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ABSTRACT. We consider the multifractal formalism for the dynamics of semigroups of rational maps on the

Riemann sphere and random complex dynamical systems. We elaborate a multifractal analysis of level sets

given by quotients of Birkhoff sums with respect to the skew product associated with a semigroup of rational

maps. Applying these results, we perform a multifractal analysis of the Hölder regularity of limit state functions

of random complex dynamical systems.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Rat denote the set of all non-constant rational maps on the Riemann sphere Ĉ. A subsemigroup of
Rat with semigroup operation being functional composition is called a rational semigroup. The first study
of dynamics of rational semigroups was conducted by A. Hinkkanen and G. J. Martin ([HM96]), who
were interested in the role of polynomial semigroups (i.e., semigroups of non-constant polynomial maps)
while studying various one-complex-dimensional module spaces for discrete groups, and by F. Ren’s group
([GR96]), who studied such semigroups from the perspective of random dynamical systems. The first study
of random complex dynamics was given by J. E. Fornaess and N. Sibony ([FS91]). For the motivations and
the recent studies on random complex dynamics, see the second author’s work [Sum11, Sum13].

The study of multifractals goes back to the work of [Man74, FP85, HJK+86] which was motivated by
statistical physics. In this paper, we perform a multifractal analysis of level sets given by quotients of
Birkhoff sums with respect to the skew product associated with a rational semigroup. We recommend
[PW97, Pes97] for a similar kind of multifractal analysis for conformal repellers.

One of our main motivations to develop the mutifractal formalism for rational semigroups is to apply our
results to random complex dynamical systems. The multifractal formalism allows us to investigate level sets
of a prescribed Hölder regularity of limit state functions (linear combinations of unitary eigenfunctions of
transition operators) of random complex dynamical systems. In this way, our multifractal analysis exhibits a
refined gradation between chaos and order for random complex dynamical systems, which has been recently
studied by the second author in [Sum11, Sum13]. We remark that this paper is the first one in which the
multifractal formalism is applied to the study of limit state functions of random complex dynamical systems.
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Also, we note that under certain conditions such a limit state function is continuous on Ĉ but varies precisely
on the Julia set of the associated rational semigroup, which is a thin fractal set. From this point of view, this
study is deeply related to both random dynamics and fractal geometry.

Throughout this paper, we will always assume that I is a finite set. An element f = ( fi)i∈I ∈ (Rat)I is called
a multi-map. We say that f = ( fi)i∈I is exceptional if card(I) = 1 and deg( fi) = 1 for i ∈ I. Throughout,
we always assume that f is non-exceptional. Let f = ( fi)i∈I be a multi-map and let G = ⟨ fi : i ∈ I⟩, where
⟨ fi : i ∈ I⟩ denotes the rational semigroup generated by ( fi)i∈I , i.e., G = { fi1 ◦· · ·◦ fin | n ∈N, i1, . . . , in ∈ I}.
Let (pi)i∈I be a probability vector and let τ := ∑i∈I piδ fi where δ fi refers to the Dirac measure supported
on fi. We always assume that 0 < pi < 1 for each i ∈ I. We consider the i.i.d. random dynamical system
associated with τ , i.e., at every step we choose a map fi with probability pi. We denote by C

(
Ĉ
)

the Banach
space of complex-valued continuous functions on Ĉ endowed with the supremum norm. The transition
operator Mτ : C

(
Ĉ
)
→ C

(
Ĉ
)

is the bounded linear operator given by Mτ (φ)(z) := ∑i∈I φ ( fi (z)) pi, for
each φ ∈C

(
Ĉ
)

and z ∈ Ĉ. A function ρ ∈C
(
Ĉ
)

with ρ ̸≡ 0 is called a unitary eigenfunction of Mτ if there
exists u ∈ C with |u| = 1 such that Mτ (ρ) = uρ . Let Uτ be the space of all linear combinations of unitary
eigenfunctions of Mτ : C

(
Ĉ
)
→ C

(
Ĉ
)
. To investigate the regularity of the elements in Uτ we consider the

following quantities.

Definition 1.1. Let ρ : Ĉ→ C be a bounded function and let z ∈ Ĉ. We set

Q∗ (ρ,z) := liminf
r→0

logQ(ρ,z,r)
logr

, Q∗ (ρ,z) := limsup
r→0

logQ(ρ,z,r)
logr

and Q(ρ,z) := lim
r→0

logQ(ρ,z,r)
logr

,

where Q(ρ,z,r) is for r > 0 given by

Q(ρ,z,r) := sup
y∈B(z,r)

|ρ (y)−ρ (z)| .

Moreover, we define for each α ∈ R the corresponding level sets

R∗ (ρ,α) :=
{

y ∈ Ĉ : Q∗ (ρ,y) = α
}
, R∗ (ρ,α) :=

{
y ∈ Ĉ : Q∗ (ρ,y) = α

}
and

R(ρ,α) :=
{

y ∈ Ĉ : Q(ρ,y) = α
}
.

Let d denote the spherical distance on Ĉ. The pointwise Hölder exponent Höl(ρ,z) of ρ at z is given by

Höl(ρ,z) := sup

{
β ∈ [0,∞) : limsup

y→z,y ̸=z

|ρ (y)−ρ (z)|
d (y,z)β < ∞

}
∈ [0,∞] .

The level set H (ρ,α) with prescribed Hölder exponent α ∈ R is given by

H (ρ,α) :=
{

y ∈ Ĉ : Höl(ρ,y) = α
}
.

In fact, we will show in Lemma 5.1 that Höl(ρ,z) = Q∗(ρ,z) for every z ∈ Ĉ. We refer to Section 5 for the
proof of this fact and for further properties of the quantities introduced in Definition 1.1.

We proceed by introducing the necessary preliminaries to state our first main result. The Fatou set F (G)

and the Julia set J (G) of a rational semigroup G are given by

F (G) :=
{

z ∈ Ĉ : G is normal in a neighbourhood of z
}

and J (G) := Ĉ\F (G) .

If G is a rational semigroup generated by a single map g ∈ Rat, then we write G = ⟨g⟩. Moreover, for a
single map g ∈ Rat, we set F (g) := F (⟨g⟩) and J (g) := J (⟨g⟩).
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Let f = ( fi)i∈I be a multi-map. The skew product associated with the multi-map f = ( fi)i∈I is given by

f̃ : IN× Ĉ→ IN× Ĉ, f̃ (ω,z) := (σ (ω) , fω1 (z)) ,

where σ : IN→ IN denotes the left-shift map given by σ (ω1,ω2, . . .) :=(ω2,ω3, . . .), for ω =(ω1,ω2, . . .)∈
IN. We say that a multi-map f = ( fi)i∈I is expanding if the associated skew product f̃ is expanding along
fibres on the Julia set J

(
f̃
)

(see Definition 2.4).

We say that ψ = (ψi)i∈I is a Hölder family associated with the multi-map f = ( fi)i∈I if ψi : f−1
i (J (G))→R

is Hölder continuous for each i ∈ I, where G = ⟨ fi : i ∈ I⟩ and J (G) is equipped with the metric inherited
from the spherical distance d on Ĉ. Note that ∪i∈I f−1

i (J(G)) = J(G) ([Sum00, Lemma 2.4]). If it is clear
from the context with which multi-map ψ is associated, then we simply say that ψ is a Hölder family. For a
Hölder family ψ = (ψi)i∈I , we define ψ̃ : J

(
f̃
)
→R given by ψ̃ (ω,z) :=ψω1 (z), for all ω = (ω1,ω2, . . .)∈

IN and z∈ f−1
ω1

(J (G)), and for each n∈N we denote by Snψ̃ : J
(

f̃
)
→R the Birkhoff sum of ψ̃ with respect

to f̃ given by Snψ̃ := ∑n−1
i=0 ψ̃ ◦ f̃ i.

For an expanding multi-map f = ( fi)i∈I , let ζ =
(
ζi : f−1

i (J (G))→ R
)

i∈I be the Hölder family given by
ζi (z) :=− log∥ f ′i (z)∥ for each i ∈ I and z ∈ f−1

i (J (G)), where ∥ ·∥ denotes the norm of the derivative with
respect to the spherical metric on Ĉ. Let πĈ : IN× Ĉ→ Ĉ denote the canonical projection. We define the
level sets F (α,ψ), which are for α ∈ R given by

F (α ,ψ) := πĈ
(
F̃ (α ,ψ)

)
, where F̃ (α,ψ) :=

{
x ∈ J

(
f̃
)

: lim
n→∞

Snψ̃ (x)

Snζ̃ (x)
= α

}
.

The (Hausdorff-) dimension spectrum l of ( f ,ψ) is given by

l (α) := dimH (F (α,ψ)) , for α ∈ R.

The range of the multifractal spectrum is given by

α− (ψ) := inf{α ∈ R : F (α,ψ) ̸=∅} and α+ (ψ) := sup{α ∈ R : F (α ,ψ) ̸=∅} .

The free energy function for ( f ,ψ) is the unique function t : R→ R such that P
(
βψ̃ + t (β ) ζ̃ , f̃

)
= 0 for

each β ∈ R, where P
(
·, f̃

)
denotes the topological pressure with respect to f̃ ([Wal82]). The number t (0)

is also referred to as the critical exponent δ of f . The convex conjugate of t ([Roc70, Section 12]) is given
by

t∗ : R→ R∪{∞} , t∗ (c) := sup
β∈R

{βc− t (β )} , c ∈ R.

We say that f = ( fi)i∈I satisfies the separation condition if f−1
i (J (G))∩ f−1

j (J (G)) =∅ for all i, j ∈ I with
i ̸= j, where G := ⟨ fi : i ∈ I⟩. Note that in this case, under the assumption J(G) ̸= ∅, for any probability
vector (pi)i∈I ∈ (0,1)I , setting τ := ∑i∈I piδ fi , we have that (1) 1 ≤ dimC (Uτ) < ∞ and (2) there exists a
bounded linear operator πτ : C

(
Ĉ
)
→Uτ such that, for each φ ∈C

(
Ĉ
)
, we have ∥Mn

τ (φ −πτ (φ))∥→ 0, as
n tends to infinity (see [Sum11, Theorem 3.15]). If an element ρ ∈Uτ is non-constant, then ρ is continuous
on Ĉ and the set of varying points of ρ is equal to the thin fractal set J(G) (for the figure of the graph
of such a function ρ , see [Sum11]). Such ρ is considered as a complex analogue of a devil’s staircase
or Lebesgue’s singular function. Some of such functions ρ are called devil’s coliseums (see [Sum11]).
Our first main result shows that, for every ρ ∈ Uτ non-constant, the level sets R∗, R, R∗ and H satisfy the
multifractal formalism.

Theorem 1.2 (Theorem 5.3). Let f = ( fi)i∈I be an expanding multi-map and let G = ⟨ fi : i ∈ I⟩. Suppose

that f satisfies the separation condition. Let (pi)i∈I ∈ (0,1)I be a probability vector and let τ := ∑i∈I piδ fi .

Suppose there exists a non-constant function belonging to Uτ . Let ρ ∈ C
(
Ĉ
)

be a non-constant function
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belonging to Uτ . Let ψ =
(
ψi : f−1

i (J (G))→ R
)

i∈I be given by ψi (z) := log pi. Let t : R→ R denote the

free energy function for ( f ,ψ). Then we have the following.

(1) There exists a number a ∈ (0,1) such that ρ : Ĉ→ C is a-Hölder continuous and a ≤ α− (ψ).

(2) We have α+ (ψ) = sup{α ∈ R : H (ρ,α) ̸=∅} and α− (ψ) = inf{α ∈ R : H (ρ,α) ̸=∅}. More-

over, H can be replaced by R∗,R or R∗.

(3) Let α± := α± (ψ). If α− < α+ then we have for each α ∈ (α−,α+),

dimH (R∗ (ρ,α)) = dimH (R∗ (ρ,α)) = dimH (R(ρ,α)) = dimH (H (ρ,α)) =−t∗ (−α)> 0.

Moreover, s(α) := −t∗ (−α) defines a real analytic and strictly concave positive function on

(α−,α+) with maximum value δ > 0. Also, s′′ < 0 on (α−,α+).

(4) (a) For each i ∈ I we have deg( fi)≥ 2. Moreover, we have α− = α+ if and only if there exists an

automorphism φ ∈ Aut
(
Ĉ
)
, complex numbers (ai)i∈I and λ ∈ R such that for all i ∈ I,

φ ◦ fi ◦φ−1 (z) = aiz±deg( fi) and logdeg( fi) = λ log pi.

(b) If α− = α+ then we have

R∗ (ρ,α−) = R∗ (ρ,α−) = R(ρ,α−) = H (ρ,α−) = J(G),

where dimH(J(G)) = δ > 0 and R∗ (ρ,α) = R∗ (ρ,α) = R(ρ,α) = H (ρ,α) =∅ for all α ̸=
α−.

We denote by Cα(Ĉ) := {φ : Ĉ→ C | ∥φ∥α < ∞} the Banach space of α-Hölder continuous functions on
Ĉ endowed with the α-Hölder norm

∥φ∥α := sup
z∈Ĉ

|φ (z)|+ sup
x,y∈Ĉ,x ̸=y

|φ (x)−φ (y)|/d(x,y)α .

Under the assumptions of Theorem 1.2 and some additional conditions, we have α− < 1 (see the Remark in
Section 6). In this case Theorem 1.2 implies that for each α ∈ (α−,1) the iteration of the transition operator
Mτ does not behave well on the Banach space Cα(Ĉ), i.e., there exists an element φ ∈ Cα(Ĉ) such that
∥Mn

τ (φ)∥α → ∞ as n → ∞. It means that, regarding the iteration of the transition operator Mτ on functions
spaces, even though the chaos disappears on C(Ĉ) and Ca(Ĉ), we still have a kind of complexity (or chaos)
on the space Cα(Ĉ) for each α ∈ (α−,1). Thus, in random complex dynamical systems we sometimes have
a kind of gradation between chaos and order. Theorem 1.2 can be seen as a refinement of this gradation. In
Section 6 we give many examples to which we can apply Theorem 1.2.

In order to show our first main result, we prove the general multifractal formalism for level sets given by
quotients of Birkhoff sums with respect to the skew product associated with a semigroup of rational maps.
We say that a multi-map f = ( fi)i∈I satisfies the open set condition if there exists a non-empty open set U

in Ĉ such that
{

f−1
i (U) : i ∈ I

}
consists of pairwise disjoint subsets of U . Note that the open set condition

is weaker than the separation condition, since the higher iterates of an expanding multi-map satisfying the
separation condition also satisfy the open set condition.

Our second main result shows that, for an expanding multi-map satisfying only the open set condition and
for an arbitrary Hölder family ψ , the level sets F (α,ψ) satisfy the multifractal formalism.

Theorem 1.3 (Theorem 4.5). Let f = ( fi)i∈I be an expanding multi-map which satisfies the open set con-

dition. Let ψ = (ψi)i∈I be a Hölder family associated with f and let t : R → R denote the free energy

function for ( f ,ψ). Suppose that there exists γ ∈ R such that P
(
γψ̃, f̃

)
= 0 and suppose that α− (ψ) <

α+ (ψ). Then (1) the Hausdorff dimension spectrum l of ( f ,ψ) is real analytic and strictly concave on
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(α− (ψ) ,α+ (ψ)) with maximal value δ , (2) l′′ < 0 on (α−(ψ),α+(ψ)), and (3) for α ∈ (α− (ψ) ,α+ (ψ))

we have that

l (α) =−t∗ (−α)> 0.

Remark. Note that in Theorem 1.3 we only assume that the multi-map f satisfies the open set condition,
which does not imply that f satisfies the separation condition. In fact, there are many 2-generator expanding
polynomial semigroups satisfying the open set condition for which the Julia set is connected (see [Sum14]).
Theorem 1.3 can be applied even to such semigroups. Moreover, let us remark that, since each map of the
generator system ( fi)i∈I is not injective in general, we need much more efforts in the proof of Theorem 1.3
than in the case of contracting iterated function systems, even if the open set condition is assumed.

Remark. Note that, in general, we cannot replace the Hausdorff dimension by the box-counting dimen-
sion in Theorem 1.3. In fact, if α = −t ′ (β ) for some β ∈ R, then we have that νβ (F (α ,ψ)) = 1 and
supp

(
νβ

)
= J (G) by Lemmas 3.13 and 3.6, where νβ is given in Definition 3.7. Hence, F (α ,ψ) is

dense in J (G), which implies that dimB (F (α ,ψ)) = dimB (J (G)), where dimB refers to the box-counting
dimension.

The results stated in Proposition 1.4 and Corollary 1.5 below follow from the general theory without as-
suming the open set condition (see Theorem 4.5 (1) and (2)). If each potential ψi is constant, then we have
the following criterion for a non-trivial multifractal spectrum.

Proposition 1.4 (Proposition 4.6). Let f = ( fi)i∈I be an expanding multi-map and let G = ⟨ fi : i ∈ I⟩. (We

do not assume the open set condition.) Suppose that deg
(

fi0

)
≥ 2 for some i0 ∈ I. Let (ci)i∈I be a sequence

of negative numbers and let the Hölder family ψ =
(
ψi : f−1

i (J (G))→ R
)

i∈I be given by ψi (z)= ci for each

z ∈ f−1
i (J (G)). Then we have α− (ψ) = α+ (ψ) if and only if there exist an automorphism φ ∈ Aut

(
Ĉ
)
,

complex numbers (ai)i∈I and λ ∈ R such that for all i ∈ I,

φ ◦ fi ◦φ−1 (z) = aiz±deg( fi) and logdeg( fi) = λci.

Remark. Let us point out the relation between Proposition 1.4 and rigidity results in thermodynamic formal-
ism. There are several equivalent formulations to characterize when the multifractal spectrum degenerates.
Namely, the equality α−(ψ) = α+(ψ) is equivalent to each of the following statements: (1) The equilib-
rium states µ̃0 and µ̃γ coincide. (2) The graph of the free energy function t is a straight line. (3) There exists
a continuous function u : J( f̃ )→ R such that δ ζ̃ − γψ̃ = u−u◦ f̃ . For precise statement and the proof, we
refer to Proposition 3.10 and the proofs of Theorem 4.5 and Proposition 4.6.

Remark. The proof of Proposition 1.4 makes use of a rigidity result of Zdunik ([Zdu90]) for the classical
iteration of a single rational map. We give an extension of this result to rational semigroups. We emphasize
that the map φ in Proposition 1.4 is independent of i ∈ I.

An interesting special case is given by the Lyapunov spectrum of an expanding multi-map f = ( fi)i∈I . The
Lyapunov spectrum is given by the level sets L (α), α ∈ R, where we define

L (α) :=F (α,−1)=
{

z ∈ Ĉ : ∃ω ∈ IN such that (ω,z) ∈ J( f̃ ) and lim
n→∞

n
log∥( fωn ◦ · · · ◦ fω1)

′ (z)∥
= α

}
.

We say that f = ( fi)i∈I has trivial Lyapunov spectrum if there exists α0 ∈R such that L (α) =∅ if α ̸= α0.

Corollary 1.5 (Lyapunov spectrum). Let f = ( fi)i∈I be an expanding multi-map. Suppose that deg
(

fi0

)
≥ 2

for some i0 ∈ I. Then f has trivial Lyapunov spectrum if and only if there exist an automorphism φ ∈Aut
(
Ĉ
)

and complex numbers (ai)i∈I such that φ ◦ fi ◦φ−1 (z) = aiz±deg( fi0).
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The paper is organised as follows. In Section 2 we collect the necessary preliminaries on the dynamics
of expanding rational semigroups. In Section 3 we recall basic facts from thermodynamic formalism for
expanding dynamical systems in the framework of the skew product associated with an expanding rational
semigroup. In Section 4 we investigate the local dimension of conformal measures supported on subsets of
the Julia set of rational semigroups satisfying the open set condition and we prove a multifractal formalism
for Hölder continuous potentials in Theorem 4.5. In Section 5 we apply the multifractal formalism to
investigate the Hölder regularity of linear combinations of unitary eigenfunctions of transition operators in
random complex dynamics. Finally, examples of our results are given in Section 6.

Acknowledgement. The authors would like to thank Rich Stankewitz for valuable comments. The authors
would like to thank the referee for a careful reading of the manuscript and for the helpful comments. The
research of the first author was supported by the research fellowship JA 2145/1-1 of the German Research
Foundation (DFG) and the JSPS Postdoctoral Fellowship (ID No. P14321). The research of the second
author was partially supported by JSPS KAKENHI 24540211.

2. PRELIMINARIES

Let f = ( fi)i∈I ∈ (Rat)I be a multi-map and let G = ⟨ fi : i ∈ I⟩. For n ∈ N and (ω1,ω2, . . . ,ωn) ∈ In, we set
f(ω1,ω2,...,ωn) := fωn ◦ fωn−1 ◦ · · · ◦ fω1 . For ω ∈ IN we set ω|n := (ω1,ω2, . . . ,ωn) and we define

Fω :=
{

z ∈ Ĉ :
(

fω|n

)
n∈N

is normal in a neighbourhood of z
}

and Jω := Ĉ\Fω .

The skew product associated with f = ( fi)i∈I is given by

f̃ : IN× Ĉ→ IN× Ĉ, f̃ (ω,z) := (σ (ω) , fω1 (z)) ,

where σ : IN→ IN denotes the left-shift map given by σ (ω1,ω2, . . .) :=(ω2,ω3, . . .), for ω =(ω1,ω2, . . .)∈
IN.

For each ω ∈ IN, we set Jω := {ω}× Jω and we set

J
(

f̃
)

:=
∪

ω∈IN
Jω , F

(
f̃
)

:=
(

IN× Ĉ
)
\ J

(
f̃
)
,

where the closure is taken with respect to the product topology on IN × Ĉ. Let π1 : IN × Ĉ → IN and
πĈ : IN× Ĉ→ Ĉ denote the canonical projections. We refer to [Sum00, Proposition 3.2] for the proof of
the following proposition.

Proposition 2.1. Let f = ( fi)i∈I ∈ (Rat)I and let G = ⟨ fi : i ∈ I⟩. Let f̃ : IN × Ĉ → IN × Ĉ be the skew

product associated with f . Then we have the following.

(1) f̃ (Jω) = Jσω and ( f̃|π−1
1 (ω))

−1 (Jσω) = Jω , for each ω ∈ IN.

(2) f̃
(
J
(

f̃
))

= J
(

f̃
)
, f̃−1

(
J
(

f̃
))

= J
(

f̃
)
, f̃

(
F
(

f̃
))

= F
(

f̃
)
, f̃−1

(
F
(

f̃
))

= F
(

f̃
)
.

(3) Let G= ⟨ fi : i ∈ I⟩ and suppose that card(J (G))≥ 3. Then we have J
(

f̃
)
=

∩
n∈N0

f̃−n
(
IN× J (G)

)
and πĈ

(
J
(

f̃
))

= J (G). Here, N0 := N∪{0}.

Definition 2.2. Let G be a rational semigroup and let z ∈ Ĉ. The backward orbit G− (z) of z and the set of
exceptional points E (G) are defined by G− (z) :=

∪
g∈G g−1 (z) and E (G) :=

{
z ∈ Ĉ : card(G− (z))< ∞

}
.

We say that a set A ⊂ Ĉ is G-backward invariant, if g−1(A) ⊂ A, for each g ∈ G, and we say that A is
G-forward invariant, if g(A)⊂ A, for each g ∈ G.

The following is proved in [HM96] (see also [Sum00, Lemma 2.3], [Sta12]).
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Lemma 2.3. The following holds for a rational semigroup G.

(a) F(G) is G-forward invariant and J(G) is G-backward invariant.

(b) If card(J (G))≥ 3, then J (G) is a perfect set.

(c) If card(J (G))≥ 3, then card(E (G))≤ 2.

(d) If z ∈ Ĉ\E (G), then J(G)⊂ G− (z). In particular, if z ∈ J (G)\E (G) then G− (z) = J (G).

(e) If card(J (G)) ≥ 3, then J (G) is the smallest closed set containing at least three points which is

G-backward invariant.

(f) If card(J (G))≥ 3, then

J (G) =
{

z ∈ Ĉ : z is a repelling fixed point of some g ∈ G
}
=

∪
g∈G

J (g),

where the closure is taken in Ĉ.

For a holomorphic map h : Ĉ→ Ĉ and z ∈ Ĉ, the norm of the derivative of h at z ∈ Ĉ with respect to the
spherical metric is denoted by ∥h′ (z)∥.

Definition 2.4. Let f = ( fi)i∈I ∈ (Rat)I and and let f̃ : IN×Ĉ→ IN×Ĉ denote the associated skew product.
For each n ∈N and (ω,z) ∈ J

(
f̃
)
, we set

(
f̃ n
)′
(ω,z) := ( fω|n)

′(z). We say that f̃ is expanding along fibers
if J

(
f̃
)
̸=∅ and if there exist constants C > 0 and λ > 1 such that for all n ∈ N,

inf
(ω,z)∈J( f̃)

∥
(

f̃ n)′ (ω,z)∥ ≥Cλ n,

where ∥
(

f̃ n
)′
(ω,z)∥ denotes the norm of the derivative of fωn ◦ fωn−1 ◦ · · · ◦ fω1 at z with respect to the

spherical metric. f = ( fi)i∈I is called expanding if f̃ is expanding along fibers. Also, G = ⟨ fi : i ∈ I⟩ is
called expanding if f = ( fi)i∈I is expanding.

Remark 2.5. It follows from Proposition 2.8 below that, for a rational semigroup G = ⟨ fi : i ∈ I⟩, the notion
of expandingness is independent of the choice of the generator system.

The following lemma was proved in [Sum01, Theorem 2.14] (see also Proposition 2.8 below).

Lemma 2.6. If f = ⟨ fi : i ∈ I⟩ is expanding, then we have J
(

f̃
)
=

∪
ω∈IN Jω .

Definition 2.7. A rational semigroup G is hyperbolic if P(G)⊂ F (G), where P(G) denotes the postcritical
set of G given by

P(G) :=
∪

g∈G

CV(g)

and where CV(g) denotes the set of critical values of g.

Remark. Let G = ⟨ fi : i ∈ I⟩. Since P(G) =
∪

g∈G∪{id} g(
∪

i∈I CV( fi)), we have that P(G) is G-forward
invariant.

In the next proposition we give necessary and sufficient conditions for a rational semigroup to be expanding.
We refer to [Sum98] for the proofs. For g ∈ Aut(Ĉ), we say that g is loxodromic if g has exactly two fixed
points, for which the modulus of the multipliers is not equal to one.

Proposition 2.8. Let f = ( fi)i∈I ∈ (Rat)I and G = ⟨ fi : i ∈ I⟩.

(1) If f is expanding, then G is hyperbolic, each element g ∈ G with deg(g) = 1 is loxodromic, and

there exists a G-forward invariant non-empty compact subset of F (G).
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(2) If there exists g ∈ G with deg(g)≥ 2, if G is hyperbolic and if each element g ∈ G with deg(g) = 1
is loxodromic, then f is expanding.

(3) If G ⊂ Aut(Ĉ) and each element g ∈ G is loxodromic, and if there exists a G-forward invariant

non-empty compact subset of F (G), then f is expanding.

Finally, we state the following facts about the exceptional set of an expanding rational semigroup.

Lemma 2.9. Let G = ⟨ fi : i ∈ I⟩ denote an expanding rational semigroup. Suppose that card(J (G)) ≥ 3.

Then we have E (G)⊂ F (G).

Proof. Suppose for a contradiction that there exists z0 ∈ E (G)∩ J (G). Since card(J (G)) ≥ 3, it follows
from the density of the repelling fixed points (Lemma 2.3 (f)) that there exist z1 ∈ J (G) and g1 ∈ G, such
that z1 ̸= z0, g1 (z1) = z1 and ∥g′1 (z1)∥ > 1. Furthermore, we have card(E (G)) ≤ 2 by Lemma 2.3 (c).
Combining with the fact that g−1 (E (G))⊂ E (G) for each g ∈ G, we conclude that g2

1 (z0) = z0. Since G is
expanding, we have that either deg(g1)≥ 2 or that g1 is a loxodromic Möbius transformation by Proposition
2.8 (1). Thus, we have that z0 is an attracting fixed point of g2

1. Let V be a neighborhood of z0 and let
0 < c < 1 such that g2

1(V )⊂V and ∥(g2
1)

′(z)∥< c, for each z ∈V . By Lemma 2.3 (b) there exists a sequence
(an) with an ∈ J(G)\{z0} such that limn an = z0. Then there exists a sequence (nk)∈NN tending to infinity
and a sequence (bk) ∈ ĈN such that bk ∈ g−2nk

1 (ank) and bk ∈V . Hence, limk ∥(g2nk
1 )′(bk)∥ ≤ limk cnk = 0.

Moreover, write g2
1 = fα , for some m ∈ N and α ∈ Im, and denote by αn := (α . . .α) ∈ Imn the n-fold

concatenation of α . Let (βk) ∈ IN with (βk,ank) ∈ J( f̃ ). Then
(
αnk βk,bk) ∈ J( f̃ ). This contradicts that G

is expanding and finishes the proof. □

Lemma 2.10. Let G= ⟨ fi : i ∈ I⟩ denote an expanding rational semigroup. Suppose that 1≤ card(J (G))≤
2. Then we have card(J (G)) = 1.

Proof. Clearly, we have G ⊂ Aut(Ĉ) and each element of G is loxodromic by Proposition 2.8 (1). Now,
suppose by way of contradiction that J (G) = {a,b} with a ̸= b. Without loss of generality, we may assume
that a = 0 and b = ∞. Since J(G) is G-backward invariant, we have g(a) = a and g(b) = b for each g ∈ G.
Thus, there exists a sequence (ci) ∈ CI such that fi (z) = ciz, for each z ∈ Ĉ and i ∈ I. We may assume that
there exists i0 ∈ I such that ∥ f ′i0(a)∥ > 1. Since G is expanding with respect to { fi : i ∈ I}, there exists a
constant c0 > 1 such that ∥ f ′i (a)∥= |ci| ≥ c0 > 1, for all i ∈ I. Hence, we have ∥ f ′i (b)∥ ≤ c−1

0 < 1, for all
i ∈ I, which gives that b ∈ F (G). This contradiction proves the lemma. □

3. THERMODYNAMIC FORMALISM FOR EXPANDING RATIONAL SEMIGROUPS

In this section we collect some of the main results from the thermodynamic formalism in the context of
expanding rational semigroups. It was shown in [Sum05] that the skew product of a finitely generated
expanding rational semigroup is an open distance expanding map. We refer to [PU10] or the classical
references [Bow75, Rue78, Wal82] for general results on thermodynamic formalism for expanding maps.

3.1. Conformal measure and equilibrium states. We first give the definition of conformal measures
which are useful to investigate geometric properties of the Julia set of a rational semigroup. A general
notion of conformal measure was introduced in [DU91]. For results on conformal measures in the context
of expanding rational semigroups we refer to [Sum98, Sum05].
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Definition 3.1. Let f = ( fi)i∈I ∈ (Rat)I and let φ̃ : J
(

f̃
)
→ R be Borel measurable. A Borel probability

measure ν̃ on J
(

f̃
)

is called φ̃-conformal (for f̃ ) if, for each Borel set A ⊂ J
(

f̃
)

such that f̃
∣∣
A is injective,

we have
ν̃
(

f̃ (A)
)
=

∫
A

e−φ̃ dν̃ .

Next we give the fundamental definitions of topological pressure and equilibrium states.

Definition 3.2. Let f = ( fi)i∈I ∈ (Rat)I and let φ̃ : J
(

f̃
)
→ R be continuous. The topological pressure

P
(
φ̃, f̃

)
of φ̃ with respect to f̃ : J( f̃ )→ J( f̃ ) is given by

P
(
φ̃, f̃

)
:= sup

{
h(m̃)+

∫
φ̃dm̃ : m̃ ∈ Me

(
f̃
)}

,

where Me
(

f̃
)

denotes the set of all f̃ -invariant ergodic Borel probability measures on J
(

f̃
)

and h(m̃) refers
to the measure-theoretic entropy of

(
f̃ , m̃

)
. An ergodic f̃ -invariant Borel probability measure µ̃ on J

(
f̃
)

is
called an equilibrium state for φ̃ if

P
(
φ̃, f̃

)
= h(µ̃)+

∫
φ̃dµ̃ .

The following lemma guarantees existence and uniqueness of conformal measures and equilibrium states
for Hölder continuous potentials. The lemma can be proved similarly as in [Sum05, Lemma 3.6 and 3.10].
For the uniqueness of the equilibrium state, see e.g. [PU10].

For ω,κ ∈ IN, we set d0 (ω,τ) := 2−|ω∧κ|, where ω ∧ κ denotes the longest common initial block of
ω and κ . The Julia set J

(
f̃
)

is equipped with the metric d̃ which is for (ω,x) ,(κ,y) ∈ J
(

f̃
)

given
by d̃ ((ω,x) ,(κ,y)) := d0 (ω,κ) + d (x,y), where d denotes the spherical distance on Ĉ. We say that
φ̃ : J

(
f̃
)
→ R is Hölder continuous if there exists θ > 0 such that

sup

{
d (φ̃ (ω ,x) , φ̃ (κ,y))

d̃ ((ω,x) ,(κ,y))θ : (ω,x) ,(κ,y) ∈ J
(

f̃
)
,(ω,x) ̸= (κ,y)

}
< ∞.

Lemma 3.3. Let f =( fi)i∈I ∈ (Rat)I be expanding. Let φ̃ : J
(

f̃
)
→R be Hölder continuous with P

(
φ̃, f̃

)
=

0. Then we have the following.

(1) There exists a unique φ̃-conformal measure ν̃ on J
(

f̃
)
.

(2) There exists a unique continuous function h̃ : J
(

f̃
)
→ R+ such that the probability measure µ̃ :=

h̃dν̃ is f̃ -invariant. Moreover, we have that µ̃ is exact (hence ergodic) and µ̃ is the unique equilib-

rium state for φ̃ .

We also consider subconformal measures on J (G).

Definition 3.4. Let f = ( fi)i∈I ∈ (Rat)I and let G = ⟨ fi : i ∈ I⟩. Let φ =
(
φi : f−1

i (J (G))→ R
)

i∈I be a
family of measurable functions. A Borel probability measure ν on J (G) is called φ-subconformal (for f )
if, for each i ∈ I and for each Borel set B ⊂ f−1

i (J (G)),

ν ( fi (B))≤
∫

B
e−φi dν .

Next lemma shows that the support of a subconformal measure is equal to the Julia set.

Lemma 3.5. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Let ν denote a φ-subconformal

measure of a measurable family φ =
(
φi : f−1

i (J (G))→ R
)

i∈I . Then we have supp(ν) = J (G).
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Proof. We consider two cases. If card(J (G))≥ 3 then E (G)⊂F (G) by Lemma 2.9. Then supp(ν)= J (G)

can be proved similarly as in [Sum98, Proposition 4.3]. Finally, if 1 ≤ card(J (G)) ≤ 2, then we have
card(J (G)) = 1 by Lemma 2.10, which immediately gives that supp(ν) = J (G). The proof is complete.

□

For a Borel measure m̃ on J
(

f̃
)

we denote by
(
πĈ

)
∗ (m̃) the pushforward measure, which is for each Borel

set B ⊂ J (G) given by
(
πĈ

)
∗ (m̃)(B) := m̃

(
π−1
Ĉ

(B)
)
. Next lemma is a straightforward generalisation of

[Sum05, Lemma 3.11].

Lemma 3.6. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Let φ = (φi)i∈I be a Hölder

family. Suppose that P
(
φ̃, f̃

)
= 0 and let ν̃ denote the unique φ̃-conformal measure. Then the probability

measure ν :=
(
πĈ

)
∗ (ν̃) is a φ-subconformal measure with supp(ν) = J(G).

3.2. The free energy function. Let us now introduce the free energy function and an important family of
associated measures (see [Rue78] and [Bow75, PW97, Pes97]).

Definition 3.7. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Let ψ = (ψi)i∈I be a Hölder
family associated with f . The free energy function for ( f ,ψ) is the unique function t : R → R such that
P

(
βψ̃ + t (β ) ζ̃ , f̃

)
= 0, for each β ∈ R. For each β ∈ R, we denote by ν̃β the unique βψ̃ + t (β ) ζ̃ -

conformal measure for f̃ , and we denote by µ̃β the unique equilibrium state for βψ̃ + t (β ) ζ̃ . Moreover,
we denote by νβ the pushforward measure

(
πĈ

)
∗
(
ν̃β

)
supported on J (G). We also set

α0 (ψ) :=
∫

ψ̃dµ̃0∫
ζ̃ dµ̃0

.

Remark 3.8. Using that f is expanding, one immediately verifies that, for each β ∈R, there exists a unique
t (β ) such that P

(
βψ̃ + t (β ) ζ̃ , f̃

)
= 0. In particular, we have that t (0) is the unique real number δ such

that P
(

δ ζ̃ , f̃
)
= 0, which is also called the critical exponent of f ([Sum05]). Since we always assume

that f is non-exceptional, we have that t (0) = δ > 0.

The following two propositions go back to work of Ruelle ([Rue78]) for shift spaces. Since the skew
product map f̃ is an open distance expanding map ([Sum05]), we see that

(
J
(

f̃
)
, f̃
)

is semi-conjugate to
a shift space by choosing a Markov partition. Moreover, by [Sum00, Proposition 3.2 (f)] and Lemma 2.9,
f̃ : J( f̃ )→ J( f̃ ) is topologically exact. Then it is standard to derive the following two propositions. (See
also [PW97, Pes97], where these results of Ruelle are applied to a similar kind of multifractal analysis for
conformal repellers.)

Proposition 3.9. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated with

f . The free energy function t : R→ R for ( f ,ψ) is convex and real analytic and its first derivative is given

by

t ′ (β ) =−
∫

ψ̃dµ̃β∫
ζ̃ dµ̃β

, for each β ∈ R.

The following proposition gives a criterion for strict convexity of the free energy function. For the readers,
we give a proof.

Proposition 3.10. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated

with f and let t : R→ R denote the free energy function for ( f ,ψ). Suppose that there exists γ ∈ R such

that P
(
γψ̃, f̃

)
= 0. Then, the following (1)-(4) are equivalent:

(1) There exists β0 ∈ R such that t ′′(β0) = 0.
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(2) t ′ is constant on R. In this case, we have t(β ) = δ −βδ/γ .

(3) µ̃0 = µ̃γ .

(4) There exists a continuous function v : J( f̃ )→ R such that δ ζ̃ = γψ̃ + v− v◦ f̃ .

In particular, t ′′ > 0 on R if and only if µ̃0 ̸= µ̃γ .

Moreover, if there exists β ∈ R such that t ′′(β ) ̸= 0, then t ′′ > 0 on R and t is strictly convex on R.

Proof. (J( f̃ ), f̃ ) is an open distance expanding map and it is topologically exact. Fix a Markov partition
{R1, . . . ,Rd} as in [PU10, p118]. Let A be a d×d matrix with ai j = 0 or 1 according to f̃ (Int(Ri))∩ Int(R j)

is empty or not. By [PU10, Theorem 4.5.7], there exists a surjective Hölder continuous map π : Σ → J( f̃ )

(which is almost bijective), such that f̃ ◦π = π ◦σ , where σ : Σ → Σ is the subshift of finite type constructed
by A. By [PU10, Theorem 4.5.8], every Hölder continuous function φ̃ on J( f̃ ) defines a Hölder continuous
function φ̃ ◦π on Σ, and we have P(φ̃ , f̃ ) = P(φ̃ ◦π,σ). Hence, the free energy function t : R→R is given
by P(βψ̃ ◦π + t(β )ζ̃ ◦π,σ) = 0.

We first show that (1) implies (2) and (3). Suppose that there exists β0 ∈ R such that t ′′(β0) = 0. Then it
is well-known (see e.g. [MU03, p129] where the geometric potential is given by −ζ in our notation) that
there exists a Hölder continuous function u : Σ → R such that t ′(β0)ζ̃ ◦π + ψ̃ ◦π = u− u ◦σ . It follows
that P((−β t ′(β0)+ t(β ))ζ̃ ◦ π,σ) = 0. Hence, −β t ′(β0)+ t(β ) = t(0) = δ . Thus, t(β ) = δ + β t ′(β0).

Therefore t ′(β ) = t ′(β0) for all β ∈ R. To determine t ′(β0), note that by the assumption there exists a
unique γ ∈ R such that P(γψ̃ ◦ π,σ) = 0. Hence, t(γ) = 0. It follows that t ′(β0) = −δ/γ. We have thus
shown that t(β ) = δ − βδ/γ and that δ ζ̃ ◦ π is cohomologous to γψ̃ ◦ π. Hence, ρδ ζ̃◦π = ργψ̃◦π , where

ρδ ζ̃◦π and ργψ̃◦π are the unique equilibrium states of δ ζ̃ ◦ π and ψ̃ ◦ π , respectively. Since π defines an
isomorphism of the probability spaces (Σ,ρδ ζ̃◦π) and (J( f̃ ),ρδ ζ̃◦π ◦π−1) by [PU10, Theorem 4.5.9], we

have that ρδ ζ̃◦π ◦π−1 is the equilibrium state for δ ζ̃ . Similarly, ργψ̃◦π ◦π−1 is the equilibrium state for γψ̃.

Also, ρδ ζ̃◦π ◦π−1 = ργψ̃◦π ◦π−1. Since the equilibrium states of Hölder continuous potentials on J( f̃ ) are

unique ([PU10, Theorem 5.6.2]) and the probability measures µ̃0 and µ̃γ are equilibrium states for δ ζ̃ and
γζ̃ respectively, we conclude that ρδ ζ̃◦π ◦π−1 = µ̃0 and ργψ̃◦π ◦π−1 = µ̃γ . Thus it follows that µ̃0 = µ̃γ .

Hence, we have shown that (1) implies (2) and (3).

We now suppose (3). To prove (4) we proceed similarly as in the proof of [SU12, Theorem 3.1]. We
consider the Perron-Frobenius operators

L0 : C
(
J
(

f̃
))

→C
(
J
(

f̃
))

and Lγ : C
(
J
(

f̃
))

→C
(
J
(

f̃
))

,

which are for h̃ ∈C
(
J
(

f̃
))

and (ω,z) ∈ J
(

f̃
)

given by

L0
(
h̃
)
(ω ,z) := ∑

(iω,y)∈ f̃−1(ω,z)

∥ f̃ ′i (y)∥−δ h̃(iω,y) and Lγ
(
h̃
)
(ω,z) := ∑

(iω,y)∈ f̃−1(ω,z)

eγψi(y)h̃(iω,y) .

We denote by L ∗
0 and L ∗

γ the dual operators acting on the space
(
C
(
J
(

f̃
)))∗ of bounded linear functionals

on C
(
J
(

f̃
))

. Then it follows from [Sum05] that there exist unique continuous positive functions h̃0, h̃γ :
J
(

f̃
)
→ R+ such that L0

(
h̃0
)
= h̃0 and Lγ

(
h̃γ
)
= h̃γ , and unique Borel probability measures ν̃0, ν̃γ on

J
(

f̃
)

such that L ∗
0 (ν̃0) = ν̃0 and L ∗

γ
(
ν̃γ
)
= ν̃γ . Then ν̃0 is δ ζ̃ -conformal and ν̃γ is γψ̃-conformal (see

Definition 3.1 and [DU91]). Moreover, we have that the unique equilibrium states µ̃0, µ̃γ are given by
µ̃0 = h̃0dν̃0 and µ̃γ = h̃γ dν̃γ (see also Lemma 3.3). Since µ̃0 = µ̃γ , we have that h̃0dν̃0 = h̃γ dν̃γ . Using
this equality and conformality of ν̃0 and ν̃γ , we obtain that, for each Borel set A ⊂ J

(
f̃
)

such that f̃|A is
injective,

µ̃0
(

f̃ (A)
)
=

∫
f̃ (A)

h̃γ dν̃γ =
∫

A
e−γψ̃ (

h̃γ ◦ f̃
)

dν̃γ =
∫

A
e−γψ̃ (

h̃γ ◦ f̃
) h̃0

h̃γ
dν̃0
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and
µ̃0

(
f̃ (A)

)
=
(
h̃0dν̃0

)(
f̃ (A)

)
=

∫
A
∥ f̃ ′∥δ (h̃0 ◦ f̃

)
dν̃0.

We deduce that (
h̃0 ◦ f̃

)
· ∥ f̃ ′∥δ = e−γψ̃ h̃γ ◦ f̃

h̃γ
h̃0.

By taking logarithm, we have thus shown that

(3.1) −δ ζ̃ =−γψ̃ + log h̃γ ◦ f̃ − log h̃γ + log h̃0 − log h̃0 ◦ f̃ ,

which proves (4).

We now suppose (4). Then P((β + t(β )γ/δ )ψ̃, f̃ ) = 0. It follows that t(β ) = δ −βδ/γ. Thus, t ′ is constant
on R, which proves (1) and thus finishes the proof of the proposition. □

Recall that, for a convex function a : R→ R, its convex conjugate a∗ : R→ R∪{∞} is given by a∗ (c) :=
supβ∈R {βc−a(β )} for each c ∈ R. We make use of the following facts about the convex conjugate. We
refer to [Roc70, Theorem 23.5, 26.5] for the proofs and further details.

Lemma 3.11. Let a : R→R be convex and differentiable and let a∗ : R→R∪{∞} be the convex conjugate

of a.

(1) For each β ∈ R we have that a∗ (a′ (β )) = a′ (β )β −a(β ).
(2) If α /∈ a′ (R) then a∗ (α) = ∞.

(3) Suppose that a is twice differentiable and a′′ > 0 on R. Then a′ (R) is an open subset of R, a′ :
R → a′ (R) is invertible, a∗ is twice differentiable on a′ (R), (a∗)′′ > 0 on a′ (R), and we have

(a∗)′ (a′ (β )) = β for each β ∈ R. If moreover a is real analytic, then a∗ is real analytic on a′ (R).

The proofs of the following two lemmata are standard (see e.g. [PW97, Pes97]). To make this article
more self-contained, we include the proofs. In the next lemma we deduce analytic properties of the convex
conjugate of the free energy function.

Lemma 3.12. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let δ > 0 denote the critical exponent of f . Let

ψ = (ψi)i∈I be a Hölder family associated with f and let t : R → R denote the free energy function for

( f ,ψ). Suppose that there exists γ ∈R such that P
(
γψ̃, f̃

)
= 0. Let β ∈R and α =−t ′ (β ). Then we have

−t∗ (−α) = βα + t (β ) =−
h
(
µ̃β

)∫
ζ̃ dµ̃β

> 0.

If µ̃0 = µ̃γ then we have −t∗ (−α0(ψ)) = δ and −t∗ (−α) = −∞ for each α ̸= α0(ψ). If µ̃0 ̸= µ̃γ

then s(α) := −t∗ (−α) is a strictly concave real analytic function on −t ′ (R) with maximum value δ =

−t∗ (−α0(ψ))> 0, and s′′ < 0 on −t ′ (R).

Proof. That −t∗ (−α) = βα + t (β ) follows from Lemma 3.11 (1). Since µ̃β is the equilibrium state for
βψ̃ + t (β ) ζ̃ and P

(
βψ̃ + t (β ) ζ̃ , f̃

)
= 0, we have −h

(
µ̃β

)
=

∫
βψ̃ + t (β ) ζ̃ dµ̃β . Combining with Pro-

position 3.9, we obtain −t∗ (−α) = βα + t (β ) =−h
(
µ̃β

)/∫
ζ̃ dµ̃β .

To prove that −h
(
µ̃β

)/∫
ζ̃ dµ̃β > 0 first observe that −h

(
µ̃β

)/∫
ζ̃ dµ̃β ≥ 0. Now suppose for a contra-

diction that there exists β0 ∈ R such that −h
(
µ̃β0

)/∫
ζ̃ dµ̃β0 =−t∗ (t ′ (β0)) = 0. We distinguish two cases

according to Proposition 3.10. First suppose that t ′ is constant on R. Then we have 0 = −t∗ (t ′ (β0)) =

−t∗ (t ′ (0)) = t (0) by Lemma 3.11 (1). This gives the desired contradiction, because f is non-exceptional
giving that t (0) = δ > 0. For the remaining case, we may assume that t ′′ > 0 on R. Since −t∗ (c) ≥ 0 for
all c in the open neighbourhood t ′ (R) of t ′ (β0) and −t∗ (t ′ (β0)) = 0, we conclude that the derivative of t∗
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vanishes in t ′ (β0). By Lemma 3.11 (3), it follows that zero is a local maximum of −t∗ in a neighbourhood
of t ′ (β0), which implies that −t∗ is constant in a neighbourhood of t ′ (β0). However, by Lemma 3.11 (3),
we have that (t∗)′′ > 0 on t ′ (R) which is a contradiction. We have thus shown that −h

(
µ̃β

)/∫
ζ̃ dµ̃β > 0

for all β ∈ R.

To verify the remaining assertions, first suppose that µ̃0 = µ̃γ . By Proposition 3.9 and 3.10 we then have
that t ′ (β ) = t ′ (0) =−α0(ψ) for all β ∈ R. By Lemma 3.11 (1) and (2) we conclude that −t∗ (−α0(ψ)) =

−t∗ (t ′ (0)) = t (0) = δ and −t∗ (−α) = −∞ if α ̸= α0(ψ). Now suppose that µ̃0 ̸= µ̃γ . By Proposition
3.9 and 3.10, we have that t is strictly convex and real analytic. By Lemma 3.11 (3) we have that −t∗ is a
strictly concave and real analytic function on −t ′ (R). Also, s′′ < 0 on t ′(R). Moreover, Lemma 3.11 (3)
implies that the derivative of t∗ vanishes in t ′ (0) = −α0(ψ), which shows that −t∗ attains a maximum in
−α0(ψ) with −t∗ (−α0(ψ)) = δ . □

For the support of the measures ν̃β and νβ we prove the following lemma. Recall that F (α ,ψ) is the
continuous image of the Borel set F̃ (α,ψ). In particular, F (α ,ψ) is a Suslin set and thus νβ -measurable.
We refer to [Fed69, p65-70] for details on Suslin sets.

Lemma 3.13. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated with f

and let t : R→ R denote the free energy function for ( f ,ψ). For each β ∈ R, we have that

ν̃β
(
F̃

(
−t ′ (β ) ,ψ

))
= νβ

(
F

(
−t ′ (β ) ,ψ

))
= 1.

In particular, for each α ∈ −t ′ (R), we have that F (α,ψ) is non-empty.

Proof. Let β ∈ R. Since µ̃β is ergodic by Lemma 3.3, we have by Birkhoff’s ergodic theorem that for
µ̃β -almost every x ∈ J

(
f̃
)
,

lim
n→∞

Snψ̃ (x)

Snζ̃ (x)
=

∫
ψ̃dµ̃β∫
ζ̃ dµ̃β

.

Since
∫

ψ̃dµ̃β
/∫

ζ̃ dµ̃β =−t ′ (β ) by Proposition 3.9 and µ̃β and ν̃β are equivalent by Lemma 3.3, we have
that ν̃β

(
F̃ (−t ′ (β ) ,ψ)

)
= 1. Consequently, we have that νβ (F (−t ′ (β ) ,ψ)) = 1. □

Remark 3.14. Under the assumptions of Lemma 3.13 there exists a Borel measurable subset A⊂F (−t ′ (β ) ,ψ)

such that νβ (A) = 1.

Proof. Since the Borel measure ν̃β is regular, there exists a family of compact subsets (Kn)n∈N, Kn ⊂
F̃ (−t ′ (β ) ,ψ), such that ν̃β

(
F̃ (−t ′ (β ) ,ψ)\

∪
n∈N Kn

)
= 0. Hence, for the Borel set

∪
n∈N πĈ (Kn) ⊂

F (−t ′ (β ) ,ψ), we have that νβ
(∪

n∈N πĈ (Kn)
)
= 1. □

4. MULTIFRACTAL FORMALISM

To establish the multifractal formalism for expanding multi-maps, we investigate the local dimension of the
measures νβ for β ∈ R (see Definition 3.7). To state the next lemma, we have to make a further definition.
Recall that α0 (ψ) :=

∫
ψ̃dµ̃0

/∫
ζ̃ dµ̃0 for a Hölder family ψ .

Definition 4.1. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated with
f . For α ∈ R we define

F̃ ♯ (α ,ψ) :=


{

x ∈ J
(

f̃
)

: limsupn→∞ Snψ̃ (x)
/

Snζ̃ (x)≥ α
}
, for α ≥ α0 (ψ) ,{

x ∈ J
(

f̃
)

: liminfn→∞ Snψ̃ (x)
/

Snζ̃ (x)≤ α
}
, for α < α0 (ψ) .

Moreover, we set F ♯ (α ,ψ) := πĈ
(
F̃ ♯ (α ,ψ)

)
.
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The proof of the following lemma mimics the proof of [Sum98, Theorem 3.4], where ν0 is considered. To
state the lemma, let B(z,r) denote the spherical ball of radius r centred at z ∈ Ĉ. Recall from Lemma 3.5
that νβ (B(z,r))> 0 for each z ∈ J (G) and r > 0. Thus, we have that logνβ (B(z,r)) is a well-defined real
number.

Lemma 4.2. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Let ψ = (ψi)i∈I be a Hölder

family associated with f and let t : R → R denote the free energy function for ( f ,ψ). Let α ,β ∈ R such

that, either (1) α ≥ α0 (ψ) and β ≤ 0, or (2) α ≤ α0 (ψ) and β ≥ 0. For each z ∈ F ♯ (α ,ψ) we then have

that

0 ≤ liminf
r→0

logνβ (B(z,r))
logr

≤ t (β )+βα .

Proof. We only consider the case that α ≥ α0 (ψ) and β ≤ 0. The remaining case can be proved in a similar
fashion. Let z ∈ F ♯ (α,ψ). There exists ω ∈ IN such that (ω,z) ∈ F̃ ♯ (α ,ψ). Since α ≥ α0 (ψ) we have

(4.1) limsup
n→∞

Snψ̃ ((ω,z))

Snζ̃ ((ω ,z))
≥ α .

Since (ω,z) ∈ J
(

f̃
)

we have z ∈ Jω by Lemma 2.6. We set zn := fω|n (z) for each n ∈ N. By Proposition
2.1 we have zn ∈ J (G). Since f is expanding, we have that G is hyperbolic and there exists a G-forward
invariant non-empty compact subset of F (G) by Proposition 2.8 (1). Hence, there exists R > 0 such that,
for each n ∈ N, there exists a holomorphic branch ϕn : B(zn,R)→ Ĉ of f−1

ω|n
such that fω|n ◦ϕn = id

∣∣
B(zn,R)

and ϕ
(

fω|n (z)
)
= z. By Koebe’s distortion theorem, there exist constants c1 > 0 and c2 > 1 such that for

each n ∈ N,

(4.2) ϕn
(
B
(
zn,c−1

2 R
))

⊂ B
(
z,c−1

1 R
∥∥ϕ ′

n (zn)
∥∥) .

Using that νβ is βψ + t (β )ζ -subconformal by Lemma 3.6 and the set inclusion in (4.2), we obtain that for
each n ∈ N,

νβ

(
fω|n

(
ϕn

(
B
(
zn,c−1

2 R
))))

≤
∫

ϕn(B(zn,c−1
2 R))

e−Sn(βψ̃+t(β )ζ̃)(ω,·)dνβ

≤ νβ
(
B
(
z,c−1

1 R
∥∥ϕ ′

n (zn)
∥∥)) max

y∈ϕn(B(zn,c−1
2 R))

e−Sn(βψ̃+t(β )ζ̃)(ω,y).

Since supp
(
νβ

)
= J (G) by Lemma 3.5 and by the compactness of J (G), there exists a constant M > 0

such that νβ
(

fω|n

(
ϕn

(
B
(
zn,c−1

2 R
))))

> M for all n ∈ N. Using that f is expanding and that βψ̃ + t (β ) ζ̃
is Hölder continuous, one verifies that there exists a constant C > 1 such that, for all n ∈ N and for all
x ∈ ϕn

(
B
(
zn,c−1

2 R
))

, ∣∣∣Sn

(
βψ̃ + t (β ) ζ̃

)
(ω,x)−Sn

(
βψ̃ + t (β ) ζ̃

)
(ω,z)

∣∣∣≤ logC.

From β ≤ 0 and (4.1) it follows that there exists a sequence (n j) ∈ NN tending to infinity, such that, for
each ε > 0, we have for all j sufficiently large,

max
x∈ϕn j

(
B
(

zn j ,c
−1
2 R

))e−Sn j(βψ̃+t(β )ζ̃)(ω,x) ≤Ce−Sn j ζ̃ (ω,z)(βα+t(β )−βε)
=C

∥∥∥ϕ ′
n j

(
zn j

)∥∥∥−(βα+t(β )−βε)
.

We have thus shown that 0 < M ≤ Cνβ

(
B
(

z,c−1
1 R

∥∥∥ϕ ′
n j

(
zn j

)∥∥∥))∥∥∥ϕ ′
n j

(
zn j

)∥∥∥−(βα+t(β )−βε)
for all j suffi-

ciently large. Set r j := c−1
1 R

∥∥∥ϕ ′
n j

(
zn j

)∥∥∥. Clearly, we have that lim j r j = 0. Hence, we have

0 ≤ liminf
r→0

logνβ (B(z,r))
logr

≤ βα + t (β )−βε .
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Since ε was arbitrary, the proof is complete. □

Lemma 4.3. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated with f

and let t : R→ R denote the free energy function for ( f ,ψ). Then we have the following.

(1) For each α ∈ R we have

−t∗ (−α) =

infβ≤0 {t (β )+βα} , for α ≥ α0 (ψ) ,

infβ≥0 {t (β )+βα} , for α ≤ α0 (ψ) .

(2) Let α ∈R. If −t∗ (−α)< 0 then F (α,ψ)=F ♯ (α,ψ)=∅. In particular, we have that F (α,ψ)=

F ♯ (α,ψ) =∅, if α /∈ −t ′ (R).

Proof. To prove (1), first recall that α0 (ψ)=−t ′ (0) by Proposition 3.9. Hence, we have that −t∗ (−α0 (ψ))=

−t∗ (t ′ (0)) = t (0) by Lemma 3.11 (1). Now we only consider the case that α ≥ α0 (ψ). The remaining case
can be proved similarly. If β > 0 then we have that t (β )+βα ≥ t (β )+βα0 (ψ)≥−t∗ (−α0 (ψ)) = t (0).
Hence, we have −t∗ (−α) = infβ≤0 {t (β )+βα}.

For the proof of (2), suppose for a contradiction that there exists α ∈ R and z ∈ F ♯ (α ,ψ) such that
−t∗ (−α) < 0. Again, we only consider the case that α ≥ α0 (ψ). By (1) there exists β ≤ 0 such
that t (β ) + βα < 0. This contradicts Lemma 4.2 and thus proves the first assertion in (2). Finally, if
α /∈ −t ′ (R) then we have −t∗ (−α) = −∞ by Lemma 3.11 (2). Hence, we have F ♯ (α ,ψ) = ∅. Since
F (α ,ψ)⊂ F ♯ (α,ψ), the proof is complete. □

For an expanding multi-map which satisfies the open set condition, we prove the following lower bound
for the Hausdorff dimension of νβ by using estimates from [Sum05, Section 5]. Related results and similar
arguments can be found in [PW97, Lemma 2] for conformal repellers, and in [MU03, Theorem 4.4.2] for
graph directed Markov systems. Recall that, for a Borel probability measure ν on J (G), the Hausdorff
dimension of ν (cf. [Fal03]) is given by

dimH (ν) := inf{dimH (A) : A ⊂ J (G) is a Borel set with ν (A) = 1} .

Proposition 4.4. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Suppose that f satisfies the

open set condition. Let ψ = (ψi)i∈I be a Hölder family associated with f and let t : R→ R denote the free

energy function for ( f ,ψ). For each β ∈ R we have that

dimH
(
νβ

)
≥−t∗

(
t ′ (β )

)
.

In particular, we have dimH (F (α,ψ))≥−t∗ (−α) for each α ∈ −t ′ (R).

Proof. We use some estimates and notations from [Sum05, Section 5]. Suppose that f satisfies the open set
condition with open set U ⊂ Ĉ. We may assume that there exists ε > 0 such that B(U ,2ε)∩P(G) =∅. Let
U =

∪k
j=1 K j be a measurable partition such that Int(K j) ̸=∅ and diam(K j)≤ ε/10 for each j ∈ {1, . . . ,k}.

Let β ∈ R and α = −t ′(β ). Our main task is to prove that there exists a constant C > 0 with the property
that, for each ∆ > 0 there exist r0 (∆)> 0 and a Borel set Ẽ (α,∆)⊂ J

(
f̃
)

with ṽβ
(
Ẽ (α ,∆)

)
> 0, such that

for all r ≤ r0 (∆) and z ∈ J(G) we have

(4.3) ṽβ

(
π−1
Ĉ

(B(z,r))∩ Ẽ (α,∆)
)
≤Crt(β )+βα−∆.
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For the Borel probability measure νβ ,∆ on J (G), given by νβ ,∆ (A) := ṽβ

(
π−1
Ĉ

(A)∩ Ẽ (α,∆)
)
/ν̃β

(
Ẽ (α,∆)

)
,

for A ⊂ J (G), we then have for each z ∈ J (G),

liminf
r→0

logνβ ,∆ (B(z,r))
logr

= liminf
r→0

log ṽβ

(
π−1
Ĉ

(B(z,r))∩ Ẽ (α,∆)
)

logr
≥ t (β )+βα −∆.

Hence, we have dimH
(
νβ ,∆

)
≥ t (β )+βα−∆ by [You82], which gives dimH

(
νβ

)
≥ dimH

(
νβ ,∆

)
≥ t (β )+

βα −∆. Letting ∆ tend to zero, gives that dimH
(
νβ

)
≥ t (β )+βα . Finally, since there exists a Borel subset

A of J (G) with A⊂F (α,ψ) and νβ (A)= 1 by Lemma 3.13 and Remark 3.14, we have dimH (F (α,ψ))≥
dimH

(
νβ

)
≥ t (β )+βα , which finishes the proof.

To prove (4.3), let z ∈ J(G) and let ∆ > 0. By Lemma 3.13 we have ν̃β
(
F̃ (α,ψ)

)
= 1. By Egoroff’s

Theorem, there exist a Borel set Ẽ (α,∆)⊂ F̃ (α ,ψ) with ν̃β
(
Ẽ (α ,∆)

)
> 0 and N (∆) ∈ N such that

(4.4) inf
y∈Ẽ(α,∆)

β
Snψ̃ (y)

Snζ̃ (y)
≥ βα −∆, for all n ≥ N (∆) .

With the notation from [Sum05, Lemma 5.15], we have for each r > 0,

(4.5) π−1
Ĉ

(B(z,r))∩ J
(

f̃
)
⊂

p∪
i=1

η i
(

π−1
Ĉ

(B(Kvi ,ε/5))∩ J
(

f̃
))

,

where p ∈ N, 1 ≤ vi ≤ k and η i (κ,y) =
(
ω iκ,γ i

1 . . .γ
i
li
(y)

)
, κ ∈ IN, y ∈ B(Kvi ,ε/5), for each 1 ≤ i ≤ p.

Here, we have ω i ∈ Ili , li ∈ N and γ i
1 . . .γ

i
li

is an inverse branch of fω i in a neighborhood of B(Kvi ,ε/5) and
γ i

j is an inverse branch of fω i
j
, for every 1 ≤ i ≤ p. It is important to note that p ≤C4, for some constant C4

independent of r and z by [Sum05, (12)]. Moreover, by [Sum05, (13)], we have that

(4.6)
∥∥(γ i

1 ◦ · · · ◦ γ i
li)

′ (y)
∥∥≤C5r, y ∈ B(Kvi ,ε/5),

with some constant C5 independent of r and y. In particular, we have that li tends to infinity as r tends to
zero. Hence, there exists r0 (∆)> 0 such that, for each z and r ≤ r0 (∆), we have li ≥ N (∆) for 1 ≤ i ≤ p in
(4.5). Then we obtain by (4.5) and βψ̃ + t (β ) ζ̃ -conformality of ṽβ that

ṽβ

(
π−1
Ĉ

(B(z,r))∩ Ẽ (α,∆)
)
≤

p

∑
i=1

ṽβ

(
η i

(
π−1
Ĉ

(B(Kvi ,ε/5))
)
∩ Ẽ (α ,∆)

)
=

p

∑
i=1

∫
π−1
Ĉ (B(Kvi ,ε/5))

eSli(βψ̃+t(β )ζ̃)(η i)1Ẽ(α,∆)
(
η i)dν̃β .(4.7)

The estimate in (4.4) gives that

(4.8) 1Ẽ(α,∆)Sli

(
t (β ) ζ̃ +βψ̃

)
= 1Ẽ(α,∆)Sli ζ̃

(
t(β )+βSli ψ̃

/
Sli ζ̃

)
≤ 1Ẽ(α,∆)Sli ζ̃ (t(β )+βα −∆) .

Combining the estimates in (4.6), (4.7) and (4.8), we obtain

ṽβ

(
π−1
Ĉ

(B(z,r))∩ Ẽ (α,∆)
)
≤C4(C5r)t(β )+βα−∆,

which completes the proof. □

We can now state the main result of this section, which establishes the multifractal formalism for Hölder
families associated with expanding rational semigroups.

Theorem 4.5. Let f = ( fi)i∈I ∈ (Rat)I be expanding. Let ψ = (ψi)i∈I be a Hölder family associated with

f and let t : R → R denote the free energy function for ( f ,ψ). Suppose there exists γ ∈ R such that

P
(
γζ̃ , f̃

)
= 0. Let α± := α± (ψ) and α0 := α0 (ψ). Then we have the following.
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(1) If α− = α+ then we have that α− = α0 = α+, −t ′ (R) = {α0} and F (α,ψ) is non-empty if and

only if α = α0. If α− < α+ then we have that −t ′ (R) = (α−,α+), each F (α,ψ) is non-empty for

α ∈ (α−,α+), s(α) := −t∗ (−α) is a strictly concave real analytic positive function on (α−,α+)

with maximum value δ =−t∗ (−α0)> 0, and s′′ < 0 on (α−,α+).

(2) For each α ∈ R we have that

dimH (F (α,ψ))≤ dimH

(
F ♯ (α,ψ)

)
≤ max{−t∗ (−α) ,0} .

(3) If f satisfies the open set condition, then for each α ∈ −t ′ (R) we have that

dimH (F (α ,ψ)) = dimH

(
F ♯ (α,ψ)

)
=−t∗ (−α)> 0.

In particular, we have dimH (F (α0,ψ)) = δ > 0.

Proof. We start with the proof of (1). We distinguish two cases. First suppose that µ̃0 = µ̃γ . Then we have
that −t ′ (R)= {−t ′ (0)}= {α0} by Propositions 3.10 and 3.9. By Lemma 3.13 we have that F (α0,ψ) ̸=∅.
By Lemma 4.3 (2), we have that F (α,ψ)=∅ if α ̸=α0. Hence, we have that α− =α0 =α+. Now suppose
that µ̃0 ̸= µ̃γ . Then t ′′ > 0 on R by Proposition 3.10 and we have F (α,ψ) ̸=∅ for α ∈−t ′ (R) by Lemma
3.13. Combining with Lemma 4.3 (2), we obtain that −t ′ (R) = (α−,α+). That s(α) := −t∗ (−α) is a
strictly concave real analytic positive function on (α−,α+) with maximum value δ = −t∗ (−α0) > 0 and
s′′ < 0 on (α−,α+) follows from Lemma 3.12.

To prove (2), let α ∈ R and suppose that α ≥ α0. The case α < α0 can be proved similarly. Since the
upper bound in (2) clearly holds if F ♯ (α,ψ) = ∅ we may assume that F ♯ (α,ψ) ̸= ∅. Hence, we have
−t∗ (−α)≥ 0 by Lemma 4.3 (2). Let z ∈ F ♯ (α ,ψ). By Lemma 4.2 we have for each β ≤ 0,

(4.9) 0 ≤ liminf
r→0

logνβ (B(z,r))
logr

≤ t (β )+βα .

Since infβ≤0 {t (β )+βα}=−t∗ (−α) by Lemma 4.3 (1), it follows from (4.9) and [Fal03, Proposition 4.9
(b)] and its proof that we have dimH

(
F ♯ (α,ψ)

)
≤ −t∗ (−α). Since F (α,ψ) ⊂ F ♯ (α,ψ), the proof of

(2) is complete.

To prove (3), suppose that f satisfies the open set condition and let α = −t ′ (β ) for some β ∈ R. By
Proposition 4.4 we have dimH (F (α,ψ))≥−t∗ (−α). By Lemma 3.12 we have −t∗ (−α)> 0. Combining
these estimates with the upper bound in (2) completes the proof of the theorem. □

The next lemma shows that, for a Bernoulli family ψ , a trivial multifractal spectrum occurs in a very special
situation. For a compact metric space X , we denote by C (X) the space of all complex-valued continuous
functions endowed with the supremum norm.

Proposition 4.6. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Suppose that deg
(

fi0

)
≥ 2

for some i0 ∈ I. Let (ci)i∈I be a family of negative numbers and let ψ =
(
ψi : f−1

i (J (G))→ R
)

i∈I be given

by ψi (z) = ci for each i ∈ I and z ∈ f−1
i (J (G)). Let t : R→ R denote the free energy function for ( f ,ψ).

Let γ be the unique number such that P
(
γψ̃, f̃

)
= 0. Then we have α− (ψ) = α+ (ψ) if and only if there

exist an automorphism φ ∈ Aut
(
Ĉ
)
, complex numbers (ai)i∈I and λ ∈ R such that for all i ∈ I,

(4.10) φ ◦ fi ◦φ−1 (z) = aiz±deg( fi) and logdeg( fi) = λci.

Moreover, if the assertions in (4.10) hold, then we have λ =−(γ/δ ).
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Proof. First note that we have α− (ψ) = α+ (ψ) if and only if µ̃0 = µ̃γ by Theorem 4.5 (1) and Proposition
3.10. Now suppose that α− (ψ) = α+ (ψ). Then µ̃0 = µ̃γ . By Proposition 3.10 there exists a continuous
function v : J( f̃ )→ R such that δ ζ̃ = γψ̃ + v− v◦ f̃ .

For each n ∈N, ξ ∈ In and u ∈R, we denote by p(u,ξ ) the topological pressure of the potential u log∥ f ′ξ∥ :

Jξ →R with respect to fξ , where ξ := (ξ1, . . . ,ξn,ξ1, . . . ,ξn, . . .) ∈ IN. Note that Jξ = J
(

fξ
)
. Our next aim

is to show that the function u 7→ p(u,ξ ), u ∈ R, is constant. By [PU10, Theorem 5.6.5] we have that, for
each u ∈ R there exists an fξ -invariant Borel probability measure m on Jξ such that

(4.11)
∂

∂u
p(u,ξ ) =

∫
Jξ

log∥ f ′ξ∥dm.

Denote by m̃ the Borel probability measure supported on Jξ which is given by m̃
({

ξ
}
×A

)
:= m(A), for

each Borel set A ⊂ Jξ . Then m̃ is f̃ n
∣∣
Jξ -invariant. From this and (3.1) we deduce that

(4.12)
∂

∂u
p(u,ξ ) =−

∫
Jξ

Snζ̃ dm̃ =−(γ/δ )
∫

Jξ
Snψ̃dm̃ =−(γ/δ )

n

∑
i=1

cξi .

Hence, the function u 7→ p(u,ξ ), u ∈ R, is constant. Now, similarly as in [SU12, Proof of Theorem 3.1],
using Zdunik’s theorem ([Zdu90]), we obtain that there exist an automorphism φ ∈ Aut

(
Ĉ
)

and complex
numbers (ai)i∈I such that

φ ◦ fi ◦φ−1 (z) = aiz±deg( fi), z ∈ Ĉ.

Since deg
(

fi0

)
≥ 2 and f is expanding, it follows that deg( fi) ≥ 2 for all i ∈ I. Moreover, by combining

(4.11) and (4.12), we have that logdeg( fi) =−(γ/δ )ci for each i ∈ I.

To prove the converse implication, suppose that there exist an automorphism φ ∈Aut
(
Ĉ
)
, complex numbers

(ai)i∈I and λ ∈ R, such that φ ◦ fi ◦φ−1 (z) = aiz±deg( fi) and logdeg( fi) = λci, for each i ∈ I. It follows
that, for each n ∈ N, ξ ∈ In and z ∈ Jξ such that fξ (z) = z, we have that

log∥ f ′ξ (z)∥=
n

∑
i=1

logdeg
(

fξi

)
= λ

n

∑
i=1

cξi .

Hence, we have −Snζ̃
(
ξ ,z

)
= λSnψ̃

(
ξ ,z

)
. Since f̃ : J

(
f̃
)
→ J

(
f̃
)

is an open, distance expanding, topo-
logically transitive map (see e.g. Lemma 2.3 (d) for the transitivity), it follows from a Livsic type theorem
that there exists a continuous function h̃ : J

(
f̃
)
→ R such that −ζ̃ = λψ̃ + h̃− h̃ ◦ f̃ (see e.g. [PU10,

Proposition 4.4.5]). In particular, we have −δ ζ̃ = δλψ̃ + δ
(
h̃− h̃◦ f̃

)
, which shows that λ = −(γ/δ ).

Thus, the potentials δ ζ̃ and γψ̃ have the same equilibrium state, which means that µ̃0 = µ̃γ . The proof is
complete. □

5. APPLICATION TO RANDOM COMPLEX DYNAMICS

The first lemma relates the Hölder exponent of a function to Q∗ (see Definition 1.1).

Lemma 5.1. Let U ⊂ Ĉ be an open set and let ρ : U → C be a bounded function. Then we have for each
z ∈U ,

Höl(ρ,z) = Q∗ (ρ,z) .

Proof. Let β > Höl(ρ,z). Then we have limsupy→z,y ̸=z |ρ (y)−ρ (z)|
/

d (y,z)β = ∞, which implies that
limsupy→z,y̸=z log |ρ (y)−ρ (z)|−β logd (y,z) = ∞. Hence, we have that

limsup
y→z,y̸=z

(− logd (y,z))
(

log |ρ (y)−ρ (z)|
− logd (y,z)

+β
)
= ∞.
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Since limy→z,y̸=z (− logd (y,z)) = ∞, we conclude that limsupy→z,y ̸=z log |ρ (y)−ρ (z)|
/
(− logd (y,z)) +

β ≥ 0, which implies liminfy→z,y ̸=z log |ρ (y)−ρ (z)|
/

logd (y,z)≤ β . We have thus shown that Q∗ (ρ,z)≤
Höl(ρ,z).

Let β < Höl(ρ,z). Then we have limy→z,y ̸=z |ρ (y)−ρ (z)|
/

d (y,z)β = 0, which implies that
limy→z,y ̸=z log |ρ (y)−ρ (z)|−β logd (y,z) =−∞. Hence, we have that

lim
y→z,y ̸=z

(− logd (y,z))
(

log |ρ (y)−ρ (z)|
− logd (y,z)

+β
)
=−∞.

We conclude that limsupy→z,y̸=z log |ρ (y)−ρ (z)|
/
(− logd (y,z)) + β ≤ 0, which then implies that

liminfy→z,y ̸=z log |ρ (y)−ρ (z)|
/

logd (y,z) ≥ β . We have thus shown that Q∗ (ρ,z) ≥ Höl(ρ,z) and the
proof of the lemma is complete. □

The following lemma allows us to investigate the Hölder exponent of a non-constant unitary eigenfunction
of Mτ by means of ergodic sums with respect to the skew product associated with a rational semigroup.

Lemma 5.2. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Suppose that f satisfies the

separation condition. Let (pi)i∈I ∈ (0,1)I be a probability vector, let τ := ∑i∈I piδ fi and let ρ ∈C
(
Ĉ
)

be a

non-constant function belonging to Uτ . Let ψ =
(
ψi : f−1

i (J (G))→ R
)

i∈I be given by ψi (z) := log pi for

each i ∈ I. Then for each (ω,z) ∈ J
(

f̃
)

we have that

liminf
n→∞

Snψ̃ ((ω,z))

Snζ̃ ((ω ,z))
= Q∗ (ρ,z) and limsup

Snψ̃ ((ω,z))

Snζ̃ ((ω,z))
= Q∗ (ρ,z) .

Proof. We proceed similarly as in the proof of [Sum11, Lemma 5.48]. By [Sum11, Theorem 3.15 (10)]
we may assume that Mτ (ρ) = ρ . Since f satisfies the separation condition, we conclude that there exists
r0 > 0 such that, for all i, j ∈ I with i ̸= j and y ∈ f−1

i (J (G)), we have f j (B(y,r0))⊂ F (G).

Let (ω,z) ∈ J
(

f̃
)
. Since f is expanding, we have that G is hyperbolic and there exists a non-empty G-

forward invariant compact subset of F (G) by Proposition 2.8 (1). Hence, there exists R > 0 such that, for
each n ∈ N, there exists a holomorphic branch ϕn : B

(
fω|n (z) ,R

)
→ Ĉ of f−1

ω|n
such that fω|n (ϕn (y)) = y for

y ∈ B
(

fω|n (z) ,R
)

and ϕn
(

fω|n (z)
)
= z. After making r0 sufficiently small, we may assume that, for the sets

Bn, which are for n ∈ N given by
Bn := ϕn

(
B
(

fω|n (z) ,r0
))
,

we have that diam
(

fω|k (Bn)
)
≤ r0 for all 1 ≤ k ≤ n. Combining this with our assumption that Mτ (ρ) = ρ

and that ρ is constant on each connected component of F (G) by [Sum11, Theorem 3.15 (1)], we obtain
that for all a,b ∈ Bn,

(5.1) |ρ (a)−ρ (b)|= pω1 · · · · · pωn

∣∣∣ρ( fω|n (a)
)
−ρ

(
fω|n (b)

)∣∣∣ .
We set rn :=

∥∥ f ′ω|n
(z)

∥∥−1 for each n ∈ N. We may assume that (rn)n∈N is strictly decreasing because f is
expanding. Hence, for each r > 0 sufficiently small, there exists a unique n ∈ N such that rn+1 ≤ r ≤ rn.
To prove the lemma, our main task is to verify that there exists a constant C > 0, such that for all r > 0
sufficiently small,

(5.2) C−1 ≤ sup{|ρ (z)−ρ (y)| : y ∈ B(z,r)}
pω1 · · · · · pωn

≤C.

To prove (5.2), we first observe that by Koebe’s distortion theorem, there exist positive constants c1,c2 such
that for each n ∈ N,

B(z,c1rn)⊂ Bn ⊂ B(z,c2rn) .



20 JOHANNES JAERISCH AND HIROKI SUMI

Moreover, it is shown in [Sum11] that

J (G) =
{

y ∈ Ĉ : ∀ε > 0 : ρ|B(y,ε) is not constant
}
.

Since J (G) is compact, we see that there exists C1 > 0 such that for all y ∈ J (G),

(5.3) sup
{∣∣ρ (y)−ρ

(
y′
)∣∣ : y′ ∈ B(y,r0)

}
≥C1.

Further, there exists k ∈N such that c2rn+k ≤ rn+1 and rn ≤ c1rn−k, for all n sufficiently large. Consequently,
for each r > 0 we have

B(z,r)⊃ B(z,rn+1)⊃ B(z,c2rn+k)⊃ Bn+k and B(z,r)⊂ B(z,rn)⊂ B(z,c1rn−k)⊂ Bn−k.

Combining with (5.1) and (5.3) we obtain that

sup{|ρ (z)−ρ (y)| : y ∈ B(z,r)} ≥ sup{|ρ (z)−ρ (y)| : y ∈ Bn+k}

= sup
{

pω1 · · · · · pωn+k

∣∣∣ρ( fω|n+k (z)
)
−ρ

(
fω|n+k (y)

)∣∣∣ : y ∈ Bn+k

}
≥ pω1 · · · · · pωn+kC1.

Similarly, we have

sup{|ρ (z)−ρ (y)| : y ∈ B(z,r)} ≤ sup{|ρ (z)−ρ (y)| : y ∈ Bn−k}

= sup
{

pω1 · · · · · pωn−k

∣∣∣ρ( fω|n−k (z)
)
−ρ

(
fω|n−k (y)

)∣∣∣ : y ∈ Bn−k

}
≤ pω1 · · · · · pωn−k 2 max

v∈C(Ĉ)
|ρ (v)| .

We have thus proved (5.2).

By (5.2) and rn+1 ≤ r ≤ rn we obtain that for each r > 0,

Snψ̃ ((ω,z))+ logC

Sn+1ζ̃ ((ω,z))
≤ logsup{|ρ (z)−ρ (y)| : y ∈ B(z,r)}

logr
≤ Snψ̃ ((ω,z))− logC

Snζ̃ ((ω ,z))
.

The lemma follows by letting r tend to zero. □

We are now in the position to state the main result of this section.

Theorem 5.3. Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G = ⟨ fi : i ∈ I⟩. Suppose that f satisfies the

separation condition. Let (pi)i∈I ∈ (0,1)I be a probability vector, let τ := ∑i∈I piδ fi and suppose that there

exists a non-constant function belonging to Uτ . Let ρ ∈C(Ĉ) be a non-constant function belonging to Uτ .

Let ψ =
(
ψi : f−1

i (J (G))→ R
)

i∈I be given by ψi (z) := log pi and let t : R → R denote the free energy

function for ( f ,ψ). Let γ be the unique number such that P
(
γψ̃, f̃

)
= 0. Then we have the following.

(1) There exists a number a ∈ (0,1) such that ρ : Ĉ→ C is a-Hölder continuous and a ≤ α− (ψ).

(2) We have α+(ψ) = sup{α ∈ R : H (ρ,α) ̸=∅} and α−(ψ) = inf{α ∈ R : H (ρ,α) ̸=∅}. More-

over, H can be replaced by R∗,R or R∗.

(3) Let α± := α± (ψ) and α0 := α0 (ψ). If α− < α+ then we have for each α ∈ (α−,α+),

dimH (F (α,ψ)) = dimH

(
F ♯ (α,ψ)

)
= dimH (R∗ (ρ,α)) = dimH (R∗ (ρ,α))

= dimH (R(ρ,α)) = dimH (H (ρ,α)) =−t∗ (−α)> 0.

Moreover, s(α) :=−t∗ (−α) is a real analytic strictly concave positive function on (α−,α+) with

maximum value δ =−t∗ (−α0)> 0. Also, s′′ < 0 on (α−,α+).
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(4) (a) For each i ∈ I we have deg( fi)≥ 2. Moreover, we have α− = α+ if and only if there exist an

automorphism φ ∈ Aut
(
Ĉ
)

and (ai) ∈ CI such that

φ ◦ fi ◦φ−1 (z) = aiz±deg( fi) and logdeg( fi) =−(γ/δ ) log pi.

(b) If α− = α+ then we have

F (α0,ψ) = F ♯ (α0,ψ) = R∗ (ρ,α0) = R∗ (ρ,α0) = R(ρ,α0) = H (ρ,α0) = J(G),

where dimH(J(G)) = δ > 0, and for all α ̸= α0 we have

F (α ,ψ) = F ♯ (α ,ψ) = R∗ (ρ,α) = R∗ (ρ,α) = R(ρ,α) = H (ρ,α) =∅.

Proof. By the separation condition and J (G) =
∪

i∈I f−1
i (J (G)) (see [Sum00]) we have that the kernel

Julia set Jker(G) :=
∩

g∈G g−1 (J (G)) of G is empty. From this and the assumption that there exists a non-
constant unitary eigenfunction of Mτ in C(Ĉ) ([Sum11, Theorem 3.15 (21), Remark 3.18]), it follows that
deg( fi)≥ 2 for each i ∈ I. Moreover, by [Sum13, Theorem 3.29] there exists a constant a ∈ (0,1) such that
ρ : Ĉ→ C is a-Hölder continuous.

Since f satisfies the separation condition, by passing to ( fω)ω∈Ik where k is a sufficiently large positive
integer, we may assume that f satisfies the open set condition. Also note that there exists γ ∈ R such that
P

(
γψ̃, f̃

)
= 0.

Let α ∈ R. Recall that H (ρ,α) = R∗ (ρ,α) by Lemma 5.1. We only give the proof of (2), (3) and (4) for
the level set R∗ (ρ,α). The sets R∗ (ρ,α) and R(ρ,α) can be considered in a similar fashion. The main
task is to show that F (α,ψ)⊂ R∗ (ρ,α)⊂F ♯ (α,ψ). Then the assertion in (2) follows from Theorem 4.5
(1) and Lemma 4.3 (2), and the assertions in (3) follow from Theorem 4.5 (1), (2) and (3). The assertion
in (4a) follows from Proposition 4.6. To prove (4b) we observe that by the proof of Proposition 4.6 there
exists a continuous function h̃ : J( f̃ )→ R such that

Snψ̃(x)

Snζ̃ (x)
=

δSnψ̃(x)
γSnψ̃(x)+ h̃(x)− h̃◦ f̃ n+1(x)

, for every x ∈ J( f̃ ),

which shows that limn→∞ Snψ̃(x)/Snζ̃ (x) = δ/γ for every x ∈ J( f̃ ). Now (4b) follows from Theorem 4.5
(1) and (3) and Lemma 4.3 (2). Finally, by combining with the fact that ρ is a-Hölder continuous, we obtain
that a ≤ α− (ψ).

To complete the proof, we verify that F (α,ψ) ⊂ R∗ (ρ,α) ⊂ F ♯ (α,ψ) . To prove that F (α,ψ) ⊂
R∗ (ρ,α), let z ∈ F (α ,ψ). By definition of F (α,ψ), there exists ω ∈ IN such that (ω,z) ∈ F̃ (α,ψ).
Hence, by Lemma 5.2, we have that Q(ρ,z) = α and thus, z ∈ R(ρ,α) ⊂ R∗ (ρ,α). To verify that
R∗ (ρ,α) ⊂ F ♯ (α ,ψ), let z ∈ R∗ (ρ,α), that is, Q∗ (ρ,z) = α . Since ρ is constant on each connected
component of F (G) by [Sum11, Theorem 3.15 (1)], we have that z ∈ J (G). By Proposition 2.1 (3), there
exists ω ∈ IN such that (ω,z) ∈ J

(
f̃
)
. Lemma 5.2 gives that liminfn Snψ̃ ((ω,z))

/
Snζ̃ ((ω,z)) = α , which

implies that (ω,z) ∈ F̃ ♯ (α ,ψ). Hence, we have z ∈ F ♯ (α,ψ). We have thus shown that F (α,ψ) ⊂
R∗ (ρ,α)⊂ F ♯ (α,ψ) and the proof is complete. □

6. EXAMPLES

We give some examples to which we can apply the main theorems.

(1) Let f = ( fi)i∈I ∈ (Rat)I be expanding and let G= ⟨ fi : i ∈ I⟩. Suppose that f satisfies the separation
condition. Let (pi)i∈I ∈ (0,1)I be a probability vector, let τ := ∑i∈I piδ fi . Suppose that G has
at least two minimal sets. Here, we say that a non-empty compact subset L of Ĉ is a minimal
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set of G if L is minimal among the space {K | K is a non-empty compact subset of Ĉ and g(K) ⊂
K for each g ∈ G} with respect to the inclusion. (Note that if K is a non-empty compact subset Ĉ
such that g(K) ⊂ K for each g ∈ G, then by Zorn’s lemma, there exists a minimal set L of G with
L ⊂ K.) Let TL,τ : Ĉ→ [0,1] be the function of probability of tending to L which is defined as

TL,τ(z) = (⊗∞
n=1τ)

(
{ω = (ω1,ω2, . . .) ∈ { fi | i ∈ I}N | d(ωn · · ·ω1(z),L)→ 0 as n → ∞}

)
.

Then by [Sum11] TL,τ is a non-constant function belonging to Uτ . In fact, Mτ(TL,τ) = TL,τ . Thus,
we can apply Theorem 5.3 to f and ρ = TL,τ . The function TL,τ can be regarded as a complex
analogue of the devil’s staircase and Lebesgue’s singular functions (see [Sum11, Introduction]). If
each fi is a polynomial and L = {∞} then T∞,τ := T{∞},τ is sometimes called a devil’s coliseum.

Since ( fω)ω∈Ik , where k is a large positive integer, satisfies the open set condition, all statements
in Theorem 4.5 and Proposition 4.6 hold for f .

(2) Let f1, f2 be two polynomials with deg( fi) ≥ 2 for i ∈ {1,2}. Let I = {1,2} and G = ⟨ fi : i ∈ I⟩.
Let (p1, p2) ∈ (0,1)2 with p1 + p2 = 1 and let τ = p1δ f1 + p2δ f2 . Suppose that G is hyperbolic,
P(G) \ {∞} is bounded in C and that J (G) is disconnected. Then f = ( f1, f2) is expanding, f

satisfies the separating condition (see [Sum09, Theorem 1.7]) and the function of probability of
tending to infinity T∞,τ = T{∞},τ : Ĉ→ [0,1] is a non-constant function belonging to Uτ . To this f

and ρ = T∞,τ we can apply Theorem 5.3. To see a concrete example, let g1(z)= z2−1,g2(z)= z2/4,
f1 = g1 ◦ g1, f2 = g2 ◦ g2. Then f = ( f1, f2) satisfies the above condition (see [Sum11, Example
6.2]).

(3) Let f1 be a hyperbolic polynomial with deg( f1) ≥ 2. Suppose that J ( f1) is connected. Let h ∈
Int(K ( f1)). Let d ∈ N with d ≥ 2 and (deg f1,d) ̸= (2,2). Then there exists a constant a0 > 0
such that for each a ∈ C with 0 < |a|< a0, setting f2,a (z) := a(z−h)d +h, we have that (i) Ga :=
⟨ f1, f2,a⟩ is hyperbolic, (ii) fa = ( f1, f2,a) satisfies the separating condition and (iii) P(⟨ f1, f2,a⟩)\
{∞} is bounded in C (see [Sum11, Proposition 6.1]).

(4) There are many examples of f = ( fi)i∈I ∈ RatI , which satisfy the assumptions of Theorem 5.3 (see
[Sum11, Propositions 6.3, 6.4 and 6.5]).

Finally we give an important remark on the estimate of α− and the non-differentiability of non-constant
ρ ∈Uτ .

Remark 6.1. Let f = ( fi)i∈I ∈ RatI and suppose that each fi is a polynomial with deg( fi) ≥ 2. Under the
assumptions of Theorem 5.3, we have by Theorem 5.3 and [Sum11, Theorem 3.82] that

α− (ψ)≤ −∑i∈I pi log pi

∑i∈I pi logdeg fi +
∫

ΓN ∑c Gγ (c)dτ̂ (γ)
≤ α+ (ψ) ,

where Γ = { fi : i ∈ I}, τ̂ =
⊗∞

j=1 τ , and Gγ denotes the Green’s function of the basin A∞,γ of ∞ for the
sequence γ = (γ1,γ2, . . .) ∈ ΓN and c runs over the critical points of γ1 in A∞,γ . For the details we refer to
[Sum11, Theorem 3.82].

Moreover, in addition to the assumptions of Theorem 5.3, if each fi is a polynomial with deg( fi)≥ 2 and if
(a) ∑i∈I pi log(pi deg fi)> 0 or (b) P(G)\{∞} is bounded in C or (c) card(I) = 2, then

α− (ψ)≤ −∑i∈I pi log pi

∑i∈I pi logdeg fi +
∫

ΓN ∑c Gγ (c)dτ̂ (γ)
< 1.

See [Sum11, Theorem 3.82]. For the proof, we use potential theory.



MULTIFRACTAL FORMALISM FOR EXPANDING RATIONAL SEMIGROUPS AND RANDOM COMPLEX DYNAMICAL SYSTEMS 23

REFERENCES

[Bow75] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer-Verlag, Berlin, 1975, Lecture

Notes in Mathematics, Vol. 470. MR MR0442989 (56 #1364)
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