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On dynamics of hyperbolic rational semigroups

By

Hiroki Sumi

1. Introduction

For a R iem ann surface S , le t End (S) denote th e  se t  o f  all holomorphic
endomorphisms of S. I t  i s  a sem igroup w ith  the sem igroup operation being
composition of fu n c tio n s . A  rational sem igroup  is  a subsemigroup of End (e)
w i t h o u t  a n y  c o n s ta n t  e le m e n ts . S im ila r ly , a n  e n tire  s em ig r o u p  is a
su b se m ig ro u p  o f  E n d  (C )  w i th o u t  a n y  c o n s ta n t  e le m e n ts . A  rational
semigroup G  is  c a lled  a  polynomial sem igroup  i f  each gE G  i s  a polynomial.
W hen a  ra tional o r  entire sem igroup G  is  g e n e ra te d  b y  { f ,  f2,... we
denote this situation by

G= fa,...>

The rational o r entire semigrop generated by a single function g is denoted by
<g>. We denote the  n-th  iterate of f  by f z.

T h e  s tu d y  o f  ra tiona l sem ig roups is  a  generalization o f  th e  s tu d y  of
Kleinian groups, ite ra tion  o f  ra tional functions a n d  system s of contraction
m a p s  re la te d  to  se lf-  s im ila r  s e t s  in  C  in  f r a c ta l g e o m e try . D . Sullivan
pointed out tha t there  a re  many points of similarity between Kleinian groups
and iteration of rational functions i n  [ S u l ] .  In  view of the study  of rational
semigroups, we can show some basic results similar between Kleinian groups
a n d  ite ra tion  o f  ra tio n a l fu n c tio n s . F o r  exam ple , lim it se ts of K le in ian
groups, Julia sets of rational functions and self - similar sets in  C  are  Julia sets
o f  ra t io n a l s e m ig ro u p s . B y  L e m m a  1 .1 .5 .6 , w h ic h  is  a  r e s u l t  b y  A.
Hinkkanen and G. J. M artin, the fixed points are dense in these sets. Several
properties o f  dynam ics o f  rational sem igroups h a v e  been  show n  in  [Z R ],
[ G R ] ,  [ H M 1 ] ,  [ H M 2 ] ,  [ S 1 ]  a n d  [ S 2 ] .  I n  1 9 9 2 ,  th e  f ir s t  s tu d y  w a s
investigated by W . Zhou and F . R en ( [ZR ]). In  1996, the study of infinitely
generated semigroup of meromorphic functions w as investigated by Z . Gong
and F . R en  ( [G R ]). In  1996, A . H inkkanen  and  G . J. M artin  studied about
nearly abelian rational sem igroups ([H M 1]). They show ed that Julia sets of
finitely generated rational semigroups are uniformly perfect ( [HM2]).

In th is  paper, we use  the  nota tions in  [H M 1], [H M 2], [S1] and  [S2]. We
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w ill show  the fo llow ing  resu lts . The Julia  sets of finitely generated rational
sem igroups h a v e  t h e  backw ard self - s im ila r i ty  (L e m m a  1 .1 .4 ) .  I f  th e
h y p e rb o lic  ra tio n a l se m ig ro u p  is  f in ite ly  g e n e ra te d  a n d  satisfies som e
conditions, the lim it functions o f  th e  sem ig ro u p  o n  th e  F a to u  se t a re  only
constant functions that take their values on postcrical se t (Theorem  2.2.8).
When the generators of a  finitely generated hyperbolic rational semigroup are
perturbed, the hyperbolicity is  kep t and  the  Jilia  se t depends cotinuously on
th e  genera to rs o f  th e  s e m ig ro u p  (T h e o re m  2 .4 .1 ) . F u r th e rm o re , if  th e
finitely generated rational semigroup is hyperbolic and if the inverse im ages
b y  th e  generators o f  th e  Ju lia  se t  a re  m utually disjoint, th en  the Julia  set
moves by holomorphic motion (Theorem 2.4.1).

Because of the backward self - similarity, if the postcritical set is included
in  a  F a to u  component, then the  Ju lia  se t h a s  a  property w hich is like usual
self - sim ilarity  (T heorem  2 .5 .1), and moreover, if the inverse im ages b y  the
generators of the Julia set are mutually disjoint, then the Julia set is  a Cantor
se t  (Theorem 2.5.2).

In  [S 3 ] , it  is  sh o w n  th a t  the hyperbolic ity and the expandingness are
equivalent if the semigroup is finitely generated and contains an  element with
th e  d e g r e e  a t  le a s t  tw o . I n  t h a t  p a p e r , th e  s tu d y  o f a  construc tion  o f
conform al m easures a n d  H a u sd o rff  d im e n sio n  o f  Ju lia  se ts  o f  hyperbolic
rational sem igroups w ill be given. The study of generalized Brolin - Lyubich's
invariant measures and estimates of Hausdorff dimension of Julia sets will be
given in  [ 54].

The author w ill discuss about the existance and uniqueness of conformal
measures and self-similar measures in more general cases in [S5].

Acknowledgement. T he author w ould like to  express h is  gratitude to
Prof. S. Ushiki, Prof. M. Taniguchi, Prof. J. Kigami, Prof. T. Sugawa and Prof.
M . K isaka for many valuable discussions and advices. The author especially
w o u ld  lik e  to  exp ress  h is  gratitude t o  th e  referee f o r  m any valuable  and
helpful advices.

1 . 1 .  preliminaries

Definition 1.1.1. Let G be a rational semigroup.

del
F (G) = is normal in a neighborhood of .z)

def
j (c) = C\F (G)

F  (G ) is called Fatou se t fo r  G and J(G ) is called Ju lia  se t fo r G . Similarly.
Fatou set and Julia set for entire semigroup are defined.

Definition 1.1.2. Let G be a  rational semigroup and z  a point of C.
T h e  backw ard orbit 0 -  (z )  of z  an d  th e  se t o f  exceptional points E (G) are



Hyperbolic rational semi groups7 1 9

defined by:
del

0 —  (2 )  = E Clthere is some gEG  such that g (w) = z} ,
del

E (G) = {z EC # 0 -  (z) 2 } .

Definition 1.1.3. A  subsemigroup H o f  a  semigroup G  is sa id  to  be
finite index if the re  is  a  finite collection of elements {gi, g2, gn} of G  such
tha t G -= U7-. 1g,H. Sim ilarly  w e say that a  subsemigroup H o f G  has cofinite
index if there is a finite collection of elements { g1, g2, g n } of G such that for
every gE G there is a j E {1, 2, ..., n) such that gigEH.

Lemma 1.1.4. L et G be a rational semigroup.
1. For any f EG.

f (F(G)) cF (G) , (G)) cJ (G) ,
F(G ) cF(<P), _RV>) cJ (G )

2, If  G = fn> , then

F ( G ) =  f l 1 f 1 1 (F(G )) ,J(G ) = 7 =1  f  (G ))

Proof. By definition, it is easy to show 1 .  We show 2 .  By 1,

F (G) c

Now take any point Zo E n 7 = 1 f r 1  ( F ( G ) ) )  and set wi=f;(z o ) EF(G) .
For any E >0, there is some 5>0 such that if gEG,1___j n, and d(w,w ; )

<5, then

d (g(w) , g (w ,) ) <E.

For th is 5, there is some 17>0 such that if d (z, zo) <r) then

d (J .; (z) (zo) <5, -= 1, n.

So if g EG, and d (z, zo) <77 then

d (gfi (z) gfi (zo)) < e.

G is equal to U7=1 {G U off, so G is equicontinuous at zo , and

C17=1f r i (F (G )) CF (G ) .

I f  a  se t  K sa tis f ie s  th a t K = (K ), w e say  tha t K  has backward
self - similarity.

Next lemma was shown in  [HM1], [ZR].

Lemma 1.1.5. Let G be a rational semigroup.
1. If  a subsemigroup H of G is of finite or cofinite index, then
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J (H) = J (G) .

In particular, when G is rational semigroup generated by f inite elements {f1, f2,
f.} and m is an integer, if  we set

Hm
 { g z z f J 1 . . f j E G m  devides 1?),

I m ={gEGIg is  a product of some elements of word length ml

then

J (G) =J (11m) = m )

Here we say an  element f E G  is  of word length m if  m i s  the m inim um  integer
such that

f

2. If J(G) contains at least three points, then J(G ) is a perfect set.
3. I f  there is an  element g  E G such that deg (g ) 2 or there is an element

gE  G such that deg (g) =  1 and the order of g is inf inite, then

E (G) ={zE CI # 0 -  (z) co} , # E (G)

4. If  a point z is not in  E (G) , then for every x EJ(G), x belongs to 0 -  (z) .
In particular if  a point z belongs to J(G)\E (G) , then

0 -  (z) = J (G) .

5. If  there is an  element gE  G such that deg (g ) . 2 or there is an element
gE G  such that deg(g) =  1 and the order of  g  is inf inite and J (G ) contains at
least three  points, then  J (G ) i s  th e  sm allest closed back w ard inv ariant set
containing at least three p o in ts . Here w e say  that a se t A  i s  bacward invariant
under G if for each gE G, g - 1  (A ) CA.

6. If J(G) contains at least three points, then

J (G )  =  { Z  CIZ is  a repelling fixed point of some gEG }

Proof. [HM1].

Remark. A sim ilar result of 6 for entire semigroups can also be stated.

Proposition 1.1.6. L e t {Q,1}  be a fam ily  of polynom ials that are not of
degree one and G a polynomial semigraup generated by {Q,z} .

If  a transform ation 0- (z) = rtz r E AutC ,  i  = exp ( 21 ), k E N  satisf ies for
every

a (I( <Q,1>)) =T ( <Q,> ) ,

then

a ( J (G ) )= J (G ) .
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Proof. F o r  e v e ry  polynomial Q  t h a t  i s  n o t  o f  degree  o n e , J  (Q ) is
completely invariant under a transform ation 2.1— * (exp (7`)) ( z )  if  a n d  on ly  if
Q= az d P (z k ) ,  w here P  i s  a polynom ial, a  i s  a  num ber, and  d i s  a n  integer
( [B e l ] ) .  So it is easy to see the stagement using Lemma 1.1.5.6.

Example 1.1.7. F o r a  regular triangle p1p2p3 , we se t g  (z )  = 2 (z — p1)

+p i , j  = 1,2,3. A nd let G be a  rational semigroup generated by fg,} , not as a
g r o u p . Then J(G ) is the Sierpifiski Gasket.

2. Dynamics of hyperbolic rational semigroups

2.1. Limit Functions. F irst, w e  w ill g ive  som e com m ents about
lim it functions o f  semigroups. T h e  s tu d y  o f  lim it func tions p lays a  very
im portant ro le  in  t h e  s tu d y  o f  com plex dynam ical system s. T h e  forward
invariant domains o f  ite ra tion  o f  rational functions a r e  classified into five
types by the limit functions ( [B e l] , [M i]).

L e t  S  b e  a h y p e rb o lic  R ie m a n n  s u r f a c e ,  S c ,  th e  o n e  p o in t
compactification of S, and H a  subsemigroup of End (S).

Definition 2.1.1.
def

e H (S) = 5—*5.Ithere is  a  sequence (g i )  of mutually distinct elements
of H such that gi— >9 locally uniformly on S as

Remark. Every fam ily A  o f  elements o f  End (5 )  contains a  sequence
that converges to an element of End (S ) o r 0 0 . ([M i]).

Lemma 2.1.2. L e t  S  be a  hyperbolic R ie m an n  su rf ac e  an d  H  a
subsemigroup of End ( S ) .  If  g E H is non-constant and go belongs to IeH (5), then

(PgE IeH (s). Moreover if  9 also belongs to End (S ), then gy9 C ( s ) .

Proof. Let çc b e  a n  element of H (s ).  T h e r e  i s  a  sequence ( f i ) o f
mutually d istinct elements o f H  such that 9 .  T hen  th e  sequence ( f ig)
converges t o  9g a n d  ( f ig )  a re  m utually d istinct because g  i s  non-constant.
By definition 9g belongs to Y H (S) .

Next assume cp also belongs to End ( S ) .  The sequence (gf i) converges to
gy9. W e w ill show  {gh } contains infinitely many elements that a re  mutually
distinct. F o r  each number i, j ,  we set

= {z E SI fi (z) f  (z)) , C= U i * J Ci i .

C is a countable set and we can take a point x of S which does not belong to C.
Then If, (x )I a re  mutually distinct and the sequence (h  (x )) converges to
(x )  E S .  Now assume that there  ex ists a  subsequence (  it )  o f  (  j )  such that

ik"  as iz- 0 0  and all elements o f (gfi k )  are equal to an element h E End (S).
T hen fo r  each  k, gf, , (x) =  gy9 (x) a n d  th is  is  a  contradiction because g  is
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n o n c o n s ta n t . S o  { gf ;}  contains infin ite ly  m any elem ents that a r e  mutually
distinct. By definition, it follows that g ço  belongs to 5 H (s).

Lemma 2.1.3. L et S  be a  hyperbolic Riemann suslface and H  a finitely

generated subsemigroup of End ( S ) .  If  there is a non -costant element ço E ( s )  ,

then at least one of these assersions is true:
1. Ids E  H (S ) and there is a generator g o E H  such that go is injective on S.
2. There is a sequence (1)1)  of elements of H such that for every j  there is an

element h1
 E  H  such that 61+ 1 = kb, an d  (b ,) converges to 0 0  locally uniformly on

S.

Proof. W e fix a  generator system  {g 1, gk}  of H .  T here  is  a  sequence
( f ; )  of mutually distinct elements of H  such that f ; - - - 9  and word length of f ;

strictly increases as j -- 0 0 . W e represent each f ,  by  its  reduced  w ord . W e
take a  subsequence ( f i , ; )  o f  ( f .i)  a s  fo llo w s. T h e re  is  a  generator g i ,  of H
such that for each j

h i=

Inductively when we get a  sequence ( fn.,) 1, we take a  subsequence (fn+1,1); of
it as fo llow s. T here  is  a generator gi n + , of H such that for each j

f +1, =  • • ° gin+i ° • • • °gii.

Now we get a  sequence ( f  ) n  and

f n,n
=

a 'n 'an , where an E H, an= gin°'•'°9u.

There are subsequences (a n i )  o f  (an )  and  (an,) of (an) and maps a, g :
su c h  th a t (a 1), ( a n , )  converge to  a, g  locally uniformly on  S ,  respectively.
Because {ani }  are mutually distinct.

g E  H  ( S )

If g is  no t a constant, g (S) C S. If g  is  a constant, then g =  co, fo r yo is not
c o n s ta n t. In  th e  fo rm e r c a se , w e  c a n  assum e th a t  f o r  each j ,  th e re  is  an
element h1 E  H  s u c h  th a t  {h1} a r e  m utually distinct, a n ,* ,  =  h i. a n  a n d  h1
converges to a  map h  loally unform ly on S  as j — )co. Then g= h °  g  and

h=Id s.

We can also assume that there is a generator g , such that for each j,

hi = •- " g i .

Then for z, w  E S, i f  w e have g i (z) = gi (w) , then for each j, 111(z) =11, (w ) and
so z = w .  This implies that g i is  injective on S.

Next we define stable domains ( [1-1M1 ])•

Definition 2.1.4. L et G  be  a  rational sem igroup a n d  U  a  connected
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component of F  (G ).  W e say that U is  a  stable domain if the re  is  an element
gEG\Aut C such that g ( U ) c U .  And we set

def
Gu={9EGIg(U )CU }.

Similar definitions for entire semigroup can lso be given.

Defintion 2.1.5. L et U be  a  domain o f e  and H  a  subsemigroup of
End (U ) .  Then we set

def
-EH = :  U— ' Ulthere is  a  sequence ( g i )  of mutually distinct elements

of H such that gi— >9 locally uniformly on U as

Remark. If g E H  is  non-constant and  ço belongs to Yu (U), then go*gE
.TH . Moreover if 9  also belongs to End (U ), then g ° (U) .

Now we consider a  case  such  that there  a re  only finitely m any constant
lim it functions taking its va lue  in  a  domain U .  In  th is  case ..EH(U) has only
finitely many elements.

Propositon 2.1.6. Let G be a rational semigroup and U a subdomain of
F(G ) and we set

H= {geGig (U) Œ U}, = { Cc U l  (pEseH(u), go= } .

If  H  is f initely  generated and  if  1 <#  < 0 0 ,  t h e n  any  9  E !PH (U ) i s  a
constant m ap being its value C U .  A nd M = H fl Aut (C) has only f initely  many
elements.

Remarks. A  sim ilar result for entire semigroup a lso  h o ld s . And if we
set

G= <z2 , et 8 z> , 2@
7.rU = { 1 z 1 < 1 } .

then

# {9 E -T H (0 1  CEU, ço. . C}=1,Id u CY H (U).

Next we consider a case such that there are infinitely many constant limit
functions taking its value in a stable domain.

Proposition 2.1.7. L et G be a  rational (entire) semigroup, U a  stable
domain of G . W e  set

H G ,
deld e f

s62={CE Ul 3 cp .EH(U), X=ICEUI 3 9EYH (U)

If  <AI has an accumulation point in U. then 93 is a perfect set, in particular an
uncountable set.

Proof. F irs t, it  is  e a sy  to  se e  th a t 59 is  a  closed subset o f  U .  Assume
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that 4  has an accumulation point in U a n d  E33 is  an  isolated p o in t .  There
i s  a  sequence (g ,)  o f H  converging to  lo c a l ly  u n if o r m ly  o n  U .  By our
assumpsion 4 is not em pty and take a point x E 4 .  Then g, (x) -- C as j — ' 0 0

and g1(x) E R /  by the remark after Definition 2 .1 .5 . So b e lo n g s  to  U, for it
is  an isolated point. Now gj(C) — C as j -- 0 .0  a n d  gj (C )  =  for large enough j
because i s  i s o l a t e d .  A l s o  fo r each compact set K . g i maps K  into a  small
disc a b o u t fo r  la rg e  enough j. It follows that for large enough j ,  the point
is  an  attracting fixed point of gj. Take a large enough number j  and set g =
g »  For each y EA ' the sequence (e (y ) )  converges to as n— >0 0 . Because
is an isolated point, ga (y) =  for each large enough n .  So 4C U n g - n {C}, and
each  po in t o f 4  is  iso la ted  in  U  because {0 '9 i s  n o rm a l in  U .  T h is  i s  a
contradiction.

If 4  has infinitely many points and there is no accumulation point of gi in
U, then by the proof of Proposition 2.1.7, for a n y  E 4 there  is an element g
of H  such  tha t 4 c U  n g - " {C} I t  i s  a  problem  w hether this situation can
occur or not.

Conjecture 2.1.8. If has inf initely  m any  points, then  .94 h as  an
accumulation point in U.

If  th is  conjecture is  tru e , b y  Proposition 2.1.7, it im plies th e  following
conjecture.

Conjecture 2.1.9. If has inf initely  m any  points, then 14 is a  perfect
s e t . Next we consider th e  nearly  abelian semigroup i n  [HM1] and  the  limit
functions as an example.

Defintion 2.1.10. L e t  G  b e  a  ra tio n a l semigroup containing an
element g  with deg(g) 2 .  W e  sa y  th a t G  is  n e a r ly  abelian i f  th e re  is  a
compct family of Möbius (o r linear fractional) transform ations 0 =  {9 } with
the following properties.

• (F (G)) =F (G) for a ll (pE
• for all f , gE G there is a  9E 0  such that f  g= çog f

T hen by  [FIM1], if gE G  is  of degree at least two, then J( G )  =J( g ) .  And it is
also shown i n  [HM1] th a t in  each stable domain U, the  type of each element
gE G u  such that deg (g ) is at least tw o coincides. H ere w e define by the type
of g e G u  the type of the connected component of F (g) containing U.

Let X  be a subset of C that is not a round circle. W e  set

G = (gig is  a polynomial, J (g) = X).

If G  contains an  element g  such that deg(g) is a t least tw o, then G is nearly
abelian and  w e can  take  a  family o f Definition 2.1.10 so that it contains
only finitely many elements.

Proposition 2.1.11. L et G be a nearly  abelian rational sem igroup, 0 the
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family in Definition 2 . 1 . 1 0 and U a stable dom ain. We set H =G u and 33 = {E
U I 3 ÇOE  H ,  9  C } .  I f  0  has only finitely many elements, then f o r any
element g of H,

33c Ug - nz {fixed point of gn},# 4)+1

in particular, 33 has at most f initely  many elements, Morover i f  g9 is not empty,
either all points of  8 belong to U or all points of 1) belong to a U.

Proof . Let a be an  element of I ' l l  ( u) . Then there  is a  sequence (g1)  of
mutually distinct elements of H converging to a locally uniformly on U .  Let g
be any element of H .  For every j  there is an element yoj c 0 such that

ggi=

We can assume th a t  (yoi) converges to an element (,o of 0 .  Then

ga=glimg1 =lim(p 1g1g=9ag.
1— . 0 0

If a is identically equal to a constant value CC U, then

g(C) (C).

There are some positive integers n, m with n  +m  #  0 +1  such that gm (C ) is
a fixed point of gn. Now assume that 93(1 LI* 0  and 99(1 a u *  0 .  L e t  x, y  be
po in ts  o f 99 n U, n au re sp e c tiv e ly . T h e n  th e re  is  a  sequence (h1) of
mustually distinct elements of H  converging to y  locally uniformly on U .  The
sequence (Pti (x )) converges to y  as j — > 0 0  a n d  h; (x) belongs to 99 for each j,
this implies that if has infinitely many elements.

Example 2.1.12. Let n be integer such that n 2 and we set f (z) =z n

+c , (z )  = exp( z, and G = <f, of, 041—if > . Then G  is nearly  abelian. If
lc I is sm all enough, then  0 belongs to F ( G ) .  L e t U  b e  th e  s tab le  domain
containing 0 .  Then

H = ( 04 (Zo) , = 0, ..., 71 - 1).
where zo is  an attracting fixed point of f  in  U a n d  #..T H(U) = n. A lso  th e re  is
a number c such that each element of .E H (0  is  a constant value of au  a n d  #
.TH ( U ) =n.

Example 2.1.13. Let m, n be integers greater than 1 .  We set f  (z) =
zi n (z — c) , (z ) = e (z  —  c) +c , G = <f , g >. 11H is sm all enough, then 0 and c
belong to the same connected componnt U of F (G) . Now f  (0), f (c) = 0 and g
(0) , g (c) =c  and  it implies that

G (u)= { (Po, g9c}, where (,00 - 0, çoc
-=- c.

Also G  is  no t nearly  abelian, for, the type of f  in  U is  supe r attracting and
different from that of g.

2.2. No wandering domains. Now we consider hyperbolic rational
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semigrpups.

Defintion 2.2.1. Let G be a rational semigroup. We set

P (G) = U {critical values of gl
gEG

and we say that G is hyperbolic if P (G) CF (G)

Remark. I n  [S3], i t  w ill  b e  s h o w n  th a t  the hyperbolic  ity and the
expandingness a r e  equivalen t i f  t h e  semigroup is  f in ite ly  g e n e ra te d  and
satisfies tha t it conta ins a n  elememt w ith  th e  degree  a t least tw o  and  each
Mnius transformation in it is not elliptic.

Definition 2.2.2. Let G a  rational semigroup and U a  component of F
( G ) .  For every element of G, we denote by Up the  connected component of F
(G )  containing g (U ) .  W e  s a y  th a t  U  i s  a  w andering dom ain i f  {U9 } i s
infinite.

Theorem 2.2.3 L et G  a rational semigroup and  U  a wandering domain.
Then there is a constant lim it function go of G on U tak ing its v alue  in  J (G ).

Proo f . W e have a  sequence (g i) in  G  such  that it converges to  a  map ço
locally uniformly o n  U  and each Ug, is m utually d is jo in t .  Now we assume ço
i s  nonconstant. T h e n  o ( U )  i s  a n  o p e n  su b se t  o f  F ( G )  a n d  t h i s  i s  a
contradiction because (g i)  converges to  ço and  each Ug, is m utually disjoint.
So ço is c o n s ta n t. Now we assume the value C is  in F (G )  . But th is is a lso  a
contradiction because  f o r  e a c h  large  j  com ponent Ug ,  is  in c lu d e d  in  the
component of F (G) containing C.

N o w  w e  s h o w  a  sufficient condition s o  t h a t  t h e r e  i s  n o  wandering
daomain.

Theorem 2.2.4. L e t  G  be a  rational sem igroup a n d  U  a  wandering
dom ain . A lso let ço be a constant lim it function of  G on U tak ing its value i n
J ( G ) .  I f  there is an  element of  G such that the degree is at least tw o, then the
v a lu e  is in P(G).

Corollary 2.2.5. I f  G  is  a  hyperbolic rational semigraup containing an
element of degree at least two, then there is no wandering domain of  F(G).

Proof of  T heorem  W e assume tha t there  is  an element of G  such that the
degree  is  a t least tw o . W e w ill show tha t the  value  C is  in  P ( G ) .  We can
assume that P (G ) contains a t least three p o in ts .  A ssum ing that C is  n o t in
P(G ), th e re  is  a  simply connected neighborhood V  o f  C disjoint from P(G).
Then for every gE G, we can take all branches of g - 1  th a t  are  well defined on
V .  We denote by szi the family of meromorphic functions on  V such that each
element o f <5212 i s  a  branch o f the  inve rse  o f an  element o f  G .  Then ,4 i s  a
normal family o n  V .  L e t (g1) be a  sequence with gi lu - 4C compact uniformly
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and g, (LI) c  V  for large j. Now we take a  curve T  in  U  containing at least
tw o po in ts . F o r la rge  j ,  w e take a  branch h; of gf - 1  o n  V such that it m aps
g1 (T) t o  r. N ow  (g1 (r)) converges to and so for any neighborhood W  of
there  is  a  number j  such that h, (W ) contains r. B ut th is  is  a contradiction
because (141)  is equicontinous.

Similarly we can show the following result.

Theorem 2.2.6. In the sam e situation as Theorem I .2.3, assume that
every element of G is  of degree one. For every point x CC, we denote the closure of

G orbit of x by A  (x ) .  Then for all x C C  but at most two points of G - f ixed points,
belongs to A (x).

Corollary 2.2.7. If  every element of G i s  of degree one and there is a
point x E C such that A (x) contains at least two points and is included in  F  (G),
then there is no wandering domain of F(G).

N ext w e consider lim it functions o f  a  hyperbolic rational sem igroup on the
Fatou set.

Theorem 2.2.8. L e t  G  b e  a  f initely  generated hy perbolic rational
semigroup which contains an element of degree at least two and assume that each
Mbbius transformation in G is neither the identity  nor an elliptic element. T h e n
for every compact subset K of F (G), the G - orbit of K can accumulate only to P (G)
and every limit function of G on F(G) is  a localy constant function that takes its
value in P(G).

Proof. W e  denote by A  the union of all components each of w hich has a
non-empty intersection w ith  P ( G ) .  L e t  U  b e  a  component o f  F(G) . . By
C oro lla ry  2 .2 .5 . the re  a re  only finitely many elements in  {U g }  g e G .  Let h be
an element of G such that the degree  is  a t least tw o . Let V be a  component of
F (G ) and suppose h (V )  C V .   T h e n  the component of F(<h>) that contains V
is  a n  attracting basin  o f <h> and contains a  critical point of h  because G  is
hyperbolic . So  V  has a  non-empty intersection with P (G) . W e fix a system
of generators of G .  It follow s that for large positive integer m , if g E G is  a
product of m generators of G, then Ug  c  A .  And so w e have only to consider
the dynamics of G o n  A .  W e take the hyperbolic metric in  each component of
A . F o r la rge  positive  integer m, every element of G w hich is a  product of m
generators of G is  a contraction map from A  to A  and the contraction rate  is
bounded by a constant stric tly  less than one in  each fixed compact subset of
A .  Now the statem ent of the theorem follows immediately.

Proposition 2.2.9. Let G be a hyperbolic rational semigroup, U a stable
domain of G . W e  set

def

H=G u , {ceul ÇoEseH(u),
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If al has infinitely many points, then a is a perfect set.

Proof. Because U  is  a stable domain, by definition, there is an  element g
of H with the degree  a t least tw o. If we denote by V the connected component
of F (g) containing U, there  is  a  critical point x V  of g  and for large enough
n, the point g n  (x ) belongs to U .  So P (G) fl U  0 .  A s s u m e  that .4 fl 0 ( /*  0 .

Then p (G )  n au* 0  and th is  is  a contradiction because G  is hyperbolic . So
n au= 0  and ai has an accum ulation point in U .  B y Proposition 2.1.7.

the statement follows.

2 . 3 .  Continuity of Julia sets.

Definition 2.3.1. Let E  be a  m etric  space. W e denote by Comp *  (E)
the  se t o f non-empty compact subsets of E .  F o r every A , B  E Comp* (E) we
set

a (A,B) = sup {c1 (x,B) Ix EA

and

d i/  (A,B) =max la(A ,B) , (BA ) }.

It is well known that dH is  a distance on Comp*  ( E ) .  W e call it the Hausdorff
metric.

N ext w e consider if  a  Ju lia  se t depends continuously on  the  generators.
For the case of iterations of rational functions, see [D] , [MSS] and [Mc].

Definition 2.3.2. Let M  be a complex m anifold. Suppose the map

(z,a) EC X M ,a  (z) E

is holomorphic for each j =1 , ..., n. W e set Ga = <fl,a, Then we say
that {Ga} OEM is  a holomorphic family of rational semigroups.

R em ark. If a map F : C X  M—>C is holomorphic, then for each a EM the
map F (  , a )  is  a  rational m ap and deg ( F  ,  a ) )  is  a  constant function on M
w hen M  is connected. For, if two maps f ,  g  from s ' to  s' are  continuous and
homotopic, then deg (f) =  deg(g). H olom orphic fam ilies o f usual iteration of
rational functions have been studied in  [M SS]. It is w ell know n that the set
o f J-s tab le  param ete rs is  o p e n  a n d  d e n se  in  th e  param eter space ([M SS],
[Mc]).

Definition 2.3.3. L e t G  b e  a  ra tio n a l se m ig ro u p . W e  sa y  th a t a
compact subset K  of F (G) is  a confinement set of G if for every z E F ( G ) ,  for
all but finitely many elements g  of G the point g (z ) is included in K.

Theorem 2.3.4. L e t  {Ga }  a e M  be a holom orphic family o f  rational
semigroups where Ga= fn,a> . We assume that for a point b E M there is a
confinement set K of G b. Then the map
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(G a ) E Comp* (C)

is cotinuous at the point a=b  with respect to the Hausdorff metric.

P roo f. By Section 1. Lem m a 1.1.5.6, for any E 0 there is a  finite set

X b—  {xi,b, •••, xl,b} c./ (GO
of repelling fixed points of G b such that

a(J (Gb), X b)) 6/2.

By the  implicit function theorem, there is a neighgborhood W  of b  in M  such
tha t for every a E  W  and for every j =1 , ..., 1 the re  is  a  repelling fixed point
x,,a  of Ga  such that

d (x,,b , x,,a ) 2.

For each a E W we set X a= {xi,a, xi,a}. Then

a (xb, J  (G a )) a (Xb, Xa) E E/2.

So

a (.1 (Gb) , J (Ga)) a (.f (Gb), xb) + a (xb, J (Ga)) S.

Next, for every a EM  we fix the generator system { f,,a} of Ga . We denote by
A  the  un ion  o f all components of F (G b )  th a t have  a  non  em pty intersection
with K  and we take the  hyperbolic metric in  each coponent o f  A . L e t  a be a
positive number and K 2 the compact 2a neighborhood of K  in A and K 1 b e  the
compact a neighborhood of K  in A .  Then if we take the neighborhood W of b
smaller, there is an integer m  such that for every a E  W  and for every integer
t  satisfying m . t 2m  every  e lem ent g  G a  o f  a  product of t  generators of Ga

satisfies

g (K2 ) cK i

So fo r  every a  E  W  a n d  fo r  every  in teger t  sa tisfy ing  m  t eve ry  e lem en t
gEG a  o f  a  product of t  generatosrs of Ga  sa tis f ie s  the  above. N ow  w e take
th e  E  neighborhood 0 of J (G b ) w ith  respect to  th e  chordal m etric  a n d  we
denote by L  th e  se t  C \O . A n d  if  we take W  smaller again there is an integer
u  such that for every a E  W every element g  G a  o f  a  product of u generators
of G a satisfies that g (L) C K2 and so L  is included in F (G a ) . So

a (G a ), (GO) E.

Hence a" ,f  (G a)  is continuous a t the  po in t b  w ith  respect to  the Hausdorff
metric.

2.4 . S trucural stability of hyperbolic rational semigroups.

Theorem 2.4.1. L e t  {Ga } a em  b e  a  holomorphic fam ily  o f  rational
semigroups where Ga— <ji,a, fn,a>. Then
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1. L et b be a point of  M . A ssum e that G b is hyperbolic. A nd also assume
that deg ( f i b )  is at least tw o and each M aus transformation in G b is neither the
identity nor an elliptic element. T hen  there  is an open neighborhood W  of b such
that for every a E  W  the rational semigroup Ga is hyperbolic and the map a (Ga)
is continuous with respect to the Hausdorff metric.

2. Under the same assumption as 1, if  the sets ( f a  (J (GI))) ,) are mutually
disjoint, then there is an open neighborhood V  o f b a n d  a  continuous map i
e X V-•C such that f or every z E  C  the  map al - 0i (z , a )  is  holomorphic, and for
every zi— : (z , a )  is  a quasiccmformal homeomorphism of e m apping  (Ge,) onto
i(Ga).

Proof of  I. F o r  every  a E  M  w e fix  th e  generator system  { f i a }  o f Ga .
W e denote by A  the union of all components of F (Gb) tha t have a non empty
intersection w ith  K  = P (G b) a n d  w e  ta k e  th e  hyperbolic  m etric  i n  each
component o f  A .  L e t  a  b e  a  p o s it iv e  num ber a n d  K 2  th e  co m p ac t 2a
neighborhood of K  in A  and If 1 the compact a neighborhood of K  in A .  Then
if w e take a  amall neighborhood W of b th e re  is  an  interger m such that for
every a E  W and for every integer t  satisfying m  t 2m every element geG a

of a product of t generators of Ga satisfies

g (K 2 ) c Ki.

So fo r  every  a  C W a n d  fo r  every  in teger t  satisfying m t  e v e ry  e le m e n t
geG a  o f  a  product o f  t  generators o f  Ga s a t is f ie s  th e  above . N ow  le t  Q a
denote the  un ion  o f a ll c r itic a l po in ts o f a ll generators o f  Ga . Let L  b e  a
relatively compact neighborhood of Q b  in  F  (G b ). If  w e  take  W smaller, for
every a E W the  se t Qa is  in  L .  A nd w e can assume tha t the re  is  a positive
integer u such  tha t fo r  every a E  W every element g E  Ga o f  w ord length u
satisfies g (L) C  K 2 .  So fo r every a e W the  se t P (G a ) is  in c lu d e d  in  F  (Ga)
and  so  Ga is  h y p e rb o lic . A nd from  this fact combind w ith theorem s 2.2.8,
2.3.4, it folows that the map a ' — J ( G a )  is continuous in  W.

Proof of 2 .  W e take a  neighborhood W of  b  a s  ab o v e . W e  can  assume
th a t  W ia a  polydisc and for each a E  W th e  se ts  ( f .,- 1, (j  (Ga ) ) )  are  mutually
disjoint. L e t  c  be a  point of W and x  a  repelling fixed point of g, =
f.7.,c where the number m is  the word length of ge . Then there  is an analytic
function x (a) in a small neithborhood U of c in  W such that x (a) is a repelling
fixed poin t of ga a n d  x  (c )  = x . If ao i s  a  p o in t o f  au f l  W, then x ((to) is a
repelling fixed po in t o f gao b ecau se  Gao is  h y p e rb o lic . S o  w e  c a n  ta k e  an
analytic continuation of x (a) throughout W such that x (a) is a  repelling fixed
point of ga. Next if  ha  i s  a n  element of Ga  su c h  th a t  th e  w ord length is at
most m and x (a)  i s  a  fixet poin t of i t  then ha  is  e q u a l to  ga  because Ga  i s
hyperbolic a n d  th e  se ts  ( f a ( j  (G a)))  a r e  m utually d is jo in t .  S o  by  t h e  A
lemma ( [M S S ] , [B R ] , [S T ] )  a n d  Lem m a 1.1. 5.6 t h e  statement follows
immediately.
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2 .5 .  Self-similarity of Julia sets. When G is  genarated by a single
rational function f , we know that if a ll the critical points and in the immediate
attractive basin of a  fixed point, then the Julia  set is  a  C a n to r  s e t . Now we
consider the following situation similar to that.

Theorem 2.5.1. L et G  = <f i ..... f > be a  finitely generated rational
sem igroup. A ssum e that G contains an  element with the degree at least two and
each IlIbbius trnsformation in  G  is neither the identity nor an  eliptic element. If
P(G ) is included i n  a  connected component U  of  F (G), then there are  simply
connected domains ..., V k and mappings hi, ..., hs from W = U ;17; to W  such
that f or each j ,  i  the map hi is a contraction map from V, to a  domain with
respect to the hyperbolic metric with the rate of  contraction bounded by a constant
strictly less than one throughout Vi and

J (G) cw , U h i  (G)) = J (G)

Proof. T here  is  a  relativery compact subfomain V  o f  U including P(G ).
For each positive integer m we denote by G . the subsemigroup of G generated
by all elements  g i  o f  w ord length m .  I f  w e  ta k e  a  num ber m  large
enough, then for each g  G ., g maps the closure of V in to  V .  So the closure

of g - 1 ( e  \ V )  is inc luded  in  C \ V .  Each connected component o f e \ V is
simply connected because V is  connec ted . F o r  each component o f e \ V we
ta k e  a ll branches of g  o n  i t .  T hen  each  b ranch  is  a  contraction m ap on
each component of C\17 w ith respect to the hyperbolic metric with the rate of
contraction bounded by a constant stric tly  less than  o n e .  Now from Lemma
1 .1 .4 .2  and Lemma 1.1.5 .1 .

T(G) = u gT1 (I (Gm)),
j=1

so the statement follows.

Remark. In  th e  above proof, if  w e  can  take  V a s  a  simply connected
domain, then  th e  Ju lia  se t i s  a  self-sim ilar s e t  in  e \ V  w ith  respect to  the
hyperbolic metric.

By Theorem 2 .5 .1  and the proof, we can show the following result.

Theorem 2.5.2 L e t G  = <f i ..... f > be a  finitely generated rational
semigroup. A ssum e that d e g (h ) is at least two. I f  P(G )  is included in  a
connected coponent U o f  F (G )  an d  th e  s e ts  ( f i l (G )) )  i=1 ,... , ,  are  mutually
disjoint, then the Julia set J(G ) is a Cantot set.

Example 2.5.3. Let Gc = <2± c, z 2 ± c i> .  Then J ( G )  is  a Cantor set
for sufficiently large positive number c.
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