Semihyperbolic transcendental semigroups

By
Hartje Kriete and Hiroki Sumi

Abstract

This paper deals with semihyperbolic semigroups which are generated by entire (possibly transcendental) functions. In particular, a criterion is given assuring that a given entire semigroup is semihyperbolic. Note that a semihyperbolic semigroup G admits holomorphic scaling, that is to say, the branches of local inverses of functions $f \in G$ are of bounded degree and that the preimages shrink to zero in diameter.

1. Introduction

For long years the notion 'complex dynamics' has been associated with the dynamics of groups of Möbius transformations or with the iteration of rational or transcendental functions. Few years ago, Hinkkanen and Martin have initiated the study of rational semigroups, that is to say, semigroups generated by rational functions or polynomials. In particular, each rational semigroup G is a subset of $\operatorname{End}\left(\mathbf{P}_{1}\right)$, the set of holomorphic endomorphisms of the complex sphere \mathbf{P}_{1}. To each rational semigroup G one can attach its Julia set, $\mathscr{f}(G)$, and its Fatou set. $\mathscr{F}(G)$. We refer the reader to the second chapter for the precise definitions. The purpose of the present paper is to give a sufficient condition which assures a given entire semigroup, that is to say, a semigroup $G \subset \operatorname{End}(\mathbf{C})$, to have the property known as 'holomorphic scaling'. Roughly speaking, this means that the branches of local inverses of functions $f \in G$ are of bounded degree, and that the preimages shrink to zero in diameter. We refer the reader to the Main Theorem, cf. Theorem 2 in $\S 2$, for the precise statement. This paper is organized as follows. In the next chapter we recall some basic notions and notations. There we will also state the Main Theorem. In the third chapter we give the proof of this main result. Finally, in the last chapter we give examples of entire transcendental semigroup which are semihyperbolic. This paper is based on earlier work of the authors: [10, 14].

2. Notations and basic facts

First, we set up some notations. For basic facts on iteration of rational (and more generally, meromorphic) functions and the definitions of Julia sets and Fatou

[^0]sets we refer the reader to the monographs $[1,2,13]$ and to the lecture notes [12]. Semigroups of rational functions or polynomials have been first studied by Aimo Hinkkanen and Gaven Martin, for further details we refer to their fundamental work $[8,7,6,9,5]$. The dynamics of semigroups of meromorphic functions have been studied in [4].

Let $\chi(\cdot, \cdot)$ denote the chordal metric on the Riemann sphere \mathbf{P}_{1}, and let $T \subset$ \mathbf{P}_{1}. We write

$$
\chi(z, T)=\chi(T, z):=\inf \{\chi(z, w) \mid w \in T\},
$$

where $z \in \mathbf{P}_{1}$, and define

$$
\operatorname{diam}(T):=\sup \{\chi(z, w) \mid z, w \in T\} .
$$

For some number $\eta>0$ let $D_{\eta}(z):=\left\{\zeta \in \mathbf{P}_{1} \mid \chi(z, \zeta)<\eta\right\}$ and $U_{\eta}(T):=$ $\bigcup_{z \in T} D_{\eta}(z)=\left\{z \in \mathbf{P}_{1} \mid \chi(z, T)<\eta\right\}$. The terms 'closure of T ', 'boundary of T ', and 'interior of T ' refer to the closure, boundary, and interior of T with respect to the topology induced by χ. We write \bar{T} or $c l(T)$ for the closure of $T . \partial T$ for the boundary of T, and $\operatorname{int}(T)$ for the interior of T.

Throughout this paper, f denotes an entire function, in other words, f is a holomorphic mapping from the complex plane \mathbf{C} into itself. Clearly, f is a polynomial or an entire transcendental mapping: $f \in \operatorname{End}(\mathbf{C})$. For a moment we fix an entire function $f: \mathbf{C} \rightarrow \mathbf{C}$. Throughout this paper, $C V(f)$ denotes the set of critical values of f and $A V(f)$ the set of asymptotic values of f. All important for dynamics of f is the set $S V(f)$ of the so-called singular values of f, that is the set of values where at least one branch of the inverse of f is not well defined as a holomorphic function. Note that a singular value of a transcendental function is either an asymptotic value or a critical value, in short: $S V(f)=C V(f) \cup A V(f)$. Clearly, each critical value is the image of some critical point, that is to say, for each critical value $v \in C V(f)$ there exists some preimage $c \in C(f):=$ $\left\{c \in \mathbf{C} \mid f^{\prime}(c)=0\right\}$. Throughout this paper ϕ denotes a certain branch of the inverse of f and we write $f^{-1}(T):=\{z \in \mathbf{C} \mid f(z) \in T\}$, where $T \subset \mathbf{C}$. Recall that polynomials do not have asymptotic values. In this paper we deal with subsets of and semigroups in $\operatorname{End}(\mathbf{C})$.

Definition 1. A semigroup $G \subset \operatorname{End}(\mathbf{C})$ is called entire semigroup. It is called finitely generated if and only if it has a representation $G=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ for a finite nonempty subset $\left\{f_{1}, \ldots, f_{n}\right\} \subset \operatorname{End}(\mathbf{C})$.

The set $\left\{f_{1} \ldots, f_{n}\right\}$ is called set of generators of this group G. We define $A V(G):=\bigcup_{f \in G} A V(f)$ and $S V(G):=\bigcup_{f \in G} S V(f)$.

Remark. Throughout this paper we assume each set of generators to be minimal.

Let G be an entire semigroup generated by $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ with some finite or infinite index set Λ. For some word $w_{n}=\left\{w_{n, 1}, \ldots, w_{n, n}\right\} \in \Lambda^{\prime \prime}$, we define $f_{w_{n}}:=$ $f_{w_{n, 1}} \circ \cdots \circ f_{w_{n, n}}$.

Let $\mathscr{S} \subset \operatorname{End}(\mathbf{C})$. In the sequel, \mathscr{S} might be the sequence $\left\{f^{\circ n}\right\}_{n \in \mathbf{N}}$ of iterates $f^{\circ n}$ of a fixed function $f \in \operatorname{End}(\mathbf{C})$, a semigroup $G \subset \operatorname{End}(\mathbf{C})$, or an (infinite) subset of $\operatorname{End}(\mathbf{C})$. The Fatou set $\mathscr{F}(\mathscr{P})$ is defined as the set of all points $z \in \mathbf{C}$ which have an open neighborhood U such that the family $\left\{\left.f\right|_{U} \mid f \in \mathscr{S}\right\}$ is normal. As usual, the complement $\mathscr{J}(\mathscr{P}):=\mathbf{C} \backslash \mathscr{F}(\mathscr{S})$ is called the Julia set of \mathscr{S} : For some set $T \subset \mathbf{C}$ we write $\mathscr{S}(T):=\{f(z) \mid f \in \mathscr{S}, z \in T\}$ and $\mathscr{S}^{-1}(T):=\{z \in \mathbf{C} \mid$ $f(z) \in T$ for some $f \in \mathscr{S}\}$. Note that if \mathscr{S} is a semigroup, then for each $f \in \mathscr{S}$ we have $\left\{f^{\circ n}\right\}_{n \in \mathbf{N}} \subset \mathscr{S}$, and therefore $\mathscr{F}(\mathscr{P}) \subset \mathscr{F}\left(\left\{f^{\circ n}\right\}_{n \in \mathbf{N}}\right)$ and $\mathscr{J}\left(\left\{f^{\circ n}\right\}_{n \in \mathbf{N}}\right) \subset$ $\mathscr{J}(\mathscr{S})$. Throughout this paper, let $\omega_{\mathscr{\mathscr { C }}}(z)$ denote the ω-limit set with respect to the semigroup \mathscr{S} for some point $z \in \mathbf{C}$.

Let $\Omega:=\overline{\bigcup_{f \in \mathscr{Y}} S V(f)}$, i.e. the closure of the postsingular set. It is of great importance whether or not the singular points in the Julia set of f are recurrent. For example, an irrationally indifferent cycle of a single rational or entire transcendental function f requires at least one singular point in the Julia set of f to be recurrent, cf. [11, 10]. The following lemma concerning the critical values can be readily proved.

Lemma 1. Let $G \subset \operatorname{End}(\mathbf{C})$ be a (not necessarily finitely generated) semigroup and $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ a set of generators of G, that is to say, $G=\left\langle\left\{f_{\lambda} \mid \lambda \in \Lambda\right\}\right\rangle$. Then we have

$$
\bigcup_{f \in G} C V(f)=\bigcup_{i \in A}\left(C V\left(f_{\lambda}\right) \cup G\left(\left\{C V\left(f_{i}\right)\right\}\right)\right)
$$

Remark. Note that the semigroup G does not have to contain the identity, thus the set of critical values corresponding to some critical point c of some $f \in G$ consists of $f(c)$ and the G-orbit of $f(c)$. For convenience, we define $G^{*}:=G \cup\{i d\}$. Then the equation in the above lemma reads as follows:

$$
\bigcup_{f \in G} C V(f)=\bigcup_{\lambda \in A} G^{*}\left(\left\{C V\left(f_{i}\right)\right\}\right)
$$

Definition $2\left(S H_{N}\right)$. Let $G \subset \operatorname{End}(\mathbf{C})$ be an entire semigroup and $N \in \mathbf{N}$. We define $S H_{N}$ to be the set of all points $z_{0} \in \mathbf{C}$ such that there exists a neighborhood U of z_{0} satisfying the following condition:

For every $f \in G$ and every component K of $f^{-1}(U)$ the mapping $\left.f\right|_{K}: K \rightarrow U$ is a proper mapping with $\operatorname{deg}\left(\left.f\right|_{K}: K \rightarrow U\right) \leq N$.

Remarks. 1. It is all important, that the neighborhood U does not depend on the function $f \in G$.
2. Note that the above definition implies that U does not contain any asymptotic value of any element $f \in G$, since otherwise $\left.g\right|_{K}: K \rightarrow U$ would not be a proper mapping.

Definition 3 (semihyperbolic semigroup). An entire semigroup $G \subset \operatorname{End}(\mathbf{C})$ is called semihyperbolic if and only if $\mathscr{J}(G) \subset \bigcup_{n \in \mathbf{N}} S H_{n}$.

This definition assures that each point $z_{0} \in \mathscr{\mathscr { L }}(G)$ belongs to some $S H_{n}$ with some $n \in \mathbf{N}$. In other words, the degrees of the local branches of the inverse
functions are bounded. Note that in many examples one can prove $\mathscr{J}(G) \subset S H_{N}$ for some fixed integer N. If, for example $G \subset \operatorname{End}(\mathbf{C})$ is a semihyperbolic semigroup generated by a finite number of polynomials, then $\mathscr{F}(G) \subset \mathbf{C}$ is a compact set and, consequently, $\mathscr{J}(G) \subset S H_{N}$ for some $N \in \mathbf{N}$. However, there are many examples of semigroups which are not semihyperbolic. For example, if a polynomial f of degree at least two has an irrationally indifferent fixed point, then it has at least one recurrent critical point in its Julia set. Consequently, every semigroup containing such a polynomial cannot be semihyperbolic.

The main result of this paper gives a sufficient condition for a semigroup of entire functions to be semihyperbolic.

Theorem 2 (Main Theorem). Let an entire semigroup $G \subset \operatorname{End}(\mathbf{C})$ be generated by $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ with some (not necessarily finite) index set Λ and a point $z_{0} \in \mathscr{J}(G)$ satisfy all of the following conditions:
A. 1 There exists some neighborhood U_{1} of z_{0} such that for each infinite sequence $\mathscr{S} \subset G$ and each component W of $\mathscr{F}(\mathscr{T})$ there exists some point $\zeta \in W$ such that $\omega_{\mathscr{H}}(\zeta) \cap U_{1}=\varnothing$.
A. 2 there exists some neighborhood U_{2} of z_{0} and some positive real number $\tilde{\varepsilon}$ such that the set $\mathscr{T}:=\left\{c \in C\left(f_{\lambda}\right) \mid \lambda \in \Lambda, G^{*}\left(f_{\lambda}(c)\right) \cap U_{2} \neq \varnothing\right\}$ is finite and for each $c \in \mathscr{T}$ we have that $c \in C\left(f_{\lambda}\right)$ implies $\chi\left(c, \overline{G^{*}\left(f_{\lambda}(c)\right) \backslash\{c\}}\right) \geq \tilde{\varepsilon}>0$.
A. $3 \overline{A V(G)} \subset \mathscr{F}(G)$ and $\mathscr{F}(G) \neq \varnothing$.

Then $z_{0} \in S H_{N}$ for some $N \in \mathbf{N}$.
Remark. In this theorem, $\mathscr{T}:=\left\{c \in C\left(f_{\lambda}\right) \mid \lambda \in \Lambda, G^{*}\left(f_{\lambda}(c)\right) \cap U_{2} \neq \varnothing\right\}$ is regarded as a subset of the plane, and, consequently, $\# \mathscr{T}$ is the number of critical points-counted without multiplicity-whose G^{*}-orbit intersect U_{2}.

Furthermore, we shall prove the following statement.
Corollary 3. Let an entire semigroup $G \subset \operatorname{End}(\mathbf{C})$ and some point $z_{0} \in \mathscr{J}(G)$ satisfy the assumption of the above theorem. Let $\left\{w_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of words w_{n} of strictly increasing length. Then z_{0} has a neighbourhood U with the following property: For each $n \in \mathbf{N}$, let K_{n} be a connected component of $f_{w_{n}}^{-1}(U)$. Then $\lim _{n \rightarrow \infty} \operatorname{diam}\left(K_{n}\right)=0$.

Clearly, the theorem yields:
Corollary 4. If a semigroup G satisfies the conditions A.1-A. 3 for each $z_{0} \in \mathscr{f}(G)$, then G is semihyperbolic.

With the Main Theorem at hand one readily proves the following corollary, compare [14, Lemma 1.14] and [10, Chapter 3].

Corollary 5. An entire semigroup $G \subset \operatorname{End}(\mathbf{C})$ satisfying the conditions A.1A. 3 has no indifferent cycles.

By the maximum principle, a semigroup $G \subset \operatorname{End}(\mathbf{C})$ cannot have Herman rings. Thus, a semihyperbolic semigroup $G \subset \operatorname{End}(\mathbf{C})$ has no parabolic cycle,

Cremer points, Siegel discs, and Herman rings. Note that this does not imply, that $\mathscr{F}(G)$ is the union of attracting basins. In fact, $\mathscr{F}(G)$ might have wandering domains. Recall that this can even happen to polynomial semigroups.

Finally, with the same method of proof as used in order to establish Theorem 1.34 and Theorem 1.35 in [14], we obtain:

Theorem 6. Let G be a semihyperbolic entire semigroup without any elliptic Möbius transformations and not containing the Identity. If $S V(G) \cap \mathscr{F}(G)$ is compact and non empty, and, in addition, if there is no point $z \in \mathscr{F}(G)$ satisfying $\infty \in \overline{G(z)}$, then $\overline{G\left(z_{0}\right)} \subset \mathscr{F}(G)$ for each $z_{0} \in \mathscr{F}(G)$. Moreover, if G is generated by $\left\{f_{i}\right\}_{i \in A}$ with some finite index set Λ, then

$$
\lim _{n \rightarrow \alpha} \sup \left\{\chi\left(f_{w_{n}}\left(z_{0}\right), S V(G) \cap \tilde{\mathscr{F}}(G)\right) \mid w_{n} \in \Lambda^{n}\right\}=0 .
$$

Note that this statement means, that each attractor of the dynamical system defined by G is contained in $S V(G) \cap \mathscr{F}(G)$. This phenomenon is known in the theory of iterating single rational functions.

Outline of the proof of Theorem 6: Suppose that there exists a point $z_{0} \in \mathscr{\mathcal { H }}(G)$ and a sequence $\left\{g_{n}\right\}_{n \in \mathbf{N}} \subset G$ satisfying

$$
\overline{\bigcup_{n \in \mathbf{N}} g_{n}\left(z_{0}\right)} \cap \mathscr{J}(G) \neq \varnothing .
$$

We may and will assume that there exists a point $y \in \mathscr{J}(G)$ such that $\lim _{n \rightarrow \infty}$. $g_{n}\left(z_{0}\right)=y$. From the distortion lemma for proper mappings, cf. Lemma 8, and its generalization, Lemma 1.10 in [14], and the backward invariance of $\mathscr{J}(G)$ we derive a contradiction. Hence we have $\overline{G\left(z_{0}\right)} \subset \mathscr{F}(G)$ for every $z_{0} \in \mathscr{F}(G)$. From this result we can conclude the second statement of the theorem. For the details, the reader is referred to the paper [14].

3. Limits for inverse mappings

In this section we shall prove the main result. Theorem 2. Both, the result and the proof are motivated by the work of Mané, cf. [11], and Carleson, Jones and Yoccoz, cf. [3, Theorem 2.1, $(\mathrm{D}) \Rightarrow(\mathrm{B})]$. In their proofs they made use of the fact that Julia sets of rational functions or polynomials are compact subsets of the complex sphere or plane, respectively. But in our setting we have to 'localize' the arguments. We adopt Mañe's idea of 'admissible squares', cf. [11], but several modifications are required by the new setting, that is to say, by the fact that we are dealing with entire semigroups but not with the iteration of a single function.

Proof:

(a) Admissible square. Let $G \subset \operatorname{End}(\mathbf{C})$ be an entire semigroup, $z_{0} \in \mathscr{g}(G)$, and a neighbourhood U of z_{0} such that the assumptions A.1-A. 3 as given in the Main Theorem are satisfied. In addition, we assume $\operatorname{diam}(U)<\tilde{\varepsilon}$. Without loss of generality we may and will assume $U \subset U_{1} \cap U_{2}$. Choose $\sigma>0$ such that U contains an open square Q^{\prime} of side length 4σ and center z_{0} as an relatively
compact subset. There is a closed square $Q^{\prime \prime} \subset Q^{\prime}$ of side length 2σ and center z_{0}. In the sequel we shall assume all squares to have sides parallel to the sides of $Q^{\prime \prime}$ and to be closed. Let $\xi \in Q^{\prime \prime}$ and $Q_{1,1}(\xi)$ the unique square of side length σ and center ξ. By construction, $Q_{1.1}(\xi) \subset Q^{\prime} \subset U$. We call $Q_{1,1}(\xi)$ an admissible square at level 1 (centered at ξ).

Now we proceed by induction. Let Q be an admissible square at level m (for some $m \in \mathbf{N}$ and centered at some $\xi \in Q^{\prime \prime}$) of side length $a=\sigma \cdot 2^{1-m}$. Then Q is covered by 16 closed squares of side length $a / 4$. Furthermore, there are 20 closed squares of side length $a / 4$ adjacent to Q. We call all these 36 squares admissible at level $m+1$; they will be denoted by $Q_{\mu, m+1}$, where $\mu=1, \ldots, 36$. The union of these squares form a new square \tilde{Q}, which we call the square attached to Q. Clearly, the diameter of admissible or attached squares tends to zero as the level tends to infinity. Each admissible and each attached square is a closed subset of U. Note that for each level m there is an admissible square Q at level m with ζ as an interior point (in fact, there are uncountably many).
(b) Idea of the proof of Theorem 2. The next Main Lemma states that if some f-preimage S_{f} (for some $f \in G$) of some attached square is 'large' in diameter then the degree of $\left.f\right|_{S_{l}}$ is 'large'. Then we shall prove that if $\operatorname{deg}\left(\left.f\right|_{S_{f}}\right)$ is 'large' then some image of S_{f} is 'large', cf Lemma 9. By induction one can prove that the attached square has to be 'large', too. In other words: All preimages of an admissible square are 'small' if the level is sufficiently high, that is to say, if the admissible square is sufficiently small. Again using Lemma 9 we finally prove that the degree of f restricted to some preimage S_{f} is 'small'.

By assumption A. 3 and after choosing U small enough, we may assume that $\overline{G(A V(G))} \cap U=\varnothing$. Then $\left.f\right|_{V}: V \rightarrow W$ is a covering for each simply connected domain $W \subset U$, each $f \in G$, and each connected component V of $f^{-1}(W)$. In general, this covering will be a branched covering. In particular, the degree of the mapping $\left.f\right|_{I^{\prime}}: V \rightarrow W$ is always well defined and finite.

(c) Main Lemma

Lemma 7. For given $\varepsilon>0$ and $N \in \mathbf{N}$ there is some $m_{0} \in \mathbf{N}$ such that the following holds: If Q is an admissible square at some level $m \geq m_{0}$ with some center in $Q^{\prime \prime}, \tilde{Q}$ the corresponding attached square, S_{f} a connected component of $f^{-1}(\tilde{Q})$ for some $f \in G$, and $\operatorname{deg}\left(\left.f\right|_{S_{1}}: S_{f} \rightarrow \dot{Q}\right) \leq N$, then $\operatorname{diam}(K) \leq \varepsilon$ for each connected component K of $f^{-1}(Q) \cap S_{f}$.

Proof: Fix $\varepsilon>0$ and $N \in \mathbf{N}$. If the lemma is false then there exists a sequence $\left\{m_{k}\right\}_{k \in \mathbf{N}}$ converging to ∞, admissible squares $Q_{\mu_{k}, m_{k}}$ and functions $f_{k} \in$ G such that $\operatorname{diam}\left(K_{k}\right) \geq \varepsilon>0$ and $\operatorname{deg}\left(\left.f_{k}\right|_{S_{k}}\right) \leq N$ for some connected component $S_{f_{k}}$ of $f_{k}^{-1}\left(\tilde{Q}_{\mu_{k}, m_{k}}\right)$ and some component K_{k} of $f_{k}^{-1}\left(Q_{\left.\mu_{k}, m_{k}\right)} \cap S_{f_{k}}\right.$. In particular, $\operatorname{diam}\left(S_{f_{k}}\right) \geq \varepsilon>0$. Suppose $S_{f_{k}}$ contains a disc D_{k} of some fixed positive spherical radius r. After transition to a suitable subsequence, we may and will assume $D_{k} \rightarrow D$ with some disk D. Recall that $f_{k}(D) \subset U$ for every but finitely many $k \in \mathbf{N}$, hence the sequence $\left\{\left.f_{k}\right|_{D}\right\}_{k \in \mathbf{N}}$ is bounded. The latter yields $D \subset$ $\mathscr{F}\left(\left\{f_{k}\right\}_{k \in \mathbf{N}}\right)$. Let W be the component of $\mathscr{F}\left(\left\{f_{k}\right\}_{k \in \mathbf{N}}\right)$ containing D. After
transition to a subsequence, we may and will assume the admissible squares $Q_{\mu_{k}, m_{k}}$ to converge to some point $\xi \in U$. Actually, ξ is the limit of the centers of $Q_{\mu_{k}, m_{k}}$ as k tends to ∞. By the definition of the Fatou set this yields the sequence of functions $\left.f_{k}\right|_{W}$ to converge to the constant limit function $g \equiv \xi$ uniformly on compact subsets of W. This is a contradiction to assumption A.1.

Hence, $\lim _{k \rightarrow \infty} \operatorname{diam}\left(D_{k}\right)=0$, where D_{k} denotes the maximal disc contained in $S_{f_{k}}$, and the following distortion lemma for proper mappings yields $f_{k}^{-1} \rightarrow$ constant on $Q_{\mu_{k}, m_{k}}$ as k tends to ∞.

Lemma 8 (Lemma 2.2 of [3]). For cvery positive integer N and every real number $r \in] 0,1[$ there exists a constant C depending on N and r, such that for every proper selfmapping f of the unit disc \mathbf{D} of degree N and every $z_{0} \in \mathbf{D}$

$$
H\left(f\left(z_{0}\right), C\right) \subset f\left(H\left(z_{0}, r\right)\right) \subset H\left(f\left(z_{0}\right), r\right)
$$

holds.
Here, $H(z, r)$ denotes the hyperbolic ball of radius r centered at z_{0}.
(d) Proof. Now we are prepared for the crucial part of the proof. Let d be the cardinality of \mathscr{T}, which by assumption A. 2 is finite. Choose $N=2^{d}$ and $\varepsilon<\frac{\tilde{\varepsilon}}{36 N}$. For these two numbers, Lemma 7 gives an integer $m_{0} \in \mathbf{N}$.

Lemma 9. Let $f \in G$, in particular, f has a representation of the form $f=f_{\lambda_{1}} \circ \cdots \circ f_{\lambda_{n}}$ with $\lambda_{1}, \ldots, \lambda_{n} \in A$. Let $B \subset U$ open, B^{\prime} some component of $f^{-1}(B)$, and $\operatorname{deg}\left(\left.f\right|_{B^{\prime}}: B^{\prime} \rightarrow B\right)>N$. Then there exists some $v \in\{1, \ldots n-1\}$ with $\operatorname{diam}\left(B_{v}\right) \geq \tilde{\varepsilon}$, where $B_{v}:=f_{\lambda_{n-1}} \circ \cdots \circ f_{\lambda_{n}}\left(B^{\prime}\right)$, and $\operatorname{deg}\left(\left.f_{\lambda_{1}} \circ \cdots \circ f_{\lambda_{n-1}-1}\right|_{B_{v}}\right.$: $\left.B^{\prime} \rightarrow B\right) \leq N$.

Proof: Recall that d is the number of critical points of the generators f_{i} whose orbits intersect U. If $\operatorname{deg}\left(\left.f\right|_{B^{\prime}}\right)>N$ then there exists some v such that $B_{v}:=f_{\lambda_{n-r}} \circ \cdots \circ f_{\lambda_{n}}\left(B^{\prime}\right)$ contains a critical point c of a generator f_{λ} with $\lambda \in \Lambda$ and an element of the orbit $G^{*}\left(f_{\lambda}(c)\right)$. By the definition of $\tilde{\varepsilon}$ we obtain $\operatorname{diam}\left(B_{v}\right)$ $\geq \tilde{\varepsilon}$. We choose v to be maximal. Recall that we have assumed $\operatorname{diam}(U)<\tilde{\varepsilon}$. Hence $v<n$. Then $\operatorname{deg}\left(\left.f_{\lambda_{1}} \circ \cdots \circ f_{\lambda_{n-\cdots}, 1}\right|_{B_{v}}: B_{v} \rightarrow B\right) \leq N$.

Now, let n be the smallest integer such that there is some admissible square $Q:=Q_{\mu, m}$ at level $m \geq m_{0}$ with $\operatorname{diam}(K)>\varepsilon$ for some connected component K of $f_{w}^{-1}(Q)$, some $f_{w} \in G$, and some n-word $w \in \Lambda^{\prime \prime}$. We have $n \geq 1$. Let \tilde{Q} be the square attached to Q. Then Lemma 7 gives $\operatorname{deg}\left(\left.f_{w}\right|_{S}\right)>N$ for some connected component S of $f_{w}^{-1}(\hat{Q})$. By Lemma 9 there exists some v satisfying $1 \leq v<n$ such that $\operatorname{diam}\left(f_{\tilde{\tilde{r}}}(S)\right)>\tilde{\varepsilon}$ for the r-word $\tilde{w}:=\left(w_{n-r+1}, \ldots, w_{n}\right) \in \Lambda^{\prime \prime}$. We write $\dot{S}:=f_{\hat{k}}(S)$ and $\hat{w}=\left(w_{1}, \ldots, w_{n-r}\right)$. We have $\operatorname{deg}\left(\left.f_{k i}\right|_{\dot{S}}\right) \leq N$ and $\dot{S} \subset \bigcup f_{1 \dot{r}}^{-1}$. $\left(Q_{\mu, m+1}\right)$. Here the union is taken over the $36 \cdot N$ preimages (there are 36 admissible squares $Q_{\mu, m+1}$ at level $m+1 \geq m_{0}$ forming \tilde{Q}, and due to the bound on the degree we have to take into account at most N branches of $\left.f_{i=}^{-1}\right)$. This yields
$\tilde{\varepsilon}<\operatorname{diam}\left(f_{\tilde{1}}(S)\right) \leq 36 N \varepsilon . \quad$ By definition, $36 N \varepsilon<\tilde{\varepsilon}$, a contradiction. This proves $n=\infty$.
(e) Summary. For $\varepsilon<\varepsilon_{0}:=\frac{\tilde{\varepsilon}}{36 N}<\tilde{\varepsilon}$ arbitrarily small, let m_{0} be as in Lemma 7. For each $f \in G$, each admissible square $Q_{\mu, m}$ with $m \geq m_{0}$, and each connected component K of $f^{-1}\left(Q_{\mu, m)}\right.$ with some $f \in G$, we have proved

$$
\operatorname{diam}(K) \leq \varepsilon .
$$

Lemma 9 yields

$$
\operatorname{deg}\left(\left.f\right|_{K}\right) \leq N .
$$

In particular, this completes the proof of $\zeta \subset Q \subset S H_{N}$.
We now turn our attention to Corollary 3. Let $\left\{w_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of words w_{n} of strictly increasing length. In particular, the length is converging to ∞. Let Q be the admissible square at level m_{0} centered at $\zeta, D_{\delta}(\zeta) \subset \subset Q$, and K_{n} be a connected component of $f_{w_{n}}^{-1}\left(D_{\delta}(\zeta)\right)$. Then as in the proof of the Main lemma one shows that the inner diameter of $f_{\mathrm{w}_{n}}^{-1}(Q)$ converge to zero as n tends to ∞. The distortion lemma for proper mappings, of 8 , yields $\lim _{n \rightarrow x} \operatorname{diam}\left(K_{n}\right)=0$. This completes the proof of the corollary.

4. Examples for a semihyperbolic semigroups

In this section we present some examples of semihyperbolic semigroups.
Example 1. The first example is a semihyperbolic entire transcendental semigroup which is not subhyperbolic. Recall that a semigroup G is called subhyperbolic provided that the closure Ω of the postsingular set of G satisfies $\#(\Omega \cap \mathscr{J}(G))<\infty$. We consider the functions

$$
\begin{aligned}
& f(z):=2 a\left(e^{(--a)^{3}}-e^{-a^{3}}\right) ; \quad a>0 \quad \text { and } \\
& \left.g(z):=\mu\left(e^{=}-1\right) ; \quad \mu \in\right] 0,1[.
\end{aligned}
$$

We begin with studying the function g. Clearly, the origin is an attracting fixed point of g. Furthermore, it is the only singular value of g. In fact, it is an asymptotic value of g. Note that g is strictly monotonically increasing on the real axis. Furthermore, for each $x \in]-\infty, 0[$ we obtain $-\mu<g(x)<0$. This proves $]-\infty, 0] \subset A_{g}^{*}(0)$. Here $A_{g}^{*}(0)$ denotes the immediate basin of attraction of the origin with respect to the iteration of g. By looking at g^{\prime} one can prove the existence of some $\delta_{g}>0$ such that $U:=D_{\delta_{y}}(0) \cup\{z=x+i y \mid-\infty<x<0$, $\left.|y|<\delta_{g}\right\}$ is forward invariant with respect to g and, consequently, a subset of $A_{g}^{*}(0)$. We fix $\left.\mu \in\right] 0,1\left[\right.$. Then for some sufficiently large $a_{g} \in \mathbf{R}$ the monotonicity of g gives

$$
\begin{equation*}
x \geq a_{g} \Rightarrow g(x) \geq \frac{3}{2} x . \tag{1}
\end{equation*}
$$

Note that g is of finite type, in particular, g has neither Baker domains nor wandering domains. Thus the last formula implies $\left[a_{g}, \infty[\subset J(g)\right.$.

We now turn our attention to f. Clearly, the origin is a fixed point of f. After choosing $a \in] 0, \infty[$ sufficiently large, we obtain

$$
f^{\prime}(0)=6 a^{3} \cdot e^{-a^{3}}<1 .
$$

This proves that the origin is an attracting fixed point of f, too. Note that f is strictly monotonically increasing on \mathbf{R}. In particular, for each $x \in]-\infty, 0[$ we obtain $-2 a \cdot e^{-a^{3}}<f(x)<0$. This proves $\left.]-\infty, 0\right] \subset A_{f}^{*}(0)$. Again one can find some $\left.\delta \in] 0, \delta_{g}\right]$ such that $U:=D_{\delta}(0) \cup\{z=x+i y|-\infty<x<0,|y|<\delta\}$ is also forward invariant with respect to f and, consequently, a subset of $A_{f}^{*}(0)$. Note that $\left.\left.-2 a \cdot e^{-a^{3}} \in\right]-\infty, 0\right]$ is the only asymptotic value of f, and that a is the only critical point of f. Let $v:=f(a)$. For a sufficiently large and $v \geq a_{g}$ the monotonicity of f gives

$$
\begin{equation*}
x \geq v \Rightarrow f(x) \geq \frac{3}{2} x \tag{2}
\end{equation*}
$$

This proves $\omega_{f}(x)=\{\infty\}$ for each $x \in[c, \infty[$. Note that f is of finite type, in particular, it has neither Baker domains nor wandering domains. Thus $[a, \infty[\subset$ $\mathscr{J}(f)$.

Let $G:=\langle f, g\rangle$. Clearly, G is an entire transcendental semigroup. By construction,

$$
\left.\left.\omega_{G}(A V(G)) \subset\right]-\infty, 0\right] \subset U \subset A_{G}(0) \subset \mathscr{F}(G) .
$$

Furthermore we have

$$
[v, \infty[\subset \mathscr{J}(g) \cup \mathscr{J}(f) \subset \mathscr{J}(G) .
$$

Let $w \in\{f, g\}^{n}$ be an n-word. By the equations (1) and (2) we obtain

$$
\begin{equation*}
f_{w}(v) \geq\left(\frac{3}{2}\right)^{n} v \tag{3}
\end{equation*}
$$

In particular, this proves $\omega_{G}(v)=\{\infty\}$.
We summarize. First of all, we have $S V(G) \subset \mathbf{R}$. Consequently,

$$
\mathbf{C} \backslash \mathbf{R} \subset S H_{1} .
$$

Furthermore, $O_{G}(A V(G)) \subset \subset \mathscr{F}(G)$, and $O_{G}(C V(G))$ is a discrete subset of $[v, \infty[\subset \mathscr{J}(G)$. Combining the latter statement with equation (3) proves $\mathbf{R} \cap$ $\mathscr{J}(G) \subset S H_{2}$. Altogether we have proved $\mathscr{J}(G) \subset S H_{2}$, in particular, G is semihyperbolic. But $O_{G}(V)$ is not finite, in fact, both, $O_{f}(v)$ and $O_{g}(v)$ are infinite. Thus G is not subhyperbolic.

Example 2. This is an example for a semihyperbolic entire transcendental semigroup such that its Julia set has empty interior.

Let $\mathscr{R}:=\{z \in \mathbf{C} \mid \operatorname{Re}(z)>0\}$ and $\mathscr{L}:=\{z \in \mathbf{C} \mid \operatorname{Re}(z)<0\}$ the right and left half plane, respectively. For some number $t \in] 0,1\left[\right.$ we define $f_{1}(z)=t e^{z}-1$ and $f_{2}(z)=t e^{z+\pi i}-1$. Let $G:=\left\langle f_{1}, f_{2}\right\rangle$. One readily proves

$$
f_{j}(\mathscr{L})=\{z \in \mathbf{C}| | z+1 \mid<t\}=: \mathscr{D} \subset \subset \mathscr{L}
$$

and

$$
\left|f_{j}^{\prime}(z)\right| \leq t<1
$$

for each $j=1,2$ and $z \in \mathscr{L}$. This proves $\mathscr{D} \subset \mathscr{L} \subset \mathscr{F}(G)$. Clearly, $C V(G)=\varnothing$ and $A V\left(f_{j}\right)=\{-1\} \subset \mathscr{D}$. This proves

$$
G(S V(G)) \subset \subset \mathscr{L} \subset \mathscr{F}(G),
$$

thus $\mathscr{J}(G) \subset S H_{1}$, in particular, G is semihyperbolic. We now turn our attention to

Claim. $\operatorname{Int}(\mathscr{J}(G))=\varnothing$.
The main ingredient in the proof is the so-called 'open set condition'.
Definition 4. Let $G=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ be a finitely generated semigroup. It is said to satisfy the open set condition (with respect to the generators f_{1}, \ldots, f_{n}) if there exists some open set $U \subset \mathbf{C}$ such that the sets $f_{j}^{-1}(U)$ are mutually disjoint and $f_{j}^{-1}(U) \subset U$ holds for each generator f_{j}.

We prove that in this example one can choose $U:=\mathscr{R}$. We have already shown $f_{j}(\mathscr{L}) \subset \mathscr{L}$, this yields

$$
f_{j}^{-1}(\mathscr{R}) \subset \mathscr{R}
$$

Let $z:=x+i y \in \mathscr{R}$. Then

$$
\left|\left(\pi-\operatorname{Im}\left(f_{2}^{-1}(z)\right)\right) \quad \bmod 2 \pi\right|<\frac{\pi}{2}
$$

But

$$
\operatorname{Im}\left(f_{1}^{-1}(z)\right) \bmod 2 \pi \in\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 1\right] .
$$

Hence, G satisfies the open set condition with respect to the generators f_{1} and f_{2}. Note that $f_{j}(\mathscr{L}) \subset \mathscr{D} \subset \subset \mathscr{L} \subset \mathscr{F}(G)$. The continuity of the generators f_{1} and f_{2} gives the existence of some open neighborhood (with respect to the complex plane) of $\overline{\mathscr{L}}$ contained in $\mathscr{F}(G)$. This in turn implies $\mathscr{R} \backslash \mathscr{J}(G) \neq \varnothing$. The claim now follows from [14, Prop. 4.3].

Note that Sumi has proved the proposition for rational semigroups, only. But the reader will immediately see that the proof carries over to entire transcendental semigroups.

Example 3. For some semigroup G and some polynomial f, let $P(G)$ or $P(f)$ denotes the postcritical set of G respectively f. Let $c \in \mathbf{C}$ be a point such that
$c \in \mathscr{J}\left(f_{c}\right)$ and that c is not recurrent (with respect to f_{c}) but $\omega_{f_{c}}(c)$ is infinite. In particular, $f_{c}(z)=z^{2}+c$ is semihyperbolic but not subhyperbolic. Then $P\left(f_{c}\right) \subset$ $\mathscr{J}\left(f_{c}\right)$. Let $g(z)=(z-a)^{2}+a$ where $a \in \mathbf{C}$ is a point such that $\mathscr{J}\left(f_{c}\right)$ is included in $A_{\infty}(g)$ which is the connected component of $\mathscr{F}(g)$ containing ∞. Let U be an open disk such that $\mathscr{F}\left(f_{c}\right) \cup \mathscr{J}(g) \subset U$. There exists a number $n \in \mathbf{N}$ such that $\overline{f_{c}^{-n}(U)} \subset U, \overline{g^{-n}(U)} \subset U, \overline{f_{c}^{-n}(U)} \cap \overline{g^{-n}(U)}=\varnothing$, and $\overline{f_{c}^{-n}(U)} \subset A_{\infty}(g)$. Let $f_{1}=f_{c}^{n}, f_{2}=g^{n}$, and $G=\left\langle f_{1}, f_{2}\right\rangle$. Then G satisfies the open set condition with the open set U. Hence the interior of $\mathscr{J}(G)$ is empty. This shows that the assumption A. 3 in the Main Theorem holds. By construction and the choice of n we have $P(G) \cap \mathscr{J}(G)=P(f)$ and

$$
P(G) \cap \mathscr{F}(G) \subset\{a\} \cup\left(\mathbf{P}_{\backslash} \backslash U\right) \subset \subset \mathscr{F}(G) .
$$

So the assumption A. 2 holds, too. For any $z_{0} \in \mathscr{F}(G)$ we have $\omega_{G}\left(z_{0}\right) \subset\{a, \infty\}$. This proves that the assumption A. 1 is satisfied. By the Main Theorem we conclude that G is semihyperbolic. Since f_{c} is not subhyperbolic, G is not subhyperbolic.

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen, Germany
e-mail: kriete@math.uni-goettingen.de
Department of Mathematics
Tokyo Institute of Technology
e-mail: sumi@math.titech.ac.jp

References

[1] Alan F. Beardon, Iteration of Rational Functions, Springer, New York, Berlin, Heidelberg, 1991.
[2] Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, 1993.
[3] Lennart Carleson, Peter W. Jones and Jean-Christophe Yoccoz, Julia and John, Bol. Soc. Brasil. Mat., 25-1 (1994), 1-30.
[4] Zhimin Gong and Fuyao Ren, The Julia sets of the random iterations of rational functions, Journal of Fudan University, 35 (1996), 387-392.
[5] Aimo Hinkkanen, Iteration and rational semigroups, preprint 162, Department of Mathematics, University of Helsinki, 1997.
[6] Aimo Hinkkanen and Gevin J. Martin, Attractors in quasiregular semigroups, In Laine and Martio, editors, XVIth Rolf Nevanlinna Colloquium, 1996.
[7] Aimo Hinkkanen and Gevin J. Martin, The dynamics of semigroups of rational functions I, Proc. LMS (3), 73 (1996), 358-384.
[8] Aimo Hinkkanen and Gevin J. Martin, Julia sets of rational semigroups, Mathematische Zeitschrift, 222 (1996), 161-169.
[9] Aimo Hinkkanen and Gevin J. Martin, some properties of semigroups of rational functions, In Laine and Martio, editors, XVIth Rolf Nevanlinna Colloquium, 1996.
[10] Hartje Kriete, Closing lemma and holomorphic scaling, submitted, 1998.
[11] Rene Mañé, On a theorem of Fatou, Bol. Soc. Bras. Mat, 24 (1993), 1-11.
[12] John Milnor, Dynamics in one complex variable: Introductory lectures, vieweg, 1999.
[13] Norbert Steinmetz, Rational Iteration, de Gruyter, Berlin, 1993.
[14] Hiroki Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory and Dynamical Systems, to appear.

[^0]: 1991 Mathematical Suhject Classification: 30D05, 54H20, 58F08, 58F10, 58F23
 Communicated by Prof. K. Ueno, February 17, 1999

