Erratum to 'Semi-hyperbolic fibered rational maps and rational semigroups' (Ergodic Theory and Dynamical Systems 26 (2006), 893-922)

Hiroki Sumi
Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
E-mail: sumi@math.sci.osaka-u.ac.jp
http://www.math.sci.osaka-u.ac.jp/~sumi/welcomeou-e.html

January 22, 2008

Abstract

We give a correction to the assumption of Theorem 1.12 and Theorem 2.6 in the paper [H. Sumi. Semi-hyperbolic fibered rational maps and rational semigroups. Ergod. Th. © Dynam. Sys. 26 (2006), 893-922].

1 Correction to Theorem 1.12 in [S1]

We use the same notation as that in [S1].
Let $(\pi, Y=X \times \overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-bundle. Let $f: Y \rightarrow Y$ be a fibered polynomial map over $g: X \rightarrow X$ (see [S1, Definition 1.11]). For each $x \in X$, we set $A_{x}(f):=\left\{y \in Y_{x} \mid \pi_{\overline{\mathbb{C}}}\left(f_{x}^{n}(y)\right) \rightarrow \infty\right\}$ and $K_{x}(f):=Y_{x} \backslash A_{x}(f)$. Moreover, we denote by $\operatorname{int} K_{x}(f)$ the set of all interior points of $K_{x}(f)$ with respect to the topology in Y_{x}.

Theorem 1.12 in [S1] should be replaced by the following form.
Theorem 1.1. Let $(\pi, Y=X \times \overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-bundle. Let $f: Y \rightarrow Y$ be a semi-hyperbolic fibered polynomial map over $g: X \rightarrow X$ such that $d(x) \geq 2$, for any $x \in X$. Assume that either:
(1) $J_{x}(f)$ is connected for each $x \in X$; or
(2) the map $x \mapsto f_{x}$ from X to the space of polynomials is locally constant (here, we identify f_{x} with a polynomial on $\overline{\mathbb{C}}$), $\inf \left\{d(a, b) \mid a \in \pi_{\overline{\mathbb{C}}}\left(J_{x}(f)\right), b \in \pi_{\overline{\mathbb{C}}}\left(A_{x}(f) \cap C(f)\right), x \in X\right\}>0$, and for each $z \in Y$ with $z \in \operatorname{int} K_{\pi(z)}(f)$, there exists no sequence $\left\{z_{j}\right\}_{j=1}^{\infty}$ in Y with $z_{j} \in A_{\pi\left(z_{j}\right)}(f)(\forall j)$ such that $z_{j} \rightarrow z$ as $j \rightarrow \infty$.
Then, there exists a positive constant c such that, for any $x \in X$, the basin of infinity $A_{x}(f)$ is a c-John domain.

Remark 1. We have added an extra assumption in condition (2).
Remark 2. In the proof of Theorem 1.1, we need the following Claim (*), which does not hold in general when we have condition (2) in [S1, the original Theorem 1.12] instead of the condition (2) of Theorem 1.1:

Claim (*): Under the assumption of Theorem 1.1, for each $(x, y) \in X \times$ \mathbb{C} let $G_{x}((x, y)):=\lim _{n \rightarrow \infty}\left(1 / d_{n}(x)\right) \log ^{+}\left|\pi_{\overline{\mathbb{C}}}\left(f_{x}^{n}((x, y))\right)\right|$ (see [S1, p. 909]). Moreover, for each $x \in X$ and $z \in Y_{x}$, let $\delta_{x}(z):=\inf _{w \in J_{x}(f)}\left\{\left|\pi_{\overline{\mathbb{C}}}(z)-\pi_{\overline{\mathbb{C}}}(w)\right|\right\}$. Let $a_{1}>0$ be a number. Then, there exists a positive number a_{2} such that if $(x, y) \in X \times \mathbb{C},(x, y) \in A_{x}(f)$, and $\delta_{x}((x, y))>a_{1}$ then $G_{x}((x, y))>a_{2}$.
proof of Claim (*): Under the assumption of Theorem 1.1, suppose that there exists a sequence $\left\{z_{j}\right\}_{j=1}^{\infty}$ in Y such that for each $j, z_{j} \in A_{\pi\left(z_{j}\right)}(f)$ and $\delta_{\pi\left(z_{j}\right)}\left(z_{j}\right)>a_{1}$, and such that $G_{\pi\left(z_{j}\right)}\left(z_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$. We will deduce a contradiction. We may assume that there exists a point $z \in X \times \mathbb{C}$ such that $z_{j} \rightarrow z$. Since $(x, y) \mapsto G_{x}((x, y))$ is continuous in $X \times \mathbb{C}([S 1$, p. 910] $)$ and G_{x} in $A_{x}(f) \backslash\{\infty\}$ is harmonic (under the canonical identification $Y_{x} \cong \overline{\mathbb{C}}$), it follows that $G_{\pi(z)}$ is identically zero in a neighborhood of z in $Y_{\pi(z)}$. Hence $z \in \operatorname{int} K_{\pi(z)}(f)$. From the assumption of Theorem 1.1, it follows that for each $x \in X, J_{x}(f)$ is connected. Since $z \in \operatorname{int} K_{\pi(z)}(f) \subset F_{\pi(z)}(f)$, [S2, Theorem 2.14] implies that there exists a neighborhood U of z in Y_{z} such that

$$
\begin{equation*}
\operatorname{diam} f_{\pi(z)}^{n}(U) \rightarrow 0 \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\cup_{n \in \mathbb{N}} f_{\pi(z)}^{n}(U)} \subset \tilde{F}(f) \tag{2}
\end{equation*}
$$

By (1), we obtain

$$
\begin{equation*}
d\left(\mathrm{CV}\left(f_{\pi(z)}^{n}\right), f_{\pi(z)}^{n}(z)\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

where $\mathrm{CV}(\cdot)$ denotes the set of all finite critical values. Combining (2) and (3), we get that there exists an $n \in \mathbb{N}$ such that the point $f_{\pi(z)}^{n}(z)$ and a point $v \in \operatorname{CV}\left(f_{\pi(z)}^{n}\right)$ belong to a component V of $F_{g^{n}(\pi(z))}(f)$. Since $x \mapsto J_{x}(f)$ is continuous (see [S2, Theorem 2.14]), it follows that there exists an $m \in \mathbb{N}$ such that the point $f_{\pi\left(z_{m}\right)}^{n}\left(z_{m}\right)$ and a point $v_{m} \in \operatorname{CV}\left(f_{\pi\left(z_{m}\right)}^{n}\right)$ belong to a component V_{m} of $F_{g^{n}\left(\pi\left(z_{m}\right)\right)}(f)$. However, since $f_{\pi\left(z_{m}\right)}^{n}\left(z_{m}\right) \in A_{g^{n}\left(\pi\left(z_{m}\right)\right)}(f)$ and $J_{x}(f)$ is connected for each $x \in X$, it causes a contradiction. Thus we have proved Claim (*).

Example 1.2. Let $c \in \mathbb{C},|c|>6$. Let $h_{1}(z):=z^{2}+c$ and $h_{2}(z):=z^{2}-c$. Let $f: \Sigma_{2} \times \overline{\mathbb{C}} \rightarrow \Sigma_{2} \times \overline{\mathbb{C}}$ be the fibered rational map associated with the generator system $\left\{h_{1}, h_{2}\right\}$ (see [S1, Definition 1.4]). Then, f is a hyperbolic fibered polynomial map over the shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ and f satisfies condition (2) in Theorem 1.1. In fact, for each $x \in \Sigma_{2}, \operatorname{int} K_{x}(f)=\emptyset$.

2 Correction to Theorem 2.6 in [S1]

In $\left[\mathrm{S} 1\right.$, Theorem 2.6], the sequence $\left(n_{j}\right)$ of \mathbb{N} should be strictly increasing.

References

[S1] H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups, Ergod. Th. \& Dynam. Sys. 26 (2006), 893-922
[S2] H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergod. Th. \& Dynam. Sys. 21 (2001), 563-603.

