lemma. O

= [{"(m,n) e N* | m* + n* < 1*}| >




4.2 Proof for Theorem 1.4

We now prove Theorem 1.4. Rest of this section, Let K > 1 be a number which satisfies 1. ~ 3. in Lemma
3.2.

Proof of Theorem 1.4. It suffices to show that S, satisfies the assumption of Theorem 2.9 for each 7 € Aj.

Let 7 € Ag and we set 7 := min{1/8, KC-*}(> 0), where C, > 0 is the number in Lemma 3.5. Note that
there exists Rg > max{C,,1}(> 0) such that (R —1)/R > 1/2 for each R > Ry, where C. > 0 is the number
in Lemma 4.4. Recall that N, = v/2X2/v/A1 + 1(> 2). We define constants L., £, v and L, as follows:

L) = min{Q’ /4, (Ry +1)72} (> 0),
£€:=7r2(>0),
v:=K(>1) and
L, :=min {L, (8K) ", Q. K> 3" N 2h22=2h=1 (> ().

Here, Q. and @/ are the numbers in Lemmas 3.5 and 4.4 respectively.
Let b:=m+n7 € I; and r > 0 with - diam(¢,(X)) <r <& Weset 2 :=1/b= ¢(0) € ¢p(X) C ¢p(V).
To prove Theorem 1.4, it suffices to show the following claim:

Claim (%).
my(B(z,r)) > L.
Rest of this paper, we consider the following three cases.
Case 1. r < |z|/2
Case 2. 2|z| > r > |z|/2 and
Case 3. 7 > 2|z|.

We now consider Case 1. Note that by the assumption and Lemma 3.2, we have
0<r(<|z[/2) <|z] and |z|* =K K b2 <~-diamg,(X) < r. (4.2.1)
We set f(z):=1/z (2 € C\ {0}). We set

|z)? 1 r
o |z — r2 x |z — r2

for simplicity. Also, we set
L (z,r):={a€l, | p.(X)C B(x,r)} ={a€l. | Bla+1/2,1/2) C f(B(z,r)) = B(w,R)} (4.2.2)

and I, 1 := I (x,r)NB(0, |w|), where we use Lemma 4.1 in the equation (4.2.2). Note that |w| = |z|/(|z|*—r?).
We next show that |1, 1| > L’ R? for each R > 0. To prove this inequality, we consider the following two
cases (Cases 1-1, 1-2). Recall that Ry > max{C”,1}(> 0) is the positive real number such that (R —1)/R >
1/2 for each R > Ry.
Case 1-1. R > Rg + 1.
Note that by the equation (4.2.2), we have

L.i={a€l. | Bla+1/2,1/2) C B(w,R)} N B(0, |w|)
D{a€l,|ac B(w,R—1)}NB(0,|w|) =I.NB(w,R—1)N B(0, |w]). (4.2.3)

Since |x| > r, we have |w| > R (> Ry > 0). By the inclusion (4.2.3) and Lemma 4.4 with R’ := R — 1(>
Ry > C7), we have

!
I1|>|I. " B(w,R—1)N B0, |w))| > Q.(R—-1)? > *TR? > L' R%
‘ ) T 4 T

Case 1-2. Ry +1 > R.
We show that b € I, ;. Note that since |b| = 1/|z| < |z|/(|z]|? —r?) = |w|, we have b € B(0, |w|). Therefore, we
have only to show that b € I (x,r). By using a geometric observation, it suffices to show that |w—(b+1/2)| <

10



R—1/2. To this end, we set A := 1—[b|>r? for simplicity. Note that by the inequality (4.2.1) and |z| = 1/|b|,
A=1-1b]*?>0and [b*>r —1 > 0. Then, we have

|2(6]%r — A|* — [272[b]%b — A2

= 4[b|*r? — 24 - 2|b|*r + A% — (2r%b]?b — A) (2r°|b|*b — A)

= 4[b[*r% — 24 - 20b%r — (2]b]*r%)2 - ] + 2|b>r2A - (b + D)

= 40b|*r? — 4AD|?r — 4)p|%* + 4|22 A - R(D)

= 4[b|*r?(1 — [b]*r?) + 4Ab*r(rR(b) — 1)

= 4A[b|*r? + 4ADPr(rR(b) — 1) = 4Ab*r(|b*r — 1+ rR(b)) > 0,
where R(b) > 0 is the real part of b. In addition, since |b[*r — 1 > 0, we have

20b]2r — A = |b|*r® + [b*r + |b]*r — 1> |b]*r — 1> 0.

Therefore, we deduce that |2r2|b|?b — A| < 2|b|?r — A and it follows that

‘w_(bJrl)‘:Wl_ _1’:’ b .1
2 |z|? —r? x 2 1 — |b|?r? 2
_ 26— 2b(1 — [b]r?) — (1 — [b]>r?)] _ [2b]b]*r* — A
N 2(1 —|b]%r?) —2(1 — [b|2r?)
20b|%*r — A B |b|?r 1= |b]%72 B r 1 R_ 1
~2(1—p2r2) 1 —=1p]2Pr2 2(1—[b]2r?)  |xP—-r% 2 2

Thus, we have proved B(b+1/2,1/2) C B(w,R) and b € I;;. By the assumption Ry + 1 > R, we deduce
that

2
L4 >1> > I R2.
Tl 21> () =2

Hence, we have proved |1, 1| > L, R? for each R > 0.
We now show the statement of Claim (%) for Case 1. r < |z|/2. Rest of this paper, we denote by m, the
h.-conformal measure for S, for each 7 € Ay. Note that by Theorem 2.8 and Lemma 3.2, we have

me{ U )] = 3 me0ux) = 3 [ 1wl metan)

a€l; 1 a€l; a€l
> Y Kl P, () = Y0 Kl
aEI.,.,l ae[r,l

Therefore, since ¢4(X) C B(z,r) and |a| < |w]| for each a € I we deduce that

- K |2

mo (B(z,r)) = m, (U %(X)) = 3 Kl > Y K| > Ly

acl acl: a€l;

In addition, since r < |x|/2, we obtain that |z|?> — 72 > 3|z|?/4 (i.e. |w| = |z|/(Jz|* — r?) < 4/(3|z|) ) and

m-(B(z,7)) > L.R* - K~ 3] 2h¢>L’ Y gt (2 " ||
TN = S 4 =5 22 16

> LK 2wt g |gPhemt > L (2K) e et T2 > L (2K) T
> Lrh,

where we use the inequality |I,1| > L’ R? for each R > 0 and the inequality |z|?("==2) > rh==2 since |z|> < r
and h, < 2 (see Lemma 3.1). Thus, we have proved the statement of Claim (x) for Case 1. r < |z|/2.

We now consider Case 2. We set 7 := r/4. Then, by the assumption, we have 7 < |z|/2. In addition,
since |z|? = K - K~ 1b|72 < 7 - diam¢y, (X) < r < € = rZ, we have

\x|2§ro-|x|§ 2r =7,

| =

11



where used the definition of 79 > 0. Therefore, the positive real number 7 satisfies the inequalities 7 < |x|/2
(the assumption of Case 1.), 7 < |z| and |z|*> < 7 (the inequalities (4.2.1)) instead of r > 0. By the same
argument as Case 1. with 7 > 0 instead of r > 0, we have

my(B(z,r)) > m.(B(x,7)) > L, (2K) " > L. (2K) 4=l > [ (8K)rphe > Lophe

Thus, we have proved the statement of Claim (x) for Case 2. 2|x| > r > |z|/2.
We now consider Case 3. We set 7 := /2. Note that B(0,7) C B(x,r) since |y—z| < |z|+|y| < r/24+F =7
for each y € B(0,7). We set r, :== KC-1(> 0) for simplicity, where C, is the number in Lemma 3.5. We set

L(7):={a€ I, | 7/N, < Kla|~' < 7}.

We show that
L ()] > Q- K%, (4.2.4)

Indeed, note that by the definition of » > 0, { > 0 and ro > 0, we have ¥ = 7/2 < ro < r,. Weset R := K71
for simplicity. Note that 7 < r, if and only if R > C; and

L(F) ={acl | Ki'<la < N,Ki '} =1 0Dy(r,Ki ') = I, N Do(7, R).
By Lemma 3.5, we obtain that
I (7)] = [I; N Da(7, R)| > Q- R* = Q, K*r >,

Therefore, we have proved the inequality (4.2.4). Now, by Theorem 2.8 and Lemma 3.2, we have

mr U ¢a(X) = Z ms Qba Z /‘Qb Tm‘r dy)

a€l, (T) a€l,(T) a€l(T)
> > K 'a (X)) = Y K a7
a€l,(7) a€l(7)

In addition, since ¢4 (X) C B(0,7) (see Lemma 3.2) and [a|~! > 7/(N, K) for each a € I..(F) we deduce that
F 2h,
B > B r)) > X > K_hT
mr(Bla,r)) 2 mr(B(0,7)) 2 my U_ $a(X) | 2 Z_ (KM)
a€l,(F) a€l, (7)
= ‘[ (77)| . K_3hTN_2hTF2hT > Q ](2—3}LT]\/v—2hT .F2}LT_2
— Q, K2 3hr N=2hr 92=2hr 1.2h:=2 5 ) g2=3hs N—=2hr92=2hr he 5 [ phe

where we use the inequalities (4.2.4) and r2"=2 > 7 gince r < rp < 1/8 < 1 and h, < 2 (see Lemma 3.1).
Thus, we have proved the statement of Claim (x) for Case 3. r > 2|z|.
Hence, by the three cases (Cases 1. ~ 3. ), we have proved Theorem 1.4. O
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