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Abstract

We consider the family of CIFSs of generalized complex continued frac-
tions with a complex parameter space. This is a new interesting example
to which we can apply a general theory of infinite CIFSs and analytic fam-
ilies of infinite CIFSs. We show that the Hausdorff dimension function
of the family of the CIFSs of generalized complex continued fractions is
continuous in the parameter space and is real-analytic and subharmonic
in the interior of the parameter space. As a corollary of these results, we
also show that the Hausdorff dimension function has a maximum point
and the maximum point belongs to the boundary of the parameter space.
1

1 Introduction

Iterated function systems arise in many contexts. One of the most famous
applications to use the systems is to construct many kinds of fractals. Studies
of these fractal sets constructed by the contractive iterated function systems (for
short IFS), sometimes called limit sets, have been developed in many directions.
Note that general properties of limit sets of systems with finitely many mappings
have been well-studied. For example, see Hutchinson [3], Falconer [4], Barnsley
[2], Bandt and Graf [1], and Schief [9] and so on.

Around the middle of the 1990’s, studies of the limit sets of the conformal
IFSs (for short CIFS) with infinitely many mappings were initiated by Mauldin
and Urbański [5], [6] and by Moran [7].

Note that Mauldin and Urbański also gave some interesting examples about
their general theory in the papers [5] and [6]. In their general theory, they
showed deep results to estimate the Hausdorff dimension and the Hausdorff
measure of the limit sets.
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Moreover, interests in families of CIFSs have emerged. Roy and Urbański
especially studied the Hausdorff dimension functions for the families of CIFSs
([8]). They showed that the Hausdorff dimension functions for the families of
CIFSs are continuous with respect to the “λ-topology” which they introduced,
and if the families are analytic, then the Hausdorff dimension functions for the
families of CIFSs are real-analytic and subharmonic.

There exist rich general theories of limit sets of CIFSs for given families of
infinite CIFSs. However, the authors do not think we have found sufficiently
many examples of families of infinite CIFSs to which we can apply the above
general theories. Therefore, the aim of this paper is to present a new interesting
family of infinite CIFSs. More precisely, we define a subset of the complex plane
as a parameter space and for each point in the parameter space, we introduce
a CIFS related to generalized complex continued fractions. The authors found
that Mauldin and Urbański’s general theories [5], [6] and Roy and Urbański’s
general theory [8] can apply to this family. The authors also show that the
Hausdorff dimension function for the family is continuous in the parameter space
and is real-analytic and subharmonic in the interior of the parameter space by
applying the general theories of the families of infinite CIFSs. The authors also
show that, as a corollary for these results, the Hausdorff dimension function has
a maximum point and it belongs to the boundary of the parameter space.

Precise statements are the following. Let

A0 := {τ = u+ iv ∈ C | u ≥ 0 and v ≥ 1}

and X := {z ∈ C | |z−1/2| ≤ 1/2}. Also, we set Iτ := {m+nτ ∈ C | m,n ∈ N}
for each τ ∈ A0, where N is the set of the positive integers.

Definition 1.1 (The CIFS of generalized complex continued fractions). For
each τ ∈ A0, Sτ := {ϕb : X → X | b ∈ Iτ} is called the CIFS of generalized
complex continued fractions. Here,

ϕb(z) :=
1

z + b
(z ∈ X).

The {Sτ}τ∈A0
is called the family of CIFSs of generalized complex continued

fractions. For each τ ∈ A0, let Jτ be the limit set of the CIFS Sτ (see Definition
2.1) and let hτ be the Hausdorff dimension of the limit set Jτ . Also, we denote
by Int(A0) the set of interior points of A0 with respect to the topology in C.
We now give the main results of this paper.

Theorem 1.2 (Main result A). Let {Sτ}τ∈A0
be the family of CIFSs of general-

ized complex continued fractions. Then τ 7→ hτ is continuous in A0. Moreover,
for each τ ∈ A0, hτ is equal to the unique zero of the pressure function of Sτ

(see Definition 2.2), 1 < hτ < 2 and hτ → 1 (τ ∈ A0, τ → ∞). In particular,
the function τ 7→ hτ is not constant on A0.

Theorem 1.3 (Main result B). Let {Sτ}τ∈A0 be the family of CIFSs of gener-
alized complex continued fractions. Then we have that τ 7→ hτ is real-analytic
and subharmonic in Int(A0).
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Corollary 1.4 (Main result C). Let {Sτ}τ∈A0 be the family of CIFSs of gen-
eralized complex continued fractions. Then, there exists a maximum value of
the function τ 7→ hτ (τ ∈ A0) and any maximum point of the function τ 7→ hτ
belongs to the boundary of A0. In particular, we have that max{hτ |τ ∈ A0} =
max{hτ |τ ∈ ∂A0}.

Remark 1.5. It was shown that for each τ ∈ A0, Jτ \ Jτ is at most countable
and hτ = dimH(Jτ ) ([11, Theorem 6.11]). For the readers, we give a proof of
this fact in the Appendix of this paper. Also, for each τ ∈ A0, since the set of
attracting fixed points of elements of the semigroup generated by Sτ is dense in
Jτ , Theorem 1.1 of [10] implies that Jτ is equal to the Julia set of the rational
semigroup generated by {ϕ−1

b | b ∈ Iτ}.

The idea and strategies to prove the main results are the following. We first
show that for each τ ∈ A0, Sτ is a CIFS (see Definition 2.1 and Proposition 3.1).
To prove Proposition 3.1, we use some facts in complex analysis (for example,

properties of Möbius transformations on the Riemann sphere Ĉ and the Koebe
distortion theorem). In addition, we show a useful inequality for ψ1

τ (t) of the
CIFS Sτ (see Definition 2.2 and Lemma 3.3). To prove this inequality, we use the
Bounded Distortion Property (BDP) of the CIFS and an appropriate countable
partition of Iτ ∼= N2. Combining the useful inequality, careful observations and
Lebesgue’s dominated convergence theorem, we show that for each τ ∈ A0,
Sτ is a hereditarily regular CIFS and thus hτ is equal to the unique zero of
the pressure function (see Definition 2.4) of Sτ with θτ = 1 (see Lemma 3.3).
Furthermore, we show that hτ → 1 as τ → ∞ in A0 (see Lemma 3.4). By using
the fact θτ = 1 for each τ ∈ A0 and a geometric observation, we show that
1 < hτ < 2 for each τ ∈ A0.

Note that since we deal with a family of CIFSs in this paper, we have to
consider the family of the pressure functions and zeros of the functions which is
parameterized by τ ∈ A0. For this reason, we have some difficulties. However,
we overcome these difficulties to show this lemma by considering ψ1

τ as an infinite
series which is parameterized by τ ∈ A0 and applying Lebesgue’s dominated
convergence theorem. This approach is new and important to deal with the
family of the pressure functions and zeros of the functions.

It is worth pointing out that for each τ ∈ A0, we obtain inequalities (4), (5)
and (6) for the elements of Sτ (Lemmas 4.1, 4.2, 4.3). These inequalities follow
from direct calculations. By using these inequalities, we show that τ 7→ Sτ is
continuous with respect to the λ-topology. By applying the theory of continuity
of the Hausdorff dimension function for a family of CIFSs from [8], we prove the
continuity of τ 7→ hτ in Theorem 1.2. Moreover, by using the above inequalities
and the result that Sτ is strongly regular for each τ ∈ A0, we can show that for
each τ ∈ Int(A0), there exists an open neighborhood U of τ such that {Sτ}τ∈U

is regularly plane-analytic in the sense of [8]. Combining this with the general
theory of real-analyticity of the Hausdorff dimension functions for regularly
plane-analytic families of CIFSs from [8], we prove Theorem 1.3.

Finally, by using Theorem 1.2, we obtain that there exists a maximum point
of the function τ 7→ hτ . From this fact and Theorem 1.3, we obtain Corollary
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1.4.
The rest of this paper is organized as follows. In section 2, we summarize

without proofs the theory of CIFSs and families of the CIFSs. In section 3, we
prove some properties about the CIFS of the complex continued fractions. In
section 4, we prove the main results.

Acknowledgement. The authors thank Rich Stankewitz for valuable com-
ments. The last author is partially supported by JSPS Kakenhi 18H03671.

2 Conformal iterated function systems

In this section, we recall general settings of CIFSs and families of CIFSs ([5],
[6], [8]).

Definition 2.1 (Conformal iterated function system). Let X ⊂ Rd be a non-
empty compact and connected set and let I be a finite set or bijective to N.
Suppose that I has at least two elements. We say that S := {ϕi : X → X | i ∈
I} is a conformal iterated function system (for short, CIFS) if S satisfies the
following conditions.

1. Injectivity: For all i ∈ I, ϕi : X → X is injective.

2. Uniform Contractivity: There exists c ∈ (0, 1) such that, for all i ∈ I and
x, y ∈ X, the following inequality holds.

|ϕi(x)− ϕi(y)| ≤ c|x− y|.

3. Conformality: There exists a positive number ϵ and an open and connected
subset V ⊂ Rd with X ⊂ V such that for all i ∈ I, ϕi extends to a
C1+ϵdiffeomorphism on V and ϕi is conformal on V .

4. Open Set Condition(OSC): For all i, j ∈ I (i ̸= j), ϕi(Int(X)) ⊂ Int(X)
and ϕi(Int(X))∩ ϕj(Int(X)) = ∅. Here, Int(X) denotes the set of interior
points of X with respect to the topology in Rd.

5. Bounded Distortion Property(BDP): There exists K ≥ 1 such that for all
x, y ∈ V and for all w ∈ I∗ :=

∪∞
n=1 I

n, the following inequality holds.

|ϕ′w(x)| ≤ K · |ϕ′w(y)|.

Here, for each n ∈ N and w = w1w2 · · ·wn ∈ In, we set ϕw := ϕw1
◦ ϕw2

◦
· · · ◦ ϕwn

and |ϕ′w(x)| denotes the norm of the derivative of ϕw at x ∈ X
with respect to the Euclidean metric on Rd.

6. Cone Condition: For all x ∈ ∂X, there exists an open cone Con(x, u, α)
with a vertex x, a direction u, an altitude |u| and an angle α such that
Con(x, u, α) is a subset of Int(X).

4



I is called an alphabet. We endow I with the discrete topology, and endow
I∞ := IN with the product topology. Note that I∞ is a Polish space. In
addition, if I is a finite set, then I∞ is a compact metrizable space.

Let S be a CIFS. For each w = w1w2w3 · · · ∈ I∞, we set w|n := w1w2 · · ·wn ∈
In and ϕw|n := ϕw1

◦ϕw2
◦· · ·◦ϕwn

. Then, we have
∩

n∈N ϕw|n(X) is a singleton.
We denoted it by {xw}. the coding map π : I∞ → X of S is defined by w 7→ xw.
Note that π : I∞ → X is continuous. A limit set of S is defined by

JS := π(I∞) =
∪

w∈I∞

∩
n∈N

ϕw|n(X).

For each IFS S, we set hS := dimH JS , where dimH denote the Hausdorff
dimension. For any CIFS S, we define the pressure function of S as follows.

Definition 2.2 (Pressure function). For each n ∈ N, [0,∞]-valued function ψn
S

is defined by

ψn
S(t) :=

∑
w∈In

(
sup
z∈X

|ϕ′w(z)|
)t

(t ≥ 0).

We set

PS(t) := lim
n→∞

1

n
logψn

S(t) ∈ (−∞,∞].

The function PS : [0,∞) → (−∞,∞] is called the pressure function of S.

Note that for all t ≥ 0, PS(t) exists because of the following proposition.

Proposition 2.3. For all m,n ∈ N and t ≥ 0, we have ψm+n
S (t) ≤ ψm

S (t)ψn
S(t).

In particular, for all t ≥ 0, logψn
S(t) is subadditive with respect to n ∈ N.

We set θS := inf{t ≥ 0| ψ1
S(t) < ∞}. By using the pressure function, we

define properties of CIFSs.

Definition 2.4 (Regular, Strongly regular, Hereditarily regular). Let S be a
CIFS. We say that S is regular if there exists t ≥ 0 such that PS(t) = 0. We
say that S is strongly regular if there exists t ≥ 0 such that PS(t) ∈ (0,∞).
We say that S is hereditarily regular if ,for all I ′ ⊂ I with |I \ I ′| < ∞,
S′ := {ϕi : X → X | i ∈ I ′} is regular. Here, for any set A, we denote by |A|
cardinality of A.

Note that if a CIFS S is hereditarily regular, then S is strong regular and
if S is strong regular, then S is regular. We set F (I) := {F ⊂ I| |F | < ∞}.
For each F ∈ F (I), we set SF := {ϕi : X → X| i ∈ F}. Mauldin and Urbański
showed the following results.

Theorem 2.5 ([5] Theorem 3.15). Let S be a CIFS. Then we have

hS = inf{t ≥ 0 | PS(t) < 0} = sup{hSF
| F ∈ F (I)} ≥ θS .

Moreover, if there exists t ≥ 0 such that PS(t) = 0, then t is the unique zero of
the pressure function PS and we have t = hS .

5



Theorem 2.6 ([5] Theorem 3.20). Let I be infinite and let S be a CIFS. Then,
the following conditions are equivalent:

1. S is hereditarily regular.

2. ψ1
S(θS) = ∞.

Especially, if S is hereditarily regular, we have θS < hS .

Theorem 2.7 ([5] Proposition 4.4). Let S be a regular CIFS. Then if λd(Int(X)\
X1) > 0, then hS < d. Here, λd is the d-dimensional Lebesgue measure and
X1 := ∪i∈Iϕi(X).

We now consider families of CIFSs. Let CIFS(X, I) be the family of all
CIFSs with X ⊂ C and an infinite alphabet I. For each S ∈ CIFS(X,I), let
πS : I

∞ → X be the coding map of S. In this paper, for any sequence {Sn}n∈N
in CIFS(X,I) and S ∈ CIFS(X,I), we write λ({Sn}n∈N) = S if the following
conditions are satisfied.

(L1) For every i ∈ I, limn→∞(||ϕni − ϕi||+ ||(ϕni )′ − (ϕi)
′||) = 0.

(L2) There exist C > 0, M ∈ N and a finite set F ⊂ I such that for all i ∈ I \F
and n ≥M , | log ||(ϕni )′|| − log ||ϕ′i|| | ≤ C.

Here, we write Sn as {ϕni }i∈I and S as {ϕi}i∈I . If a sequence {Sn}n∈N in
CIFS(X,I) does not admit any S ∈ CIFS(X,I) for which the above condi-
tions are fulfilled, we declare that λ({Sn}n∈N) = ∅. A sequence {Sn}n∈N ∈
CIFS(X, I)

N
is called λ-converging if λ({Sn}n∈N) ∈ CIFS(X, I). We endow

CIFS(X,I) with the λ-topology ([8]).

Definition 2.8. Let Λ be an open and connected subset of C. Let {Sµ}µ∈Λ

be a family of elements of CIFS(X, I). We write Sµ as {ϕµi }i∈I . We say that
{Sµ}µ∈Λ is plane-analytic if for all x ∈ X and i ∈ I, µ 7→ ϕµi (x) is holomorphic
in Λ.

Moreover, we say that plane-analytic {Sµ}µ∈Λ is regularly plane-analytic if
there exists µ0 ∈ Λ such that the following conditions are satisfied.

1. Sµ0 is strongly regular.

2. There exists η ∈ (0, 1) such that for all w ∈ I∞ and µ ∈ Λ, |κµ0
w (µ)−1| ≤ η.

Here, for each µ0 ∈ Λ and w = w1w2 · · · ∈ I∞,

πµ := πSµ
, κµ0

w (µ) :=
(ϕµw1

)′(πµ(σw))

(ϕµ0
w1)

′(πµ0
(σw))

(µ ∈ Λ).

Roy and Urbański showed the following results [8].

Theorem 2.9 ([8] Theorem 5.10). The Hausdorff dimension function h : CIFS(X, I) →
[0,∞), S 7→ hS , is continuous when CIFS(X, I) is endowed with the λ-topology.
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Theorem 2.10 ([8] Theorem 6.1). Let Λ be an open and connected subset of
C. Let {Sµ}µ∈Λ be a family of elements of CIFS(X, I). If {Sµ}µ∈Λ is regularly
plane-analytic, then µ 7→ hSµ is real-analytic in Λ.

Theorem 2.11 ([8] Theorem 6.3). Let Λ be an open and connected subset of
C. Let {Sµ}µ∈Λ be a family of elements of CIFS(X, I). If {Sµ}µ∈Λ is plane-
analytic, then µ 7→ 1/hSµ is superharmonic in Λ.

3 CIFSs of generalized complex continued frac-
tions

In this section, we prove some properties of the CIFSs of generalized complex
continued fractions [12]. Note that they are important and interesting examples
of infinite CIFSs. We introduce some additional notations. For each τ ∈ A0, we
set πτ := πSτ

, θτ := θSτ
, ψn

τ (t) := ψn
Sτ
(t) (t ≥ 0, n ∈ N) and Pτ (t) := PSτ

(t)
(t ≥ 0).

Proposition 3.1. For all τ ∈ A0, Sτ is a CIFS.

Proof. Let τ ∈ A0. Firstly, we show that for all b ∈ Iτ , ϕb(X) ⊂ X. Let

Y := {z ∈ C| ℜz ≥ 1} and let f : Ĉ → Ĉ be the Möbius transformation defined
by f(z) := 1/z. Since f(0) = ∞, f(1) = 1, f(1/2 + i/2) = 2/(1 + i) = (1 − i),
we have f(∂X) = ∂Y ∪ {∞}. Moreover, since f(1/2) = 2, we have f(X) =
Y ∪ {∞}. Thus, f : X → Y ∪ {∞} is a homeomorphism. Let gb : X → Y
be the map defined by gb(z) := z + b. We deduce that ϕb = f−1 ◦ gb and
ϕb(X) ⊂ f−1(Y ) ⊂ X. Therefore, we have proved ϕb(X) ⊂ X.

We next show that for each τ ∈ A0, Sτ satisfies the conditions of Definition
2.1.

1. Injectivity.
Since each ϕb is a Möbius transformation, each ϕb is injective.

2. Uniform Contractivity.
Let b = m + nτ(= m + nu + inv) be an element of Iτ and let z = x + iy and
z′ = x′ + iy′ be elements of X. We have

|z + b|2 = |x+m+ nu+ i(y + nv)|2

= (x+m+ nu)2 + (y + nv)2 ≥ (0 + 1 + 0)2 + (−1/2 + 1)2 =
5

4
.

Therefore, we deduce that |z+b| ≥
√
5/4. We also deduce that |z′+b| ≥

√
5/4.

Finally, we obtain that

|ϕb(z)− ϕb(z
′)| =

∣∣∣∣ 1

z + b
− 1

z′ + b

∣∣∣∣
=

|z − z′|
|z + b||z′ + b|

≤

(√
4

5

)2

|z − z′| = 4

5
|z − z′|.
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Therefore, Sτ is uniformly contractive on X.
3. Conformality.

Let τ ∈ A0 and let b ∈ Iτ . Since ϕb is holomorphic on C \ {−b}, ϕb is C2 and
conformal on V .

4. Open Set Condition.
Note that Int(X) = {z ∈ C| |z − 1/2| < 1/2}. Let τ ∈ A0 and let b ∈ Iτ . Since
f(∂X) = ∂Y ∪ {∞}, we deduce that for all b ∈ Iτ ,

gb(Int(X)) ⊂ {z = x+ iy ∈ C| x > 1} = f(Int(X)).

Moreover, if b and b′ are distinct elements, then gb(Int(X)) and gb′(Int(X)) are
disjoint. Therefore, we have that for all b ∈ Iτ ,

ϕb(Int(X)) = f−1 ◦ gb(Int(X)) ⊂ f−1 ◦ f(Int(X)) = Int(X).

And if b and b′ is distinct elements,

ϕb(Int(X)) ∩ ϕb′(Int(X)) = f−1(gb(X) ∩ gb′(X)) = ∅.

Therefore, Sτ satisfies the Open Set Condition of Sτ .
6. Cone Condition.

Since X is a closed disk, the Cone Condition is satisfied.
5. Bounded distortion Property.

Let ϵ be a positive real number which is less than 1/12 and let V ′ := B(1/2, 1/2+
ϵ) be the open ball with center 1/2 and radius 1/2+ ϵ. We set τ := u+ iv. And
for all (m,n) ∈ N2 and z := x+ iy ∈ V ′, we have that

|ϕ′m+nτ (z)| =
1

|z +m+ nτ |2
=

1

(x+m+ nu)2 + (y + nv)2

≤ 1

(−ϵ+ 1 + 0)2 + (−1/2− ϵ+ 1)2

=
1

2ϵ2 − 3ϵ+ 5/4
=

1

2(ϵ− 3/4)2 + 1/8

≤ 1

2(1/12− 3/4)2 + 1/8
=

72

73
< 1

For each z ∈ V ′, we set

z′ :=

(|z − 1/2| − ϵ)
(z − 1/2)

|z − 1/2|
+ 1/2 (z /∈ X)

z (z ∈ X).

Then, we have that |z − z′| ≤ ϵ and |z′ − 1/2| < 1/2. It implies that z′ ∈ X.
Thus, we obtain that |ϕb(z)− ϕb(z

′)| ≤ (72/73)|z − z′| < ϵ and∣∣∣∣ϕb(z)− 1

2

∣∣∣∣ ≤ |ϕb(z)− ϕb(z
′)|+

∣∣∣∣ϕb(z′)− 1

2

∣∣∣∣ < 1

2
+ ϵ.
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It follows that for all b ∈ Iτ , ϕb(V
′) ⊂ V ′. In addition, ϕb is injective on V

′ and
ϕb is holomorphic on V ′ := B(1/2, 1/2+ ϵ) since ϕb is holomorphic on C\{−b}.

Let b be an element of Iτ and r0 := 1/2 + ϵ. Let fb be the function defined
by

fb(z) :=
(ϕb(r0z + 1/2)− ϕb(1/2))

r0ϕ′b(1/2)
(z ∈ D := {z ∈ C||z| < 1}).

Note that fb is holomorphic on D and fb(0) = 0 and f ′b(0) = 1. By using the
Koebe distortion theorem, we deduce that for all z ∈ D

1− |z|
(1 + |z|)3

≤ |fb(z)| ≤
1 + |z|

(1− |z|)3
.

Let r1 := (r0+1/2)/2. we deduce that there exist C1 ≥ 1 and C2 ≤ 1 such that
for all z ∈ B(0, r1/r0)(⊂ D),

C2 ≤ 1− |z|
(1 + |z|)3

and
1 + |z|

(1− |z|)3
≤ C1.

Let C := C1/C2. Then, we have that for all z, z′ ∈ B(0, r1/r0)

|ϕ′b(r0z + 1/2)|
|ϕ′b(1/2)|

= |f ′b(z)| ≤
1 + |z|

(1− |z|)3

≤ C1 = CC2 ≤ C
1− |z′|

(1 + |z′|)3

≤ C|f ′b(z′)| ≤ C
|ϕ′b(r0z′ + 1/2)|

|ϕ′b(1/2)|
.

It follows that for all z, z′ ∈ B(0, r1/r0), |ϕ′b(r0z + 1/2)| ≤ C|ϕ′b(r0z′ + 1/2)|.
Finally, let V := B(1/2, r1) be the open ball with center 1/2 and radius r1.
Then, V is an open and connected subset of C with X ⊂ V and for all z, z′ ∈ V ,

|ϕ′b(z)| ≤ C|ϕ′b(z′)|.

Therefore, Sτ satisfies the Bounded Distortion Property.

Lemma 3.2. Let τ ∈ A0. Then, there exists C ≥ 1 such that for all z ∈
B(1/2, r1) and b ∈ Iτ , we have C−1|b|−2 ≤ |ϕ′b(z)| ≤ C|b|−2.

Proof. Note that |ϕ′b(0)| = |b|−2. By using the BDP, there exists C ≥ 1 such
that for all z ∈ B(1/2, r1), we have C

−1|ϕ′b(0)| ≤ |ϕ′b(z)| ≤ C|ϕ′b(0)|. We deduce
that C−1|b|−2 ≤ |ϕ′b(z)| ≤ C|b|−2.

Lemma 3.3. For all τ ∈ A0, Sτ is a hereditarily regular CIFS with θτ = 1.

Proof. Let τ ∈ A0. For each non-negative integer p, we define K ′(p) := {b =
m + nτ ∈ Iτ | (m,n) ∈ N2,m < 2p, n < 2p} and K(p) := K ′(p) \ K ′(p − 1).
Note that for each non-negative integer p, |K ′(p)| = (2p − 1)2. We deduce that
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for each p ∈ N, |K(p)| = |K ′(p)| − |K ′(p − 1)| = (2p − 1)2 − (2p−1 − 1)2 =
3 · 4p−1 − 2 · 2p−1 = 2p−1(3 · 2p−1 − 2) and 4p−1 ≤ |K(p)| ≤ 3 · 4p−1.

Let b = m + nτ = m + n(u + iv) ∈ K(p). We consider the following two
cases.

(i) If m ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2

= (m+ nu)2 + (nv)2

≥ (2p−1 + u)2 + v2

≥ (2p−1)2 + |τ |2 = 4p−1

(
1 +

|τ |2

4p−1

)
.

(ii) If n ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2

= (m+ nu)2 + (nv)2

≥ n2(u2 + v2) ≥ 4p−1|τ |2.

Then for any t ≥ 0, we have

∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|2
}−t

≤
∑
p∈N

|K(p)|4−t(p−1)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

≤
∑
p∈N

3 · 4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

.

Hence, we deduce that

∑
b∈Iτ

|b|−2t ≤ 3
∑
p∈N

4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

. (1)

Moreover, by the inequality |τ |2 ≥ 1 and the inequality 1+
|τ |2

4p−1
≥ 1, we deduce

that for all p ∈ N,

3 · 4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

≤ 3 · 4(p−1)(1−t). (2)
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Also, by the inequality |b| ≤ |m|+ |n||τ | ≤ 2p(1 + |τ |), we have

∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|−2

}t
≥
∑
p∈N

|K(p)|4−pt(1 + |τ |)−2t.

Thus, we deduce that∑
b∈Iτ

|b|−2t ≥ 4−1
∑
p∈N

4p(1−t)(1 + |τ |)−2t. (3)

Finally, from Lemma 3.2, the inequality (1) and the inequality (3), it follows
that ψ1

τ (1) = ∞ and if t > 1, then ψ1
τ (t) <∞. Therefore, we deduce that θτ = 1

and by Theorem 2.6, we obtain that for all τ ∈ A0, Sτ is hereditarily regular.
Hence, we have proved our lemma.

Lemma 3.4. We have limτ→∞,τ∈A0 hτ = 1, i.e., for each ϵ > 0, there exists
N > 0 such that, for all τ ∈ A0 with |τ | ≥ N , we have |hτ − 1| < ϵ.

Proof. Let ϵ > 0 and t := 1 + ϵ > 1. Let {τn}n∈N be any sequence in
A0 such that |τn| → ∞ as n → ∞. Note that for all p ∈ N, we have{
min{1 + |τn|2

4p−1
, |τn|2}

}−t

→ 0 as n → ∞. By the inequality (1) and the

inequality (2), we deduce that

fn(p) = 3 · 4(p−1)(1−t)

{
min{1 + |τn|2

4p−1
, |τn|2}

}−t

(p ∈ N)

is dominated by the integrable function g(p) = 3 · 4(p−1)(1−t) (p ∈ N) with
respect to the counting measure on N. Then, by Lebesgue’s dominated conver-

gence theorem, we deduce that lim
n→∞

∑
b∈Iτn

|b|−2t = 0. By Lemma 3.2, we obtain

lim
n→∞

ψ1
τn(t) = 0. It follows that for any ϵ > 0, there exists N ∈ N such that for

all τ ∈ A0 with |τ | ≥ N , we have ψ1
τ (1 + ϵ) = ψ1

τ (t) < 1.
By Proposition 2.3, we obtain that ψn

τ (1+ ϵ) ≤ (ψ1
τ (1+ ϵ))

n < 1. Therefore,
we deduce that Pτ (1 + ϵ) ≤ 0. Thus, for all ϵ > 0, there exists N ∈ N such that
for all τ ∈ A0 with |τ | ≥ N , hτ ≤ 1 + ϵ.

Moreover, by Theorem 2.6, for all τ ∈ A0, we have 1 − ϵ ≤ 1 = θτ < hτ .
Hence, we have proved our lemma.

Theorem 3.5. Let τ ∈ A0. Then we have 1 < hτ < 2.

Proof. Let τ ∈ A0. By Theorem 2.6, we have 1 = θτ < hτ . We now show that
hτ < 2. We have ∪

b∈Iτ

gb(X) ⊂ {z ∈ C| ℜz ≥ 1 and ℑz ≥ 0}.

11



Let U0 be an open ball such that U0 ⊂ {z ∈ C| ℜz ≥ 1 and ℑz < 0}.
Since U0 ⊂ Y , we deduce that f−1(U0) ⊂ f−1(Y ) = Int(X). We set X1 :=
∪b∈Iτϕb(X). Since U0 ∩

∪
b∈Iτ

gb(X) = ∅, we deduce that f−1(U0) ∩ X1 =

f−1(U0 ∩
∪

b∈Iτ
gb(X)) = ∅. It follows Int(X) \X1 ⊃ f−1(U0).

Therefore, we deduce that λ2(Int(X)\X1) > 0 where, λ2 is the 2-dimensional
Lebesgue measure. By Theorem 2.7, we obtain that hτ < 2. Hence, we have
proved 1 < hτ < 2.

4 Proof of the main results

4.1 Proof of Main result A

We first show the following lemma.

Lemma 4.1. Let τ ∈ A0 and a sequence {τn}n∈N in A0 satisfies limn→∞ τn = τ .
Then, there existK ∈ N, C1 > 0 and C2 > 0 such that for all k ≥ K, (m,n) ∈ N2

and z0, z
′ ∈ X,

C1 ≤ |z′ +m+ nτk|2

|z +m+ nτ |2
≤ C2. (4)

Proof. We set τ = u + iv and we set for each n ∈ N, τn = un + ivn. Since
limn→∞ τn = τ , there exists K ∈ N such that for all k ≥ K, |u − uk| ≤ 1 and
|v − vk| ≤ v/3. Then, for all (m,n) ∈ N2 and z, z′ ∈ X,

|z′ +m+ nτk|2

|z +m+ nτ |2

≤ (1 +m+ nuk)
2 + (1/2 + nvk)

2

(m+ nu)2 + (−1/2 + nv)2

≤ (1 +m+ n(1 + u))2 + (1/2 + n(4/3)v)2

(m+ nu)2 + (−1/2 + nv)2

=
(1 +m+ n(1 + u))2

(m+ nu)2 + (−1/2 + nv)2
+

(1/2 + n(4/3)v)2

(m+ nu)2 + (−1/2 + nv)2

≤ max

{
(1 + (1 + u) + 1)2

12
,
(1 + (1 + u) + 1)2

u2 + (v − 1/2)2

}
+

(1/2n+ (4/3)v)2

(v − 1/2n)2

≤ max

{
(1 + (1 + u)u+ 1)2

12
,
(1(1 + u) + 1)2

u2 + (v − 1/2)2

}
+

(1/2 + (4/3)v)2

(v − 1/2)2
<∞

and

12



|z′ +m+ nτk|2

|z +m+ nτ |2
≥ (m+ nuk)

2 + (−1/2 + nvk)
2

(1 +m+ nu)2 + (1/2 + nv)2

≥ m2 + (−1/2 + n(2/3)v)2

2(1 +m+ nmax{u, v})2

≥ 1

2

(
min

{
1

1 + 1 +max{u, v}
,

((2/3)v − 1/2)2

1 + 1 +max{u, v}

})2

> 0.

Therefore, we have proved our lemma.

We now prove Theorem 1.2.

Proof. Firstly, By Lemma 3.3, for each τ ∈ A0, the value hτ is equal to the
unique zero of the pressure function of Sτ . Moreover, by Lemma 3.4 and The-
orem 3.5, we have that 1 < hτ < 2 for each τ ∈ A0 and hτ → 1 as τ → ∞ in
A0.

We next show that if a sequence {τn}n∈N in A0 satisfies limn→∞ τn = τ , then
λ({Sτn}n∈N) = Sτ . Since for all (m,n) ∈ N2, ϕz+m+nτ (z) = 1/(z + m + nτ)
and (ϕm+nτ )

′(z) = (−1)/(z +m+ nτ)2, condition (L1) is satisfied. Since X is
compact, there exist z0, zk ∈ X such that

log

(
sup
x∈X

|ϕ′m+nτ |/ sup
x∈X

|ϕ′m+nτk
|
)

= log(ϕ′m+nτ (z0)/ϕ
′
m+nτk

(zk))

= log(|zk +m+ nτk|2/|z0 +m+ nτ |2).

By Lemma 4.1, there exist C > 0 and K ∈ N such that for each k ≥ K and
(m,n) ∈ N2,

∣∣∣∣ log(sup
z∈X

|ϕ′m+nτ (z)|
)
− log

(
sup
z∈X

|ϕ′m+nτk
(z)|
) ∣∣∣∣

=

∣∣∣∣log(sup
z∈X

|ϕ′m+nτ (z)|/ sup
z∈X

|ϕ′m+nτk
(z)|
)∣∣∣∣ ≤ C.

Therefore, we have proved that if a sequence {τn}n∈N inA0 satisfies limn→∞ τn =
τ , then λ({Sτn}n∈N) = Sτ .

We next show that τ 7→ hτ is continuous in A0. By Theorem 2.9, Sτ 7→
hτ is continuous with respect to the λ-topology. By Lemma 3.3 of [8], if
λ({Sτn}n∈N) = Sτ , then limn→∞ hτn = hτ . Thus, if limn→∞ τn = τ , then
limn→∞ hτn = hτ . Therefore, we have proved that τ 7→ hτ is continuous in
A0.
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4.2 Proof of Main result B

In order to prove Theorem 1.3, we first show the following two lemmas.

Lemma 4.2. For each z ∈ X, (m,n) ∈ N2 and τ ∈ A0, ϕm+nτ ′(z) tends
to ϕm+nτ (z) as τ ′ tends to τ and this convergence is uniform on z ∈ X and
(m,n) ∈ N2.

Proof. We set z := x+ iy, τ := u+ iv and τ ′ := u′ + iv′. Then, we have

|ϕm+nτ ′(z)− ϕm+nτ (z)|

=

∣∣∣∣ 1

z +m+ nτ ′
− 1

z +m+ nτ

∣∣∣∣
=

∣∣∣∣ n(τ − τ ′)

(x+m+ nu′ + i(y + nv′))(x+m+ nu+ i(y + nv))

∣∣∣∣
=

n|τ − τ ′|√
(x+m+ nu′)2 + (y + nv′)2

√
(x+m+ nu)2 + (y + nv)2

≤ n|τ ′ − τ |
m2 + (n− 1/2)2

≤ 4|τ ′ − τ |, (5)

where, to deduce the last inequality, we use the following.

n

m2 + (n− 1/2)2
≤ n2

1 + (n− 1/2)2

≤ 1

1/n2 + (1− 1/2n)2
≤ 1

(1− 1/2n)2
≤ 4.

Therefore, we have proved our lemma.

Lemma 4.3. For any z, z′ ∈ X and for all τ ∈ Int(A0),∣∣∣∣ ϕ′m+nτ (z)

ϕ′m+nτ (z
′)

∣∣∣∣ ≤ 13. (6)

Proof. We set z := x+ iy, z′ := x′ + iy′ and τ := u+ iv. Then, we have

∣∣∣∣ ϕ′m+nτ (z)

ϕ′m+nτ (z
′)

∣∣∣∣ = ∣∣∣∣ (z +m+ nτ)2

(z′ +m+ nτ)2

∣∣∣∣ = (m+ nu+ x′)2 + (y′ + nv)2

(m+ nu+ x)2 + (y + nv)2

≤ (m+ nu+ 1)2 + (1/2 + nv)2

(m+ nu)2 + (−1/2 + nv)2

≤ (m+ nu+ 1)2

(m+ nu)2
+

(1/2 + nv)2

(−1/2 + nv)2

=

(
1 +

1

m+ nu

)2

+

(
1 + 1/(2nv)

1− 1/(2nv)

)2

≤ 22 +

(
3/2

1/2

)2

= 13.

Therefore, we have proved our lemma.
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We now proved Theorem 1.3.

Proof. We first show that τ 7→ hτ is subharmonic in Int(A0). Let z ∈ X and Let
(m,n) ∈ N2. Then, we deduce that the function τ 7→ ϕm+nτ (z) = 1/(z+m+nτ)
is holomorphic since the real part of −(m+z)/n is negative. That is, −(m+z)/n
is not an element of Int(A0). Thus, the map τ 7→ ϕm+nτ (z) = 1/(z+m+nτ) is
holomorphic in Int(A0). Hence, {Sτ}τ∈Int(A0) is plane-analytic. Therefore, by
using Theorem 2.11, we have proved that τ 7→ hτ is subharmonic in Int(A0).

We next show that τ 7→ hτ is real-analytic in Int(A0). Since for each τ ∈
A0 Sτ is a hereditarily regular CIFS, we have that for each τ ∈ Int(A0), Sτ

is a strongly regular CIFS. We now show that for any τ0 ∈ Int(A0), there
exists an open ball U ⊂ Int(A0) with center τ0 and η > 0 such that for all
τ ∈ U and w := (mi, ni)i∈N ∈ (N2)∞, |κτ0w (τ)− 1| ≤ η, where we denote
(ϕ′m1+n1τ (πτσw))/(ϕ

′
m1+n1τ0(πτ0σw)) by κ

τ0
w (τ).

We have that

ϕ′m1+n1τ (πτσw)

ϕ′m1+n1τ0(πτ0σw)
=

ϕ′m1+n1τ (πτσw)

ϕ′m1+n1τ0(πτσw)

ϕ′m1+n1τ0(πτσw)

ϕ′m1+n1τ0(πτ0σw)
. (7)

By Lemma 4.2, the first term of the right hand side of (7) tends to 1 as τ tends
to τ0. By Lemma 4.3, the second term of the right hand side of (7) is bounded
with respect to τ ∈ Int(A0) and w ∈ (N2)∞. Therefore, there exists an open
ball U ′′ ⊂ Int(A0) with center τ0 such that |Kτ0

w | is bounded in U ′′. Note that
Kτ0

w is holomorphic in Int(A0). By using the Cauchy formula

(Kτ0
w )′(τ) =

1

2πi

∫
∂U ′′

Kτ0
w (ξ)

(ξ − τ)2
dξ (τ ∈ U ′′),

we deduce that there exists M > 0 such that for all τ ∈ U ′, |(Kτ0
w )′(τ)| ≤ M .

Here, U ′ is an open ball with center τ0 such that U ′ ⊂ U ′′. Then, we have that

|Kτ0
w (τ)− 1| = |Kτ0

w (τ)−Kτ0
w (τ0)|

=

∣∣∣∣∫ τ

τ0

(Kτ0
w )′(ξ)dξ

∣∣∣∣
≤
∫ τ

τ0

|(Kτ0
w )′(ξ)||dξ| ≤M |τ − τ0|.

It follows that there exists an open ball U(⊂ U ′) with center τ0 such that for
all τ ∈ U and w ∈ (N2)∞, |Kτ0

w (τ)− 1| ≤ η.
Thus, for any τ0 ∈ Int(A0), there exists an open ball U ⊂ Int(A0) with

center τ0 such that {Sτ}τ∈U is regularly plane-analytic. By Theorem 2.10, for
any τ0 ∈ Int(A0), there exists an open ball U ⊂ Int(A0) with center τ0 such that
{Sτ}τ∈U is real-analytic. Since τ0 is arbitrary, we deduce that the map τ 7→ hτ
is real-analytic and subharmonic in Int(A0).
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4.3 Proof of Main result C

We now prove Corollary 1.4.

Proof. For each n ∈ N, let Bn := A0 ∩ {z ∈ C| |ℜz| ≤ n and |ℑz| ≤ n}. Note
that for all n ∈ N, the map τ 7→ hτ is subharmonic in Int(Bn) by Theorem
1.3. Let ϵ := (hi − 1)/2, where i =

√
−1. By Lemma 3.4, we deduce that

there exists N ∈ N such that for all τ ∈ A0 \ BN , |hτ − 1| < ϵ. It follows that
(hi − 1)/2 > hτ − 1. Then, we obtain that for all τ ∈ A0 \BN ,

hi > 2hτ − 1 = hτ + (hτ − 1) > hτ .

Since the function τ 7→ hτ is continuous in BN , there exists a maximum point
of the function τ 7→ hτ in A0 and

max{hτ | τ ∈ A0} = max{hτ | τ ∈ BN}.

Since the function τ 7→ hτ is subharmonic in Int(A0), there exists no maxi-
mum point of the function τ 7→ hτ in Int(A0). Thus, we have proved Corollary
1.4.

5 Appendix: the proof of the fact Jτ \ Jτ is at
most countable

In this section, for the readers, we give the proof of the fact for each τ ∈ A0,
Jτ \ Jτ is at most countable and hτ = dimH(Jτ ) ([11, Theorem 6.1]). We
introduce some additional notations.

Definition 5.1. Let S be a CIFS. We write S as {ϕi}i∈I . Suppose that I is a
countable infinite set. We set I∗ =

∪
n∈N I

n. Let z ∈ X and {zi}i∈I′ ⊂ X with
I ′ ⊂ I and |I ′| = ∞. We say that limi∈I′ zi = z if for each ϵ > 0, there exists
F ′ ⊂ I ′ with |F ′| <∞ such that if i ∈ I ′ \ F ′, then |zi − z| < ϵ.

We set

XS(∞) := {lim
i∈I′

zi ∈ X| ∃I ′ ⊂ I,∃ {zi}i∈I′ s.t. |I ′| = ∞, zi ∈ ϕi(X) (i ∈ I ′)}.

Mauldin and Urbański showed the following results. ([5])

Lemma 5.2. [5, Lemma 2.5 and Lemma 2.1] Let S be a CIFS. We write S as
{ϕi}i∈I . Suppose that I is a countable infinite set. Then we have that

JS = JS ∪
∪

w∈I∗

ϕw(XS(∞)) ∪XS(∞).

Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex continued frac-

tions. We set Xτ (∞) := XSτ
(∞). Sugita showed the following result ([11]).
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Theorem 5.3. Let {Sτ}τ∈A0 be the family of CIFSs of generalized complex
continued fractions. Then, we have that for all τ ∈ A0, Xτ (∞) = {0}. In
particular, for each τ ∈ A0,

Jτ = Jτ ∪
∪

w∈I∗

ϕw({0}) ∪ {0} and Jτ \ Jτ ⊂
∪

w∈I∗

ϕw({0}) ∪ {0}.

Proof. We first show that for all τ ∈ A0, 0 ∈ Xτ (∞). We set I ′τ := {m + τ ∈
Iτ | m ∈ N} ⊂ Iτ and bm := m + τ ∈ I ′τ . Then, we have that |I ′τ | = ∞ and
since 0 ∈ X, ϕbm(0) ∈ ϕbm(X). Let ϵ > 0. Then, there exists M ∈ N such
that M > 1/ϵ. Let Fτ := {m + τ ∈ Iτ | m ∈ N,m ≤ M} ⊂ I ′τ . We obtain that
|Fτ | <∞ and if bm ∈ I ′τ \ Fτ , then ϕbm(0) ∈ ϕbm(X) and

|ϕbm(0)| =
∣∣∣∣ 1

m+ τ

∣∣∣∣ < 1

m
<

1

M
< ϵ.

We next show that for each τ ∈ A0, a ∈ Xτ (∞) implies a = 0. Suppose that
there exists a ∈ Xτ (∞) such that a ̸= 0. Then, there exist I ′τ ⊂ Iτ and {z′b}b∈I′

τ

such that |I ′τ | = ∞, z′b ∈ ϕb(X) (b ∈ I ′τ ) and lim
b∈I′

τ

z′b = a. Let δ := |a|/2 > 0.

Then, there exists F ′
τ ⊂ I ′τ such that |F ′

τ | <∞ and for all b ∈ I ′τ \F ′
τ , |z′b−a| < δ.

In particular, for all b ∈ I ′τ \ F ′
τ ,

|z′b| ≥ |a| − |z′b − a| > δ. (*)

Moreover, for each z ∈ X, τ ∈ A0 and b ∈ Iτ , we write z := x+yi, τ := u+iv
and b := m+ nτ . Note that

|z + b|2 = |x+m+ nu+ i(y + nv)|2

= (x+m+ nu)2 + (y + nv)2

≥ (0 +m+ nu)2 + (−1/2 + nv)2 ≥ m2 + (n− 1/2)2.

Let M := 1/δ. By using the above inequality, there exists Nδ ∈ N such that for
all m ∈ N, n ∈ N and x ∈ X, if m ≥ Nδ or n ≥ Nδ, then |z + b| > M = 1/δ.
In particular, b ∈ Iτ \ Fτ (Nδ) implies that for all z ∈ X, |ϕb(z)| < δ. Here,
Fτ (Nδ) := {b := m+ nτ ∈ Iτ | n ≤ Nδ,m ≤ Nδ}.

By the inequality (*) and |Fτ (Nδ)| < ∞, this contradicts that there exist
b ∈ I ′τ \ (F ′

τ ∪ Fτ (Nδ)) and z′b ∈ ϕb(X) such that |z′b| > δ. Therefore, we have
proved that for all τ ∈ A0, Xτ (∞) = {0}.

Corollary 5.4. Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex

continued fractions. Then, we have that for all τ ∈ A0, dimH(Jτ ) = hτ .

Proof. By Theorem 5.3, we obtain that Jτ \ Jτ is at most countable. Note that
if A is at most countable, then dimHA = 0. Thus,

dimH(Jτ ) = max{dimH Jτ ,dimH(Jτ \ Jτ )} = max{dimH Jτ , 0} = hτ

Therefore, we have proved Corollary 5.4.
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