SPECTRAL GAP PROPERTY FOR RANDOM DYNAMICS ON THE REAL LINE AND
MULTIFRACTAL ANALYSIS OF GENERALISED TAKAGI FUNCTIONS

JOHANNES JAERISCH AND HIROKI SUMI

ABSTRACT. We consider the random iteration of finitely many expanding %' +¢ diffeomorphisms on the real
line without a common fixed point. We derive the spectral gap property of the associated transition operator
acting on spaces of Holder continuous functions. As an application we introduce generalised Takagi functions
on the real line and we perform a complete multifractal analysis of the pointwise Holder exponents of these

functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we investigate the independent and identically-distributed (i.i.d.) random dynamical systems
on the real line. The theory of dynamical systems is used to describe various subjects in basically all areas
of natural and social sciences. Since nature and any other environment have a lot of random terms, it is very
natural and important not only to consider the dynamics of iteration of one map, but also to consider random
dynamics. Many researchers in various fields have found and investigated many kinds of new phenomena
in random dynamics which cannot hold in deterministic dynamics. These phenomena arise from the effect
of randomness or noise and they are called randomness-induced phenomena or noise-induced phenomena
([JS15,JS17, Sum11, Sum13]). Under certain conditions, because of the effect of randomness or noise, the
chaoticity of the system becomes milder, but the system still has some complexity. Hence regarding such
random dynamical systems, our aim is to investigate the gradation between chaos and order.

To find and to study quantities describing the gradation between chaos and order, we combine ideas of
random dynamical systems, ergodic theory (in particular, thermodynamic formalism), iterated function
systems, and fractal geometry. More precisely, for any random dynamical system in our setting, there exists
an exponent o € (0,1) such that for each @ with 0 < ¢ < a._, the transition operator of the system behaves
well (e.g., it has a spectral gap property) on the space €% of a-Holder continuous functions endowed with
a-Holder norm, but for each a with o < a < 1, the transition operator of the system does not behave
well (Theorem 1.1, Corollary 1.5). This quantity ¢_ describes the gradation between chaos and order for
the system. Furthermore, to provide a refined gradation, we investigate the pointwise Holder exponents
of the limit state functions (i.e., fixed points of the transition operator) and their (higher order) partial
derivatives with respect to the probability parameters. It turns out that the pointwise Holder exponents
have a complicated fine structure which can be suitably investigated using the multifractal analysis and
the concept of fractal dimension (Theorems 1.3, 1.4). The objects appearing in the multifractal analysis
also describe the gradation between chaos and order for the system. Moreover, we present a new general
framework to study a large class of fractal functions. In particular, we shed new light on the regularity

properties of the classical Takagi function in our framework (see Theorem 1.4 and Proposition 1.6).
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Throughout, let I :={1,...,s+ 1}, s> 1, and let f; : R — R, i € I, be a family of ¢1te diffeomorphisms
with e-Holder continuous derivatives for some € > 0. We say that (f;);c; is expanding if there exists A > 1
such that f/(x) > A > 1, forall x € R and i € I. The family (f;)ic; has no common fixed point if there exists
no x € R such that fj(x) =xforalli € 1.

We denote by R := R U {=oo} the two-point compactification of R endowed with a metric d on R which is
strongly equivalent to the Euclidean metric on compact subsets of R, that is, for each compact set K C R
there exists a constant C > 0 such that C~!|x — y| < d(x,y) < Clx—y
the definition of f; from R to R by setting f;(4o0) := +oo. We say that (f;);e; is contracting near infinity if
there exist neighborhoods V* of o such that Lip(fjjy=) < 1,i € l. Here, for D C Rand g: D — R, we

, forall x,y € K. For i € I we extend

have set Lip(g) := sup, yep vz, d (8(x),8(y)) /d(x,y). Note that if (f;)ie/ is contracting near infinity then
Lip(f;) < oo for each i € I. We refer to Section 7 for details about the property of contraction near infinity.

Throughout, we assume that (f;);c; is expanding, has no common fixed point, and is contracting near
infinity. Forp= (p1,...,ps) € (0,1)° with Y, p; < 1, let ps;1 := 1 =Y, pi. Let €' (R) denote the Banach
space of continuous functions endowed with the supremum norm || - ||. Define the transition operator
Mp:€¢ (R) =% (R), Mph=Y pi-hof;, he ¢ (R).
i€l

For o > 0 let €*(R) denote the Banach space of o-Hélder continuous functions (see Section 2). Note that
My (€*(R)) C €*(R). To state our first main result we say that M, has the spectral gap property if its
spectrum consists of finitely many eigenvalues of modulus one, and the rest of the spectrum is contained in
a ball of radius strictly less than one. We say that (f;);cs satisfies the separating condition if there exists a
non-empty bounded open interval O C R such that ffl (O) C O, foralli€l, and forall i, j € I withi# j,
we have £, (0) N f;' (O) = @. For the definition of the bottom of the spectrum ¢t = o (p) we refer to
Section 2.2. For a € R and § > 0 we denote by B(a, §) C R® the open ball of radius § with center a in R®.

Theorem 1.1 (Theorem 2.4 and Theorem 2.15). For every pg € (0,1)* there exist 8 > 0 and a > 0 such
that My, : €*(R) — €*(R) has the spectral gap property for every p € B(po,8). If (fi)ic1 satisfies the

separating condition, then the previous assertion holds for any o0 < o (po).

By combining with the perturbation theory of linear operators we can derive that the probability of tending
to infinity 7 := T, : R — [0,1] (see (2.1) below for the definition) depends real analytically on p (see

Theorem 2.4 for the detailed statement). This allows us to make the following definition. Let Ny :=

0,1,...}.

Definition 1.2. We denote by .7 := .7}, the R-vector space of generalised Takagi functions generated by
JLiz1ni —
Ca(x) :=Cup(x) := m]}ulwm(x)|(ul7_._7us):p_’ n=(ny,...,n;) € Nj, x e R.
For the reason why we call the elements of .7 generalised Takagi functions, we refer to Remark 2.17. We
then proceed to investigate the regularity of the elements of .7. The pointwise Holder exponent of C € .7
at x € R is denoted by Ho61(C,x) (see (3.5) below for the definition). We denote by J the Julia set of (f;);es
(see Section 2.1). For p € (0,1)* we define o; = ot (p) in Section 2.2. We say that (f;);c; satisfies the
open set condition if there exists a non-empty bounded open interval O C R such that fi’1 (0) C 0, for all
i €1,and forall i, j € I withi # j we have f;'(0) ﬂf;l (0) = @. By t* we denote the Legendre transform
of the function ¢ defined implicitly by a certain topological pressure functional (see Section 3.2). Denote by

dimy (A) the Hausdorff dimension of a set A C R with respect to the Euclidean metric.
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Theorem 1.3 (Theorem 3.16). Suppose that (f;)ic; satisfies the open set condition. Let C € 7\ {0}. Then
we have for all o € [o_, a4 ],

dimy {x € J | H6I(C,x) = a} = —1"(— ),

and for a ¢ [o_, o] we have {x € J | Hol(C,x) = a} = @. The function g(o) := —t*(—at) is continuous
and concave on [0, ot ]. If a— < . then g is real-analytic and positive on (0.—, 0.y) and satisfies g < 0
on (o, o).

We prove the following result regarding the global Holder continuity of elements of .7.

Theorem 1.4 (Theorem 4.1, Corollary 4.3). Suppose that (f;)ics satisfies the open set condition. Then, for
each C € 7\ {0} we have a— =sup{ot > 0|C € €*(R)}. Further, T € €% (R).

The following corollary indicates that the random dynamical system generated by (f;)ics, (pi)ier still has

some kind of complexity.

Corollary 1.5 (Corollary 4.4). Suppose that (f;)ics satisfies the open set condition. If a_ < 1 then
limy, o | My ||l = oo, for each o < a0 < 1, where ||M}||o denotes the operator norm of My on €% (R).

Regarding the existence of points of non-differentiability of elements of .7 we prove the following. Let
¢; € N denote the k-th unit vector in Nj), 1 < k < 5. We use C, to denote C(m> for m € Ny.

Proposition 1.6 (Proposition 5.1). Suppose that (f;);c; satisfies the open set condition.

(1) If a_ < 1, then there exists a dense subset E C J of positive Hausdorff dimension such that, for
every C € 7\ {0} and every x € E, C is not differentiable at x.
(2) If o =1 and s = 1 then C,, is nowhere differentiable on J, for every m > 1.

For applications of our results to conjugacies of interval maps we refer to Section 6. In fact, if (f;)ies
satisfies the open set condition, then the probability of tending to infinity 7}, can also be characterised as
the conjugacy map between the expanding dynamical system defined by (f;)ic; on J and the dynamical
system given by the piecewise linear map on [0, 1] with (s+ 1) full branches and slopes given by (1/p;)ic;
(see Lemma 6.1). By the rigidity dichotomy in [JKPS09, Theorem 1.2], if J is an interval, then either
a_(p) = o (p) and T, is a €' *¢-diffeomorphism, or a_(p) < ot (p) and the set of non-differentiability
points of T}, has positive Hausdorff dimension. For general families (f;);cs satisfying the open set condition,
we can show that o (p) = o (p) if and only if 7, € ¥'4™#(/)(R) (see Section 6).

Higher order derivatives of the classical Takagi function have been considered in [AKO06], where it is shown
that the classical Takagi function and the higher order derivatives of the Lebesgue singular function for
p = 1/2 are nowhere differentiable and convex Lipschitz ((MW86]). These results are covered by our
general theory. Namely, since for this special case we have o = 1 and s = 1, the non-differentiability
follows from Proposition 1.6 (2). That these functions are o-Holder continuous, for every o < 1, follows

from Theorem 1.4. In fact, we can also derive that the functions are convex Lipschitz (see Remark 4.2).

Generalised Takagi functions have also been introduced in [HY84]. As already observed in [AKO06], the
higher-order derivatives of a systems (f;);c; with constant derivatives are not covered by the setting in
[HY84]. In [SS91] it is shown that the Lebesgue singular function depends real analytically on the para-
meter, and its higher order derivatives are considered. We point out that our general definition of 7 is a

far-reaching generalisation of the above concept, where we consider an arbitrary finite number of %' +¢
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diffeomorphisms and arbitrary linear combinations of higher order partial derivatives of the probability of

tending to infinity with s > 1 parameters.

We remark that in the previous works of the authors [JS15, JS17] we dealt with the random complex dynam-
ical systems satisfying the separating condition. However, in this paper, we deal with random dynamical
systems on the real line satisfying the open set condition. Note that the separating condition implies the
open set condition. When we deal with general systems satisfying the open set condition, we have to over-
come new difficulties. In fact, the relation between the pointwise Holder exponents of elements of .7 and
the corresponding dynamical quantities is much more involved than in the case of the separating condition.
We developed several new ideas (see Propositions 3.11 and 3.15) to overcome these difficulties. In the case
of the separating condition we show that o is the supremum of the exponents & for which the transition
operator has the spectral gap property on €’* by developing some idea from [JS17] and providing a new
approach.

In Section 2, we derive the spectral gap property for the transition operator associated with random dynam-
ical systems on the real line. In Section 3, we perform a complete multifractal analysis of the pointwise
Holder exponents of the elements of .7 associated with (f;);c; and p € (0,1)*. In Section 4, we investigate
the global Holder continuity of the elements of .7. In Section 5, we study the (non-)differentiability of the
elements of 7. In Section 6, we show how our results are related to interval conjugacy maps. In Section 7
(Appendix), we will show that, by modifying the (f;);c; near infinity, we can always assume that an ex-
panding family (f;);es is contracting near infinity with respect to a metric d which is strongly equivalent to

the Euclidean metric on compact subsets of R.

Acknowledgements. The authors would like to thank Rich Stankewitz for valuable comments. The re-
search of the first author was partially supported by JSPS Kakenhi 15H06416, 17K14203. The research of
the second author was partially supported by JSPS Kakenhi 15K04899, 18H03671.

2. SPECTRAL GAP PROPERTY

In this section we derive the spectral gap property for the transition operator associated with random dy-

namical systems on the real line induced by a family (f;);e;.

2.1. General results. Let I* :=J,cnI". For @ € I'* we denote by |@| the unique n € N such that ® € I".
For 0 = (@i,...,@,) € I" we let fiq, . a,) = fo,© "0 fu,. Also, for ® € ¥ and n € N we put @, :=
(@i,...,@,) € I". Since (f;)ic is contracting near infinity, there exist neighborhoods V* of +oc in R such
that, for each x € V™ (resp. x € V™) we have forall ® € X,

fo, (x) = Foo  (resp.fu, (x) = —o0), asn—eo.
We put
Vi=VTuv-.
Denote by G := (f1,... fs+1) := {fo | ® € I} the semigroup generated by f1,..., fs+1 Where the semigroup

operation is the composition of functions. The Julia set of G is defined as
J := {x € R| G is not equicontinuous in any neighborhood of x} .

Note that the inverse maps ( flfl) i € I, form a contracting conformal iterated function system (see e.g.

[R\w
[Fal03, MUO3]) and J is the limit set (or attractor) of this system.
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Let X :=I". For ® = (@, ,,...) € X we define
-1 _
Jo= (fw‘n) (R\V).
neN
Note that Jy, is a singleton because (f;)es is expanding. We define the coding map 7 : £ — R given by
N (fo,) ' R\V) = {n(0)}, o@cX.
neN

It is easy to see that
J=JJo=n(2).

wer

The kernel Julia set of G ([Sum11]) is given by

Jier := ﬂ gil (‘]) cJ
geG

Forp = (pi,...,ps) € (0,1)° with i, p; < 1, let pgy1 := 1 =Y, p;. Let up denote the (pi, ..., ps, Psi1)
Bernoulli measure on X.

Proposition 2.1. We have Jyer = @. Moreover, we have i, ({@ € L | x € Jp}) =0, for each x € R.

Proof. Since (f;)ics is expanding without a common fixed point, for all x € R there exists g, € G such
that g.(x) € V. Hence, Jyr = @. By [Sumll, Lemma 4.6] we have up ({@ € Z | x € Jp}) = 0, for each
xeR. |

Recall that My, is almost periodic if (Myh),>1 is relatively compact in €' (R), for each i € ¢(R). The dual
operator of My, is given by M, : #(R) — .#1(R), where . (R) denotes the space of Borel probability

measures on R endowed with the topology of weak convergence. We define the compact subset

Jmeas 1= {m € 4\ (R) | (M},

>)n=1 is not equicontinuous in any neighbourhood of m} C .7 (R).

The following fact is a special case of [Sum11, Proposition 4.7, Lemma 4.2(6)].

Proposition 2.2. We have that Jyeqs = & and that My, % (R) — €' (R) is almost periodic.

By a well-known result of Ljubich ([Lju83]) on almost periodic operators, we have

¢(R)={heC[R)||Mph|l« — 0, asn— oo} @span{h € ¢(R) | Ip € S! | Myh = ph}.

As in [Sum11] we define the probability of tending to infinity

@.1) T, R—[0,1], Tp(x) =ty {w EX | lim fo, (v) = oo} .

It follows from Proposition 2.1 and the dominated convergence theorem that for every 4 € €’ (R) that
2.2) JﬂMﬁh(x) = ’}gl;lo ho faw, 00 fo,(x) dup(®) = Tp(x)h(e0) 4+ (1 — Tp(x))h(—c0).

Hence,
span{h € €(R) | 3p € S' | Mph = ph} = RT, ®R1

and we have by Ljubich’s result,

M2 — (h(e0) — h(—=o0)) Ty — h(=o0) 1o = 0, as 1 — oo,
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For @ > 0 we say that & : R — R is a-Holder continuous if
h(x)—nh
o HEHON)
x#£y d(xay)
We say that a function is Holder continuous if it is «-Ho6lder continuous for some ¢« > 0. We denote by

%“*(R) the Banach space of a-Holder continuous maps on R endowed with the a-Holder norm
Ao :=Va+||Alle, hEE*R).

The following lemma is the key to derive the spectral gap property of M}, on ¢'* (R). The proof is inspired
by [Sum13]. For n € N and @ € I"" we will use the notation

Hence, we have forn € Nand h € € (R)

Mgh = Z Po-(ho fo) :/hofw‘n diip(@).

wel"

Lemma 2.3. For every po € (0,1)° there exist § >0, a > 0, n € N and constants 0 < ¢ < 1 and C > 0 such
that, for every p € B(po,8) and for every h € €*(R),

|Myh(x) = Mph(y)| < (cllh]le+ClAll-)d(x,9)%,  xyeR.

Proof. Recall thatV =V 1TUV ™. Since (f;);cs is expanding without a common fixed point, we have that, for
all x € R there exists g, € G and a compact neighborhood U, of x in R such that g,(U,) C V. Since R is com-
pact, there exist € Nand x1,...,x € R such that R = (J;_ Int(U,;), where Int(A) denotes the interior of a
set A C R. Since Ugea g(V) C V we may assume that there exists r € N such that, for each j=1,...,¢ there
exists B/ € I” with g,; = fpi- For @ € I" with |®| = ¢ we denote by [@] :={T€X| 11 = 1,..., 7 = &y}
the cylinder set of @. Let
a:=a(p):=max{l—pp([B/]) |1 <j<t} <L
Recall that Lip(g) < o, for every g € G. Let
A:=2-max{max{Lip(fp) | @ €I"},1} > 2.
Let R > 0 be a Lebesgue number of the covering (Int(U,;,)) 1< OF R. Let o > 0 such that
n:=aA* < 1.
Let n € N to be determined later. Let x,y € R. Since Mj; has norm one, we may assume that d(x,y) < R.
Let
n(x,y) := max {k >0|A*R> d(x,y)} .
If n(x,y) < n, then d(x,y) > A™"R and the desired estimate follows with C :=2A"*R™%. Now, we con-
sider the case n(x,y) > n. Then we have d(x,y) < A™"R. Consequently, for j < n and @ € I'" we have
d(fo(x), fo(y)) < R. By the definition of R there exists iy € {1,...,7} such that B(x,R) C Uy, . Let
A(0) := [B] C £ and B(0) := X\ [B]. We define inductively, for j > 1,
A(j) = {w €B(j—1)|3i € {1,...,1} such that B(fa,,(x),R) C Uy, and (@yj1,... 0j11) = /3’}

and B(j) :=B(j— 1)\ A(j). We have

|MZh(x) — M h(y)| < +

/B(nfl) h(fw"‘” (x)) = h<fw\m (v))dup ((D)‘ .

n—1
jgo/A(j) h(fe,,(x)) = (fa,, (v))dpp (@)
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Since pp(A(j)) < a’ for every j <n—1, and B(fo, ;1 (x),R) CV, for every € A(j), we can estimate
with
S :=max {Lip(f;y+),Lip(fyy-) | i€} <1 andé&:=max{n,s"} <1,
/A . 1 Far (5)) = o, ()| dbtp (@) <@ sup [h(fa, (¥)) = h(fa, ()]

OEA(])

<@l sup { (S(nijil)rd (f“’\r<j+1> (%) fa 51 (y)> ) "‘}

WEA())
< ajS(nfjfl)rocA(jJrl)athvllad(x’y)a
=0/ ()" TN [y lad (x,0) < A%y [lad (x,3) %

Finally, we verify that

Sy [P 50 =R, (00 iy (@) < (B0 —1) st

w€eB(n—1)

1 f,,(x) = ho fa,, )|

o
<dlhlla sw d(fo, (). fo,0))
weB(n—1)

< a"||hl[a A" d(x,y)* < 0"||Allad(x,y)".
We have thus shown that
My h(x) =My h(y)| < (n&" A%\ Ay lloc + 1" | Allec) d(x, )%

For n sufficiently large, the assertion of the lemma follows. It is clear that ¢ = a(p) and thus, o and the
other constants involved, depend continuously on p. Therefore, the assertion of the lemma holds with
locally uniform constants. The proof is complete. (]

Remark. 1t follows from the proof that result of the previous lemma holds for every o < —log(a)/log(A).

Theorem 2.4. For every py € (0,1)* there exists § > 0 and ot > 0 such that My : €*(R) — €*(R) has the
spectral gap property for every p € B(po, 8). In particular, for every p € B(po, 8) we have T, € ¢*(R) and
the convergence

[Mph — (h(e0) — h(—0))Tp — h(—0)1|l = 0, asn— oo,

is exponentially fast. Moreover, the map p — T, € ¢*(R) is real-analytic on B(po, §).

Proof. By Lemma 2.3 there exist 6 >0, & >0,n €N, 0 < ¢ < 1 and C > 0 such that, for every p € B(py, )
and for every h € €% (R), we have the Tonescu-Tulcea and Marinescu inequality

1Ml < cllbllq + (C+ D).

Therefore, the theorem follows from the well-known result of [ITM50] in tandem with the perturbation
theory for linear operators ([Kat76]). (]

Remark. We remark that a result similar to Theorem 2.4 has been obtained in [Sum13, Theorem 3.30] in the
framework of random complex dynamical systems. In this paper, we deal with random real one-dimensional
dynamical systems. Regarding the proof of Theorem 2.4, we obtain a simple and straightforward proof by

using the Ionescu-Tulcea and Marinescu inequality.

Corollary 2.5. For every po € (0,1)° there exists § > 0 and o > 0 such that Fp, C €*(R) for every
p € B(po,9).

The next lemma can be proved exactly as in [JS17, Lemma 4.1].
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Lemma 2.6. For every n € Nj) we have

s
Ch = MpGy + Zni (Cnfe,- o fi—Cn—¢ Ofs—H) .
i=1

=

1

The Bernoulli measure (i, on X defines the probability measure fi, = Upo ™" onJ with distribution function

Fp ‘R— [071]7 Fp(x) :[LP{<_°°ﬂx]}'

Lemma 2.7. We have MpF, = F,,.

Proof. Clearly, i, is a self-similar measure on X, i.e.,

s+1 |
Up = ZPilJpoo'f )

i=1
where 0; : £ — X is given by 0;(®) := i®. Using that fi‘l o T = 7o 0;, we obtain for every Borel set B C R,
. s+1 | |
fip(B) = pp (n~'(B)) = ) pittpoo; ' (n~'(B))
i=1

s+1 1 s+1
=Y pipor™ (') (B)= Y. pifip (f(B)NJ).
' i=1

i=1

Setting B := (—o0,x] the lemma follows. O

Note that M}, can be defined for every Borel measurable function.

Lemma 2.8. T}, is the unique bounded Borel measurable function such that MyTy = T and Ty,y- = 0 and
Tp\v+ = 1. In particular, T, = Fy.

Proof. By (2.2) we have that MpTy, = Tp,. Clearly, T, is bounded and measurable, and satisfies Ty~ =0
and Tpy+ = 1. Let h be another bounded Borel measurable function such that Mph = h and hjy- = 0 and
hyy+ = 1. Note that (2.2) in fact holds for every bounded Borel measurable function which is continuous at
{#eo}. Therefore, we have

h(x) = lim Myh(x) = h(e2)Tp(x) + h(—e=) (1 = Tp(x)) = Tp(),
which proves the asserted uniqueness. To prove that T, = I, we note that Fy, is bounded and Borel measur-
able, MpFp = Fp, Fyy- = 0 and Fyy+ = 1. The assertion of the lemma follows. O

The following fact follows immediately from the definition of Fy.

Fact 2.9. F, (and hence, Tp) is locally constant precisely on R\ J.

2.2. Improved spectral gap property for systems with separating condition. In this section we derive

an improved spectral gap property for systems satisfying the separating condition. We define the potentials

, and yi=yp:Z= R, y(w):=logpy,.

¢: =R, @(0):=—log|fy (1(w))
We define the shift map 6 : X — X, 6((01,,...)) := (@2, ®s3,...). Foru:X — R and n € N we denote

by Syu := ):Z;(l) uo o the nth ergodic sum. Further we let

o SaYp (@) : Sn¥p(@)
2.3) a_ =0 := inf liminf , oL i=a := sup limsu ,
() wer n—o  S,p(m) * +(p) weg néwp Sno(®)

and we refer to a_ as the bottom of the spectrum.
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Lemma 2.10. The map p — o_(p) is lower semi-continuous on (0,1)*.

Proof. Let pg € (0,1)°. For every € > 0 there exists 6 > 0 such that ||y, — yp, || < €/min|¢| for every p
with |p —po| < 8. Let p with [p—po| < 8, @ € X and ny — oo, as k — o, such that

SI(©) o

k—eo Sy, @(®)

The existence of such ® € ¥ and (n;) follows from [Sch99]. We have

S”k wp(w) _ S”k Wpo(w) S”k WD((D) — S”k V’Po(w) )

Sup(@) Sy () S P (@)

Since

S’lk Wp(w) B S”k Wpo(w) < nk” WP — lI’p(} H <€ and liminf Snk Wpo(w)

" > o ,
S p(@) ~  mmin|@| ke S, 0(0) (Po)

we conclude that

o_(p) = lim w > liminfS"kLO(w)

—e> —e.
i S o(@) = minf g o) €20 -€

Remark. Similarly, one can show that p — o (p) is upper semi-continuous on (0, 1)*.

Lemma 2.11. There exists 1) < 1 such that for every compact set K C R\ J there exists a constant Cx < oo
such that for all x,y € K belonging to the same connected component of R\ J, we have for every @ € I*,

d(fo(x), fo(y) < Ckn'®ld(x,y).

Proof. There exists N = N(K) € N such that foralln > N, @ € I" and all x,y € K belonging to the same com-
ponent of R\ J, we have either fo(x), fo(y) € VT or fu(x), fo(y) € V™. For otherwise, there exists T € £
such that fz, (x) € R\V, forall n € N, contradicting that x ¢ J. Let S := max {Lip(f;y+), Lip(fyy-) | i € I}.
Since (f;)ier is contracting near infinity, we have S < 1. For n > N and @ € I" we have
N
0 Fal0). Fa3) < 5"V (i (0 o, ) <" (maxLip(F) ) d(x3) = "),
where we have set Cx := SV (max;c; Lip(f;))". The estimate for n < N can be shown similarly. O

Definition 2.12. We say that (f;);c; satisfies the separating condition if there exists a non-empty bounded
open interval O C R such that ffl (0) C O, for all i € I, and for all i, j € I with i # j, we have ffl (o)n
fj’1 (O) = @. If the separating condition holds, then we may always assume that O is bounded and that
JCoO.

The proof of the following lemma is standard and therefore omitted (see e.g., [MUO3]).

Lemma 2.13 (Bounded distortion). Let Q be a bounded open set such that f;"'(Q) C Q for all i € I. Then

we have

| £y
| £5(va
Lemma 2.14. Suppose that (f;)ic; satisfies the separating condition. Let py € (0,1)% and 0 < o0 < ot—(po).
Then there exist 6 > 0, n € N and constants 0 < ¢ < 1 and C > 0 such that, for every p € B(py,9),
h € €*(R) and for all x,y € R,

(24) D:=D(Q):= sup{ ;I’}/GI*,Vl,vzefy—l(Q)} < oo,

|Mph(x) = Mph(y)| < (cl|Alloc +Cllhll) d (x,y)".



10 JOHANNES JAERISCH AND HIROKI SUMI

Proof. Suppose that the separating condition holds with bounded open interval O. We may assume that
J C O and that there exists rg > 0 such that for all 7, j € I with i # j,

1" (B(0,r0)) € B(O,r0) and f; (1 (B(0,10))) R,
where B(O, ry) := U,coB(u,r0). For i # j we define the compact sets

I(i,jIij(m) and K':= |J KijCR\J.
i.jel, i

Let § :=d(R\ 0,J). Since J C O is compact, we have § > 0. Define the compact set
K:=KU{ueR\J,d(uJ)>8/2} CR\J.
Since O is compact, by modifying ry if necessary, we may assume that

(2.5) V' e ovy e B rg)Viel: d(fi(x),£i(y))) < &/2.

Let x,y € R and n € N sufficiently large (to be determined later). We now distinguish two cases. First
suppose that x ¢ O. We may assume that d(x,y) < §/2. Hence, x and y are contained in the compact set
{ueR|d(u,J)>68/2} C KCR\J and belong to the same connected component of R \ J. Therefore, by

Lemma 2.11, we have

[Mph(x) = Mgh(y)| < ) pelh(fe(x)) —h(£:(0)) < ) pellhlla (Ckn™)*d(x,y)® < |Ihlla (Ckn")*d(x,y)".

|z|=n |7l=n

For n sufficiently large, we have (Cxkn")* < 1. This finishes the proof in the case when x ¢ O.

Next we consider the remaining case x € O. Let
U= sup{€ > 0] 3w € I"U{a} such that fo,(x) € O forany 0 < j < E} € NU{0,c}.

Then there exists a unique (@y,..., @) € I such that foy, -+ fw, (x) € O. Here, if £, = 0, then we set
Jo,  fo, (x) = x. We distinguish two subcases (a) £, > n and (b) £, < n. We begin with subcase (a). For
all j=0,1,2,... let

Bj(x) := fo . (B(fol;(x),70)),

where By(x) := B(x,rp). We may assume that y € B,(x). We have the decomposition

r=J U Aey}

Jsn|tl=n—j,n#0in

Forall j <nand 7y € I\ {®;41} we have
fa (fo, (Ba@)) € Fr (fi),, (0.10)) €K' CR\LL
By Lemma 2.11, for all j < nand T € I"™/ with 7| # @}, we have
d(fe (fo, ) e (fo, 00) ) < Com™ 7 (frya, () frr, )
< CrrLip(fe 0" (fun, (), fo, )
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Put C) := Cg max;¢; Lip(f;). Since h is Holder continuous, we can assert that

’M;h(x) —MSh(y)| = Z Pol; Z Pr (h (fr (fw‘j (x))) —h (f‘: (fcow- (y))))
Jj<n

[T|=n—j,r1#0)1

<Yro, X pelllaCi e (o, (), i, )

jsn [T|=n—j,r1# ;1
o n—j—1\% o
< Ctlla ¥ por, (171 (fo, (). S0, )
Jj<n

Using that d is strongly equivalent to the Euclidean metric on the compact set B(O,rp) C R and combining
with the bounded distortion estimate in (2.4) of Lemma 2.13 with Q := B(O, ry), we deduce the existence
of Dy < oo such that

[Mph(x) = Mph(y)| < CEDE (IRl Y poy, (1" 71)" [foo, ()| (x, )"
Jj<n

The following was proved in [JS17, (6.2) in the proof of Theorem 1.3]. There exists a C(¢@, y}) such that
for all j € N and for all € £,

(26) eSjWP(a)) < C((p7 Wp)ea_ (P)Sj‘pm))'

It is easy to see that C(¢@, yp) depends continuously on p € (0,1)*. Let ® = (®;, ..., @, ®1,...,0,,...) €
Y. By combining (2.6) with the bounded distortion estimate in (2.4) we have for some D; with D; > Dy

Payy < D PC(0, yp) | fiy ()P,

Hence, we obtain

(M (x) —ME(3) | < CEDE Py e X n T 1y (6)]% Pa(x.y)®.

j<n

For & > 0 sufficiently small and p € B(po, 6) we have sup,cgp, 5)(0¢ — - (p)) < 0 by Lemma 2.10. Also
we can define C(@, ¥) := suppep(p, 5) C(@, Yp) < o. Since |fy, ()| > A/ there exist fj < 1 and C; < o
such that for all j < nand p € B(po,9),

e o (@)% P < on.

Therefore,
(M4 (x) = M"h(y)| < CFDY PC (@, ) ] Con"d (x.)*.
Putc:= Cf‘D‘lHa‘ (p)C((p, y)||1||aCanfy”. For n sufficiently large we have ¢ < 1. Thus, assuming subcase

(a), we have derived the desired estimate.

Finally, to complete the proof, let us consider the subcase (b) when ¢, < n. We may assume that y € By (x).

We estimate

) —Mgh()| < | X po, X pe(h (e (fo,0)) =4 (e (fo, )

J<lbx [t|=n—j,11#®j 1

e )1 )

The first summand on the right-hand side satisfies an o-Holder condition with ¢ < 1 for n large by the same

+Pw\[x

arguments as in (a) above. Finally, to deal with the second summand, let x’ := f,, ., (x) and Y = fo o )
Since y € By, (x) we have that d(',y’) < ro. By the definition of ¢, we have that f;, (x') ¢ O for all 7| € I.
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By (2.5) we have d(fz, (y'),J) > 6/2 > 0. Since moreover fr, (x') and fr, (') are in the same component of
R\ J, Lemma 2.11 implies that

4 (fe (fol, @) o fe (fal, 0))) < Con"™ 5 fa, () Fa, )

The rest of the proof runs as in subcase (a) above. The proof is complete. (|

We thus obtain the following strengthening of Theorem 2.4 when the separating condition holds.

Theorem 2.15. Suppose that (f;)ic; satisfies the separating condition. Let po € (0,1)* and o < o (po).
There exists § > 0 such that Mp : €*(R) — ¢*(R) has the spectral gap property for every p € B(po, ).
Moreover; the map p — Ty € €*(R) is real-analytic on B(py, ).

Corollary 2.16. Suppose that (f;)icr satisfies the separating condition. Let po € (0,1)* and o < a_(po).

There exists 8 > 0 such that F, C €*(R) for every p € B(po, 9).

Remark 2.17. By Proposition 4.5 below it will turn out that in many cases, 7, ¢ € (7)(R). Hence, by the
previous corollary, the spectral gap property stated in Theorem 2.15 is sharp. In particular, this is the case
for the classical Takagi function. Namely, let fi (x) = 2x, f2(x) = 2x— 1. Then J = [0, 1] and T} /5(x) = x for
x € J and Cy is a multiple of the classical Takagi function on J. Hence, a_ =1, T} 2 is Lipschitz continuous,
and C; is a-Holder continuous for every o < 1, but not Lipschitz continuous. For further examples, see

Proposition 4.5.

3. MULTIFRACTAL ANALYSIS OF THE POINTWISE HOLDER EXPONENT

In this section we perform a complete multifractal analysis of the pointwise Holder exponents of the ele-
ments of .7 associated with (f;);c; and p € (0,1)*. We begin by providing the necessary terminology which
has been introduced in [JS17]. We use n = (ny,...,n,) to denote an element of Nj. Let ¢; € Njj denote the
element whose ith component is 1 and all other components are 0. An element A € RNoNo is represented
asA = (Ax,y)(x,y)eNg)xN{)» where Ay y € R, and such an element A is called an (Nj-)matrix. Ay y is called the
(x,y)-component of A. We denote by 1nm € RYo*No the matrix such that for every (x,y) € Nj x Nj) the
(x,y)-component of 1y, y is given by
1, x=n,y=m

(1n.,m)x7y =
0, else.

In order to investigate .7 we define the matrix cocycle Ag : £ x N — RYo*No given by

ZneNg)(Pwl1n,n+nw11n,n7ewl); o € {1,...,S}

ZnENB (Pw1 1n,n - le'zl niln,nfei)v o) =s+1

Ao((x), 1) =
and for k € N,
Ao(@,k) :=Ag(®,1)Ag(0w,1)...Ag(c" '@, 1) € RNo* Mo,
Here, the matrix product Ao (7, 1)Ag(v, 1) € RNo*MNo is for 7, v € £ and 1,m € N}, given by

G.D (A0(7,1)-Ao(v, 1)) =}, (Ao(7, 1)) (A0(V, 1))y -
keNj

Note that the sum in (3.1) is actually a finite sum. Further matrix products in the definition of Ay (®, k) are

defined in the same way. We also define

A(w,k) := (pw‘k)_le(a),k) c RNo*Ng |
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Moreover, for all a,b € R we define the matrix
U(a,b) = (un(a7b))n€Nf) e RN given by un(a,b) := Cu(a) — Ca(b).

Remark. In (3.1) and in the following we make use of the product of matrices with an infinite index set.
These matrix products will always be well defined, since either the first factor of the product possesses
at most finitely many non-zero entries in each row, or the second factor contains at most finitely many

non-zero entries in each column.

Since the above definitions of Ay and A coincide with the ones given in [JS17] we immediately obtain the

following two lemmas. For n,m € Nj we write n <m if n; <m; foreach 1 <i <s.

Lemma 3.1 ([JS17], Lemma 4.5). Let @ € £ and k € N. Then A(@,k)nn = 1 for every n € Njj. Also,
A(@,k)nm = 0 unless m < n.

Lemma 3.2 ([JS17], Lemma 4.8). Let ® € I" and k € N. Put m; := m;(k) :=card{1 < j < k: w; =i} for
1<i<s+1. Letm= (m;);_, € Nj. Let q, r € Nj with 0 <r < q. Then there exists a constant K > 1 which
depends on q and the probability vector p but not on k such that

S
A(@.K)ael <K ( "’> AU and 4(0,K)q.] < KA
=1

where iitj :=max{1,m;} for | < j<s+1.Ifw;#s+1forall1 < j<kandm;>q;—r;forall1 <i<s,
then there exists K' > 0 depending only on q such that

N
A(@,k)qr > K'[mi "
i=1

Definition 3.3. We say that (f;);cs satisfies the open set condition if there exists a non-empty bounded open
interval O C R such that £, (0) C O, forall i € I, and for all i, j € I with i # j we have f;"!(0) ijfl (0)=
J.

We write A < B for subsets A,B C Rifa < b foreverya € A and b € B.

Remark. 1f (f;)ier satisfies the open set condition, then we will always assume that f;"'(0) < fj.*l (0) for
alli,jelIwithi<j.

The purpose of the above definitions is the following.

Lemma 3.4. Suppose that (f;)ic; satisfies the open set condition. Let k € N, o € I* and x,y € f;'(0).
Then we have U (x,y) = Ao(@,k)U (fo(x), fo(y)). Here, we set @ := (@) ... 0, @ ... @...) E L.

Proof. The assertion can be shown as in [JS17, Lemma 4.7] if we observe that up(fz(x), f(y)) = 0, for
all T € I* with T # @ and for all n € Nj. To prove this, note that by the open set condition we have that
[fz(x), fz(»)] N O has at most one point. Consequently, 7, is constant on [fz(x), fz(y)] and thus every Cy, is
constant on [fz(x), fz(y)], m € Nj. O

Recall that G = (f1,..., fy+1) and write G(x) := {g(x) | g € G}.

Lemma 3.5. Suppose that (f;)ie; satisfies the open set condition. Let xo € J. Then there exist a,b €
(JNO)\ G(xo) such that b is arbitrarily close to a and Ty(a) # Ty (D).
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Proof. First recall the well-known fact that J is a non-empty perfect subset of R, since {fi,..., fs+1} does
not have a common fixed point in R. Thus, every neighborhood of any point of J contains uncountably
many points in J. Let xo € J and € > 0. Since J C O and G(xy) is countable, there exists a € (JNO)\ G(xp)
such that B(a,&/2) C O. Since Ty is not locally constant at a and 7}, is locally constant on R\ J by Fact 2.9,
there exists ¢ € B(a,€/2)NJ N O such that Ty(c) # Tp(a). Finally, since T}, is continuous at ¢ by Theorem
2.4, G(xp) is countable and every neighborhood of ¢ in J contains uncountably many points, there exists
b € B(c,e/2)NJ\ G(xo) such that T, (b) # Tp(a). Clearly, we also have b € B(a,€) C O. O

By using Lemma 3.5 we can extend the methods used in [JS17]. The following lemma is the analogue of
[JS17, Lemma 4.9].

Lemma 3.6. Suppose that (f;)ic; satisfies the open set condition. Let xo € J and let € > 0. Let n € Nj)
and set n:= |n| := Y.\, n;. Then there exists a constant K > 0 such that for every k € N there exist points
ar € B(xo,&)NJ\ {xo} and by, € B(xo,€) \ {x0} with ug(ax,by) # 0 such that for 0 < q <n,

K*lk):}?zlqi("H)H < M < KkZ’,qui(nH)i*l.
- MO(alﬁbk) N

Proof. Let € > 0. There exists @ € X such that 7(®) = xo. Since (f;)ers is expanding and the open set O is
bounded, there exists r € N such that, with 7 := @; ... @, € I", we have diam(f; !(0)) < &. By Lemma 3.5
there exist a,b € (JNO)\ G(xo), a # b, such that ug(a,b) = Tp(a) — Tp(b) #0. Foreachk e Nand 1 <i<s
we set m; (k) := kD™ and & o= (1) oma(k) - gms(k)y ¢ [ mik) where ™ := (u,u, ... u) € I" for
u€{l,...,s+1}. Then we define d := fgkl(a), by = fézl(b) as well as ay := f7 (@), by := f7 ' (br). By
Lemma 3.4 and the fact that

uo(dg, bx) = pe - uo(ax, by

it follows that

(3.2) (uo(ax,br)) ™ U (ar,bi) = (uo(ar, br)) " AT, U (G, by

Similarly, we obtain that
~ 7 -1 ~ 7 —1 = e

(33) (uo(ak,bk)) U(ak,bk) = (Mo(a,b)) A ék,Zmi(k) U(a,b).
i=1

By combining the previous two equalities (3.2) and (3.3) we have
s

(uo(ax, br)) " Ulax,br) = (uo(a,b)) " A(T,r)A <<§k,2mi(k)> U(a,b).
i=1
Since & € {1,...,s}* and ug(a,b) # 0 it follows from Lemmas 3.1 and 3.2 that for q < n,

(A (ékvimi(k)> U(a,b)> = li[(mi(k))q" = ka0 gk s o,
i=1 q

i=1

where for any two non-negative functions ¢; (k) and ¢ (k) of k € N, we write ¢; (k) < ¢2(k) as k — oo if
there exists a constant D > 1 such that D' ¢ (k) < ¢ (k) < D¢ (k) for every k € N. From this and Lemma
3.1 we conclude that as k — oo,

r<q

(A(r, rA (ék imi(k>> U<a,b>> =) AT, r)qr (A <§kaimi(k)> U(a,b)) < T gt
i=1 q i=1 r

The proof is complete. ]
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We are now in the position to derive the following key lemma. Since the proof follows closely the arguments
given in [JS17, Lemma 5.2] we comment only on the necessary modifications. Note that in [JS17, Lemma
5.2] the Julia set J,, should be replaced by J(G). An element C € .7 is called non-trivial if there exists
(Bn)n # 0 such that C = ¥, BuCh.

Lemma 3.7. Suppose that (f;)ic; satisfies the open set condition. Let C =Y, fnCn € T be non-trivial.
Let j(k) — o be a sequence of positive integers. Let @ € ¥. For every x € J and for any non-empty
neighbourhood V of x in R there exist a,b € VN O with a # b such that

zzﬁnmw,j(k))n,mum(a,b)] € (0,59].

N :=limsup
k—

oo

Proof. There exists Ny, € Nj) such that Pn = 0 for all n > np,x. By Lemma 3.1, it is easy to see that the

matrix (A(®,k)nm) _is invertible. Since (Sn) 7 0 we conclude that, for all k € N,

n<Npax,M<Np, n<npy;

n<nNmax

A(k) = (Am (k) menyy, = ( ) ﬁnA(a),j(k))mm) #0.

Let € > 0 and suppose by way of contradiction that 1 = 0 for all a,b € B(xy, €) \ {xo} with a # b. Proceeding
exactly as in the proof of [JS17, Lemma 5.2] one defines A := (An)
(A(k)/||A(k)||)x>1 and observes that ||| = 1 and

m<n,,, &S @ limit point of the sequence

3.4 Y Amim(a,b) =0, forall a,b € B(xo,€) \ {xo}.

m<Nmax

To derive the desired contradiction one verifies that there exist (dr)r<npy » (Pr)r<ng, With dar,br € B(x0,€)\
{x0}, for every r < npax such that the matrix
(ug(ar, br))r<nm,
q<Npmax
is invertible. Hence, it follows from (3.4) that A = 0 contradicting ||A|| = 1. The existence of the vectors
(@r)r<nya, and (Pr)r<n,,, as stated above is demonstrated in [JS17, Proposition 4.11]. The key is to combine
Lemma 3.6 with the idea of the Vandermonde determinant (see also [JS17, Proposition 4.10]). O

3.1. Dynamical characterisation of pointwise Holder exponents . In this section we provide a dynamical
characterisation of the pointwise Holder exponent of non-trivial elements of 7. The pointwise Holder
exponent of C at x € R is defined as

Cly —-C
Hb1(C,x) := sup {05 >0 | limsupM

o <w}€&@.

yox o ly=x

We remark that it is possible that H61(C,x) > 1. In this case, C is differentiable at x and C'(x) = 0. In
fact, in many examples there exists a set A C J of positive Hausdorff dimension such that for every x € A
we have Hol(C,x) > 1. We also note that if H61(C,x) < 1 then C is not differentiable at x. There exist
examples for which there exist sets A,B C J of positive Hausdorff dimension such that for each x € A we
have Hol(C,x) > 1 whereas for each x € B we have H6l(C,x) < 1. For example, let s = 1 and suppose
that (f1, f») satisfies the open set condition. For p; > 0 sufficiently close to zero we have that a_ < 1 and

o > 1 by (2.3). Then the existence of the sets A, B as stated above follows from Theorem 3.16.

By [JS15, Lemma 5.1]) we have for every x € R,

logsup, g |C(Y) —C(x)].
69 HOL(C.x) — timing PEPscaten €)= Cl)l.
r—0 logr
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Remark 3.8. In the proof of [JS15, Lemma 5.1]) we have demonstrated that
log|C(x)—-C
HBI(C, x)  liming 128 /CW —CWII.
yox o loglx—y|
From this, it is straightforward to derive (3.5). For the convenience of the reader, we give the details. For a
bounded function /2 : V — R defined on some domain V C R and x € V we will show that
log|h(x)—h logsu h(y) —h(x
(3.6) liming €@ RO _ 085Uy [RO) — BT
y—x log |x —y| r—0 logr

Denote the left-hand side of (3.6) by H, the right-hand side of (3.6) by H'. We will show that H = H'. First

observe that if / is not continuous at x then H = H' = 0. Now, assume that / is continuous at x. Let (y,) be

a sequence with y, # x, and y,, — x as n — oo such that

n=e logly, — x|

We may assume that r,, := |y, —x| < 1 for all n > 1. It follows that

logsup, h(y) —h(x _
H < liming 28 PeBten M0 ZH] - log () —h()]

=H.
n—yoo logr, n—yoo log [y, — x|

To prove the reverse inequality, let (r,) be sequence with r, > 0 and r,, — 0, as n — oo such that

Togsup, ey ) —h()
n—yeo logr,

Then there exists a sequence (y,) with y, € B(x,r,) such that
1 _
| logh(y) — h(x)

=H
n—eo logry, '

Since A is continuous at x we may assume that log|h(y,) — h(x)| < 0 for all n > 1. Hence, we have

H < liminf 280D ZAO] o plog h0n) = hix))

=H
n—e  log|y, — x| n—yoo logry, '

This completes the proof of H = H'.

We proceed with an upper bound for the pointwise Holder exponent.

Proposition 3.9. Suppose that (f;)ici satisfies the open set condition. Let C =Y, faCn € F be non-trivial.

For every x € J we have

Say(w
HOl(Cx) < inf Timinfor (@)
wen-1(x) = S,0(®)
Proof. Letx €J and ® € £~ !(x). Since J is compact, there exists a sequence (j;) tending to infinity and
Xxo € J such that

S
o := liminf

— d 1L . = J.
i @) AR S pw) M A e () =0e

By Lemma 3.7 we may assume that there exist € > 0, 19 > 0 and points a,b € B(xp,€) N O with a # b such
that for all k sufficiently large,

ZZﬁnA((O,j(k))n’mum(a,b) > 1o > 0.
Define yy := (fw\jk)7] (a) and z; := (fw‘jk)fl (b). By Lemma 3.4 we have

Cyk) —Clzk) = Zﬁn (U(ykazk))n = Pojjy ZBH (A(a),j(k))U(a,b))n.
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Hence, we can estimate

liming REICO0 = C@dl _ i, Sito V(@) Flogno

koo log|yx — | ke Sji (@)

Finally, proceeding exactly as in [JS17, Proof of Lemma 5.3 (5.4), (5.5) and (5.6)], the statement of the

lemma follows. O

Since Ho61(C, x) < o by Proposition 3.9, we can conclude the following.
Corollary 3.10. Suppose that (f;)ic satisfies the open set condition. Let C =Y, BnCn € T be non-trivial.

Then C is not locally constant at any point of J and thus 7 is the direct sum of vector spaces @neNgRCm

Next we provide lower bounds for the pointwise Holder exponent. In the following proposition we define

for w € X and x = w(w) the sequences
-1
8= 8,() :zd(fw‘n(x)ﬁO), and s, 1= 5,(@) 1= &, f(’u‘n(x)‘ D!,

where dO refers to the boundary of the open interval O and D = D(O) refers to the bounded distortion

constant in Lemma 2.13.

Proposition 3.11. Suppose that (f;)ics satisfies the open set condition. Let C € .7\ {0}. Let ® € X be a

sequence which is not eventually constant and let x = n(®) € J. Then we have

.. 1
liminf,_,..n~ ' log Sn) > liminfSnW(w).
max ¢ n—e S, p(0)

H&1(C, x) - (1 +

Proof. By (3.5) there exists a sequence (r;) tending to zero such that

logsup, Cx)—C
HoI(C.x) = lim gSUPycp(y, ) [C(X) (y)\.
k—re log ry

Let ny :=max {n > 1| s, > r}. Since o is not eventually constant, we have s, > 0 for each n € N. Hence,

(ng) — oo, as k — oo. By the definition of n; we have

B(x,ry) C By := (f“’lnk)il (B (f“’\ﬂk (x),5nk>) , keN.

Hence, if r;, < 1 then

logsupycp(y.,) [C(x) —C(y)] _ logsupyep, |C(x) —C()
log ry = log ry '
Also, by the definition of ng, we have s, 11 < r¢. Therefore, we have
logsupycp, [C(x) —C(y)| . logsupycp, [C(x)—C(y)|  logsup,ecp, [C(x)—C(y)|
log ry - log sy +1 —1ogD+ 8, +10(®) +10g 8y 11

By Lemmas 3.4 and 3.2 there exist constants K’ and ¢, which are independent of k, such that
sup C(x) =C(Y)| < K'pa, ni.
We conclude that
logsupyep, [C() —CO)| Sy w(®) +qlog(m) +logK’
—logD+ S, 4+19(®) +1log,,+1 — —logD+S,,11¢(®)+10g 841
Sy (@) (1+ (glog(m) +logK') /Sy, y(®))
St19(@) - (1+ (—logD+10g 8y +1) /Sp+10(@))
and the claim follows by letting k tend to infinity. (]
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The following result is the analogue of [JS17, Lemma 5.1 and Lemma 5.3].

Corollary 3.12. Suppose that (f;)ics satisfies the separating condition. Let C € 7\ {0}. Then forall ® € ¥

and x = n(®), we have

Proof. Since inf,cy 8, > 0, we have liminf, ,..n 'log8, = 0. Hence, liminf,_,..S, l[/(a))/Sn(p(w) <
H61(C, x) by Proposition 3.11. The converse inequality follows from Proposition 3.9. (|

Let us end this section with the following remark concerning Proposition 3.11 and Corollary 3.12.

Remark 3.13. 1t is not difficult to find examples of systems (f;);cs satisfying the open set condition with
limit points x = 7(w) € J, ® € X, such that

. . Say(0)
Hol(Cp,x) < ,}52 Svo(@)

Hence, in contrast to systems satisfying the separating condition (see Corollary 3.12), the dynamical char-

acterization of the pointwise Holder exponent in terms of quotients of ergodic sums does not always hold
for systems satisfying the open set condition. However, Proposition 3.11 can be used to establish a dynam-
ical characterization for almost every limit point with respect to suitable reference measures. Moreover, it
turns out in Theorem 3.16 below that the dimension spectrum of the pointwise Holder exponents coincides

with the spectrum of quotients of ergodic sums of the potentials ¢ and y.

3.2. Dimension spectrum of pointwise Holder exponents. We define

F(a):=Fp(a) = n{a) €X|lim “;:ZEZ;)) = a}.

Suppose that (f;);c; satisfies the open set condition. It is well known that the multifractal spectrum is
complete ([Sch99]), that is, there exist o, ot € R such that % (a) # @ if and only if & € [a_, ar;]. For
every B € R there exists a unique () € R such that Z(t(B)e + By) = 0, where & (u) refers to the
topological pressure of a continuous function u with respect to the dynamical system (X, o) (see [Wal82]).
Note that ¢ is Holder continuous since the dynamical system is expanding with "' *¢ branches. Also, v is
Holder continuous as it only depends on the first coordinate. By well-known results from thermodynamic
formalism for Holder continuous potentials, it follows that the function 7 is real-analytic and convex function
with #'(B) = — [ wdug/ | ¢ dug where ug denotes the unique Gibbs probability measure on X associated
with 7(B8)® + Bw. Moreover, with o_ and a; given by (2.3), we have that the function ¢ satisfies t” > 0 if
and only if o_ < o, and have that @_ = o if and only if § ¢ and y are cohomologous, where

8 :=1(0) = dimp (J).

Here, we say that ¢ and y are cohomologous if there exists a continuous function x : ¥ — R such that
8¢ = y+ k — Koo0. Note that we have —¢'(R) = (a_, 004 ) if a— < oy, and —¢'(R) = {o_}, otherwise.
We define the level sets

: Sny(®)
PH(0) = 7t{coezhmsup,,_,msan)(w> za}, o> 0p
7{we X liminf . P4 <a}, <o,

where we have set o := [y duy/ [ ¢ diy. We denote the convex conjugate of ¢ ([Roc70]) by

t*(u) :=sup{Bu—1t(B) | B € R} € RU{+oo}.
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It is well-known (see e.g. [Pes97, Sch99]) that for o € [a_, 01 ],
(3.7) dimy (7 (@) = dimy (F*(a)) = —1*(—a) >0,

—t*(—a) > 0 for @ € (a_,0ty) if @ < @y, and that (o) = F*(a) = @ for a ¢ [a_, &, ]. To prove
this, it is shown that if B € R and a = —'(3), then for the corresponding Gibbs measure ug we have
ugon '(F(a)) =1and

(3.8) dimy (F (@) = dimy (pgon ') > 0.

We refer to [JS15, JS17] for a closely related framework for random complex dynamical systems. See in
particular [JS15, Remark 3.14, Proposition 4.4, Theorem 5.13]. If o— = o4 then % (a_) = J and for every

B R,
dimy (F (o)) = dimp (ug o~ ") = dimy (J) =1(0) = 6.

Corollary 3.14. Suppose that (f;)ics satisfies the open set condition. Let C =Y, PuCn be non-trivial. Then
SJorall o € [a_, 0] we have

dimy {x € J | HOL(C,x) = &} > —1*(—a1).

Proof. Tt is well known that, for each a € [a_, 0.y ], there exists an ergodic Borel probability measure
with [wdu/ [@du = o and dimg(puon~!) = —1*(—a) > 0 (see e.g. [Pes97, Sch99]). Suppose that
—t*(—a) > 0; otherwise there is nothing to prove. Following [Pat97] we have for u-a.e. ® € X and
x = (), lim, ,.n"'logs, = 0, where §, is defined prior to Proposition 3.11. Hence, for y-a.e. w € X
and x = w(®), HSI(C,x) > a by Proposition 3.11. Moreover, by Proposition 3.9 we have Hol(C,x) < a
p-ae. We conclude that g o' ({x€J|Hol(C,x) = a}) = 1. Thus, dimy {x €J|Hol(C,x) = a} >
dimg(pon™!) = —*(—a). O

The following proposition is an extension of results of Allaart ([All17]) for self-similar measures.

Proposition 3.15. Suppose that (f;)ic satisfies the open set condition. For every a € [0._, 0] and every
C € T we have

dimg {x € J | HSI(C,x) = a} < —1*(—a1).
Further, if a < a_ then {x € J | HOl(C,x) = o} = @.

Proof. We use diam(A) := sup{d(x,y) | x,y € A} to denote the diameter of a set A C R. We first observe
that by the Holder continuity of ¢, there exists a constant D > 1 such that

diam(x(([yi))) > D~ diam(x (7))
forall i € I and for all y € I'*. Let x = n(w) € J with Hol(C,x) = a. By (3.5) there exists r; — 0 such that

o= limlog sup |C(y)—C(x)|/logry.

koo yeB(xn)
Define n := min {n > 1| diam(7([@,,])) < D*ri}, k> 1. If
(@1,...,0) = (tj(s+1)%),
for some 7 € I*, j < s and ¢ > 1 then we define v, v, € I'* by

Vi = (Ti(s+ D)%) = (@1, ., 00 1), Vp:= (2(j+1)1%),
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where £} > 1 is given by
¢, == max{¢> 1| diam(z([t(j+1)17])) > r}.

Similarly, if (@,...,®,,) = (t(j+ 1)1%), then we define vy := (@i, ..., @n,—1) and V] := (Tj(s + 1)%),
where ¢} ;= max{¢ > 1 | diam(z([zj(s+1)"])) > r}. Note that the sequence ¢, is well-defined. If @,, ¢
{1,541} then we define vy := V| := (®@i,..., 0, —1). Let nj 1= |V[|.

It is important to note that, by the definition of v; and v,i, we have as k — oo,
(3.9) diam (7 [vi]) =< diam (7 [v;]) < r.
Moreover, there exists a constant £ > 0 such that

(3.10) G- @() —E < Lli-@(s+1) < - @(1) +E.

To prove (3.10) suppose that (@y,...,@,,) = (7j(s+ 1)%). The other case (@y,...,®, ) = (t(j+1)1%),
can be handled analogously. By the Holder continuity of ¢ we have, as k — oo,

diam (7 [v]) = diam (n [u s+ 1)41«*1)}) = diam (7 [1]) %% ?(C+1)
diam (7 [v;]) = diam (75 {T(j—i— l)llﬂ) = diam (7t [r])esﬁi(p(l),
which proves (3.10).
We will show that for k£ > 1
B(x,re) NJ C w([vie]) Um([ve])-
First suppose that (@1, ..., ,,) = (j(s+1)%). Then z[vi] = 7w [(zj(s+ 1) )] D [(zj(s+ 1) '1)].
Since x € 70 [(7(s+ 1)%)] we have x > max 7 [(7,(s+ 1)%'1)]. By the definition of n; we have
diam (n [(Tj(s )% 1)]) > D~ 'diam (n [(rj(s+ 1)51«*1)} =D 'diam (z [(@1,..., 00, _1)]) > Dry.

Hence,
T[Vi] D [x,x—re]NJ.

Further, by the definition of ¢} we have
diam (7 [v;]) = diam (7r [r(j—i— 1)14}) >,
s0 [x,x+r]NJ C 7 [vi]Un [v;]. This proves that B(x,ry) NJ C 7([vi]) Um([v]).

Let € > 0. We will derive from our assumption H61(C,x) = « that there exists N > 1 such that for all k > N,

S (Vi Sy w(vp)
(3.11) MSOH—S or Lﬁjgo&s.
S\vk\q)( k) S‘vu(p(vk)

To prove (3.11), we first note that by Lemmas 3.4 and 3.2, there exist constants K’ > 1 and g € Ny such that
for every v € I,

sup [C(y1) —C(2)| < K'exp(Sjy (V)| v[*.

yiy2Er([v])
Suppose for a contradiction that (3.11) does not hold. Then, by passing to a subsequence of (n;) we may
assume that for all k and for all v € {V, v;} we have S}, |y(V)/S),|@(V) > 0.+ €, and hence, by enlarging
the constant K’ if necessary, we have

sup  |C(v1) —C(n2)| < K exp(Sjy w(V))|V|? < K'rEE|v]4.
1 vaen(v])
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Since B(x,ri) NJ C w([vi]) Um([v;]), we conclude that

limlog sup |C(y)—C(x)|/logri > o +e¢.
ke yeB(xn)

This contradiction proves (3.11). Let B > 0,11 > 0 and let s =¢() + B(a + €) + 1. Note that by (3.7) we
have s > t(f) + B(a) > 0. We define

._ 1 S v(®)
Cate = {rel | W < a+£}.
We obtain a covering € of {x € J | H61(C,x) = a} by cylinders of sufficiently small diameters as follows.
For each x € J with H61(C,x) = & we define the sequence (1) and the sequences of cylinders (V¢) and (Vv[)
as above. This means in particular that (3.11) holds and x € 7([v¢]) for every k > 1. We then pick a cylinder

v(x) := v, of sufficiently small diameter. This defines a covering of {x € J | H51(C,x) = a} given by
% :={v(x)|xeJ:HSI(C,x) = a}.

To verify that the corresponding sum of diameters Y, ., diam (7 ([v]))® converges, we proceed as fol-
lows. If v ¢ €y then, by (3.9) and (3.11), we can replace vV by V' € € satisfying diam (7 ([v])) =<
diam (7 ([v'])) . This defines a map v — V' from €\ €y 1¢ to Gy1e. Since the involved numbers ¢; and £},
in the definition of v; and v,i satisfy (3.10), we have that every element of %, ;¢ is taken at most a uniformly
bounded number of times under the map v — V'. Since
(3.12) Z diam(7([w]))* = Z e1(B)+B(a+e)+1)S|0 9(@) < Z e1(B)+1)S|09(@)+BS|u ¥(@) oo,
WECo+e OECate WLy e
we therefore conclude that the s-dimensional Hausdorff measure of {x € J | H6l(C,x) = o} is finite. To
prove that the last sum in (3.12) is finite, first recall that by the definition of 7(3) we have that Z2(¢(B)¢ +
By) = 0. Further, since ¢ < 0 we conclude that ¢ — Z(c@ + By) is strictly decreasing. Whence, a :=
Z((t(B)+n)e+Py) <0. By the definition of topological pressure this implies that there exists a constant
b such that Y22 Y pem 5 BIEM@+BY)(@) < pyee  014/2 < 0o To complete the proof of the proposition,
first assume that & € [a_, 0. Since € and 1 are arbitrary, it follows that

dimyg {x € J | H8I(C,x) = a} < érg) {t(B)+Ba} =—1"(—a),

where we have used o < ¢ for the last equality. Finally, if @ < a_ then Gyt = @ if 0+ € < a_. By the
above construction of the covering of {x € J | H51(C,x) = a}, it thus follows that {x € J | H61(C,x) = a} =
&. The proof is complete. O

Theorem 3.16. Suppose that (f;)ics satisfies the open set condition. Let C € F \ {0}. Then we have for all
o€ fo o],

dimy {x € J | HoI(C,x) = a} = —t"(— ),
and for o ¢ [a_, o] we have {x € J | Hol(C,x) = a} = @. The function g(a) = —t*(—a) is continuous
and concave on [0, o, ]. If a— < . then g is real-analytic and positive on (0.—, 0.y) and satisfies g < 0
on (o_,0).

Proof. By Corollary 3.14, we have dimy {x € J | H6l(C,x) = a} > —t*(—a) for & € [o_, a1 ]. By Propos-
ition 3.9 we have for every a € R,

(3.13) (xeJ |HOl(C,x)=a} C n ({w ex| 113@?25525 > a}) .



22 JOHANNES JAERISCH AND HIROKI SUMI

We distinguish two cases. If & > o, then by the definition of .7* (o) we have {x € J | Hol(C,x) = o} C
Z*(a). Hence, by (3.7), we have dimg ({x € J | Hol(C,x) = a}) < dimy (F*(a)) = —t*(—a) for a > 0.
Also, by (3.13), we have {x € J | H6l(C,x) = a} = @ if & > a;. For a < o the remaining assertions
follow from Proposition 3.15. For the proof of the well-known properties of g we refer to ([Pes97], [Sch99],
see also [JS15]). The proof is complete. ]

Remark 3.17. In [BKK16] the pointwise Holder exponent of affine zipper curves generated by contracting
affine mappings is investigated. The multifractal dimension spectrum is obtained only for &t > 0. In a
recent preprint of Allaart ([All17]) the complete multifractal spectrum of pointwise Holder exponents for

curves associated with selfsimilar measures is obtained.

4. GLOBAL HOLDER CONTINUITY

In this section we investigate the global Holder continuity of the elements of .77. The first statement of the
next theorem has been obtained for the Minkowski’s question mark function in [KSO08], for distributions of
conformal iterated function systems satisfying the separating condition in [KS09], and for expanding circle
diffeomorphisms in [JKPS09].

Theorem 4.1. Suppose that (f;)ics satisfies the open set condition. Then we have the following.

(1) T, € €% (R).
(2) 7 CNo<a C*(R).

Proof. We only verify the desired Holder continuity at points x,y € J. That this is sufficient can be seen
as follows. If y € R\ J, then either there exists u € J between x and y and the desired Holder continuity
follows from the triangle inequality, or we have T, (x) = Tp(y) (resp. C(x) = C(y)). We may assume that
O = (Fix(f1),Fix(fs+1)), where Fix(f;) denotes the unique fixed point of f; in R.

Let x,y € J with x < y. Let @ € I*U{@} and i,j € I with i < j such that f,(x) € O, f(y) € O and
fi(fo(x)) € O and fj(fw(y)) € O. Note that such @ always exists because x,y € J and x < y.

We first consider the case when j =i+ 1. Let
Ci=sup{n>0]|f(fi(fo(x))) €0} and ¢ :=sup{n>0]|f(fi(fo(r))) € O}.

We define
& :=max(fp:) '(0) and &' :=min(fe,;) ' (0).

We will verify that there exists a uniform constant D’ > 1 such that

@) ITp(x) — Tp(&)] < C(@, yp)D'd(x, &)%)
and
“2) T(&) = T,0)] < Clo, wp)D'd(E'y)* P,

By the triangle inequality we have that

To(x) = T < [Tp(x) = Tp(&)| +|Tp(8) = T (§N)| +[ () — T (»)

which proves the first assertion in the case when j = i+ 1 because 7, is constant on [§,&].

)

We only verify (4.1), the proof of (4.2) is completely analogous. To prove (4.1) we may assume that £ < oo
because if £ = oo then x = £ and (4.1) holds trivially. By the definition of £ there exists 1 <k < s+ 1 such
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that
fow Ji fs+1fk ( )<fa) fi fs+1fs+1( )wa fi (6)

We conclude that

(4.3) d(x,&) = diam (£, 17 £240:40))
Define 7 := wi(s+ 1)". Clearly, we have [x,&] C f;!(O). Since the open set condition holds,
“.4) |Tp(x) = Tp(S)| < pe.

By (2.6) there exists a constant C(@, yp) such that
4.5) pe =SV < (o, vy )e” ~(P)S)2@(7)

By the bounded distortion property (Lemma 2.13) and (4.3), there exists a uniform constant D’ > 1 such that
e (PISEe(7) < D'd(x,E)% () We have thus shown (4.1). It remains to consider the case when j > i+ 1.
Using that [x,y] C f,'(U) we obtain as above

75 (x) = T ()] < po < C(@, yp)e® PI5Io1 (@),

Here, we set pg = 1. By our assumption that j > i+ 1 we have d(x,y) > diam(f,' /| 1(0)), which implies

that there exists a constant D" > 1 such that
- (P)S|0(®) D”d(x7y)a’(p>.

The proof of the first assertion is complete. To prove the second assertion, it is sufficient to verify it for Cy
for every n € Nj). To this end, we replace the estimate in (4.4) by the following estimate. By Lemma 3.4
and Lemma 3.2 there exists a constant K’ > 1 (which only depends on p and |n|) such that

(4.6) Ca(@) = Ca() < K'[7] ™ pe
Then proceeding as above, for every o < a.—(p) there exists D"’ > 1 such that
@7)  |Ga(x) = Gal(§)] < K'J7|MC(p, yp)e® PP < K/|eMC(@, yp)Dd (x, £ ) el * )=S0,

Since ot — & (p) < 0, we have K'| 7| C(¢, yp)D"e!* P~ @) _ 0 uniformly as || — co. Hence, Cy

is oc-Holder continuous. O

Remark 4.2. By the bounded distortion property of (f;) (Lemma 2.13) it is not difficult to see that |7| <
—logd(x,£). By combining this estimate with (4.5) and (4.6), we can derive that |Cp(x) — Ca(y)] <
(—logd(x,y))Pld(x,y)®®) If o =1 this implies that C, is convex Lipschitz ((MW86]). In fact, this
property was derived in [MW86] for the classical Takagi function, and for the higher order derivatives of
the Lebesgue singular function in [AKO06]. The property of convex Lipschitz can be used to prove that the
graph of C, has Hausdorff dimension one if o = 1.

Recall that we have o~ < § := dimy (J) with equality if and only if a_ = o ([Pes97, Chapter 21, see in

particular, Figure 17b]).

Corollary 4.3. Suppose that (f;)ic; satisfies the open set condition. Then for every C € 7 \ {0} we have
a_=sup{a>0[Ce?*[R)} <8é.

The equality o = oy occurs if and only if Ty € €% (R).
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Proof. The first assertion follows from Theorem 3.16 and Theorem 4.1. Now suppose that a_ = .
Hence, a— =8 and Ty € € %(R) by Theorem 4.1. Conversely, suppose that Ty € %% (R). Then, by the first
assertion of Corollary 4.3, we have a_ > §. Hence, a_ = .. O

Corollary 4.4. Suppose that (f;)ics satisfies the open set condition. If o.— < 1 then, for each 1 > a > o
there exists ¢ € €* (R) such that M@l — o0, as n— oo,

Proof. Let ¢ € €% (R) such that ¢(e0) =1 and ¢(—ec) = 0. Then ||[Mp¢ — Tp|lc — 0 as n — eo. Now
suppose for a contradiction that liminf,, .« ||M}@||o < co. Then there exists a sequence (n;) in N tending to
infinity and a constant M < oo such that HM;j(j) |l < M for each j. Hence, |M;j¢(x) —My' 9(y)| < Md(x,y)*

for all j and x,y € R. Letting j — oo gives |Tp(x) — Tp(y)| < d(x,y)? for all x,y € R. We have thus shown
that T, € ¢'* (R) giving the desired contradiction to Theorem 1.4. O

n;j

In the following, we will denote C(n) by C, if s=1 and n € Np.
Proposition 4.5. Suppose that (f;)ic; satisfies the open set condition.

(1) If a_ = o then T NEC* (R) = RT,,.
(2) If s =1 and each f; has constant derivative, then C, ¢ €% (R) for every n > 1.

Proof. We first prove (1). For n,m € Nj we use < to denote the lexicographical order, that is, we write
n =< m if ny < my where k := min{1 <i <s|n; # m;} or if n = m. Since the lexicographical order is a
total order, each non-trivial C € .7 has a representation as C = Y ;, <, . BnCqn With By . # 0. Suppose that
n:=Y3  (Nmax); > 1. Our aim is to prove that C ¢ €% (R). Let a := minJ and b := maxJ. Define for
k>1

mi(k) = kDT 1 <<y,

and for @(k) := 1" ®2mE)  gnsk) ¢ [Liimitk) we Jet

X = (fw(k))il (@), y:= (fa)(k))71 (b).

Recall that, since a— = o4, we have a_ = ;. = § = dimy J, and the potentials §¢ and y are cohomolog-

ous. It follows that
|C(xx) = Clyi)| _ 1C0xx) —Cy)|

d(xe,y)% Po(k) ’
Since Cy(a) — Cn(b) = 0, for n # 0 and Cy(a) — Cyp(b) = 1, we conclude by Lemma 3.4 that

w<< o) - E 15
ok N=Nmax i:l N=Nmax i: n,0

Hence, by Lemma 3.2 we have as k — oo

Cls) - L Allner

pw(k> n=Nmax

as k — oo,

= Z ﬁnkazlni(n—&-l)i—l - |ﬁnmax|kzl’¥:1(nmax)i<n+l>iil

N=Nmax

It follows that |C(x;) — C(yx)| /d(xk,yx)* is not bounded, as k — oo, which implies that C ¢ €% (R). The
proof of (1) is complete.

To prove (2) we can proceed along the same lines. First note that, by our assumptions on f; and f, ¢
depends only on the first coordinate. We show that there exists i € I such that y(i)/@(i) = a._. First observe
that there exists i € I such that y(i)/@(i) = min(y/@). Thus, for all n > 1, S,w(i)/S,@(i) = min(y/@).
From the mediant inequality we derive inductively that S, /S, > min(y /@) which completes the proof
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that o = y(i) /(7). Hence, for the sequences given by x; := (f;) ¥ (a) and yy := (f;) ¥ (b) we have as

k — oo,
|Cn(xk> _Cﬂ(yk)| - |Cn<xk) _Cn(yk)| - (A(; k)U(Cl b)) ’ — k"
d (g, yie) % P} ’ s
which tends to infinity, as k — co. Again this implies that C,, ¢ ¥’* (R). The proof is complete. O

5. NON-DIFFERENTIABILITY

In this section we investigate the (non-)differentiability of the elements of 7. Note that a— < dimg (J) < 1.
We denote by Leb the Lebesgue measure on [0, 1].

Proposition 5.1. Suppose that (f;)icr satisfies the open set condition.

(1) If a_ < 1 then there exists a dense subset E C J with dimy(E) > 0 such that, for every C €
T \{0} and x € E, C is not differentiable at x. If moreover oy < 1 then C € 7 \ {0} is nowhere
differentiable on J.

(2) If a— < 1 and dimy (J) = 1 then we have, for every C € 7, C'(x) = 0 for Leb-a.e. x € J.

(3) If o_ =1 then oy = 1 and dimy (J) = 1. If moreover s = 1 then C,, is nowhere differentiable on J,
foreverym > 1.

Proof. First assume that o < 1. If o < o then there exists @ € (a_, ;) with & < 1. Then by Proposi-
tion 3.9 we have Hol(C,x) < @ < 1 forall x € E := (% (), and E has the desired properties. If moreover
o < 1 then we have Hol(C,x) < a; < 1 for every x € J by Proposition 3.9, which completes the proof of
(.

To prove (2), let @ < 1 and observe that dimg (J) = 1 implies o— < a. Hence, ¢ is strictly convex. Since
1(0)=1and £(1) <0, it follows that —¢'(0) > 1. Thus, we have Hol(C,x) = [ wduy/ [ ¢ duy=—1'(0) > 1
Uop-almost everywhere. Since g is equivalent to Leb, the assertion in (2) follows.

Finally, we turn to the proof of (3). Let s =1 and consider C,, for m > 1. Suppose for a contradiction
that there exists m > 1 and x € J such that C,, is differentiable at x and let @ € X such that x = w(®). Let
a:=minJ and b := maxJ. Define x, := (fo,) ' (@) and y, := (f},) ' (b), n > 1. We will verify that the

sequence (¥, )n>1 given by
Cu(x,)—C,
i ) ZCnlm)
Xn = Yn
is not convergent. Since x, < x <y, and x,,y, — x we obtain the desired contradiction. To prove that (%,)
is not convergent, recall that a_ = 1 implies a_ = o4 = 1 and that ¢ is cohomologous to y. Hence, we

have
Pw‘n

d(xnvyn)
Combining with Cy,(a) = Cyy(b) =0, T(a) — T(b) = 1 and Lemma 3.4 we obtain

Y < —M =—(A(w,n)U(a,b)),, = —A(®,n)mo(T (a) — T (b)) = —A(@,n) 0.

pw‘n

= SV(@)=59(0) = 1 a5 5 — co,

Let §; j denote the Dirac delta function, for 7, j € I. By the definition of the matrix cocycle A we have

5.1) A(w,n)lﬁoziA(Gil(w)71)170:i<617°"i_82’“’i>_

i=1 i—1 \ P1 P2
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This shows that (A(w,n); o) does not converge as n — oo because 5;:”" - % € {1/p1,—1/p2}. We now

proceed inductively to verify that (A(®,n),,0) does not converge as n — oo. It is easy to see that

A(wﬂ’lJr 1)m,O = A(w’n)m,OA(Gn(w)a 1)070 JrA(a),n)mJA(Gn((D), 1)1*0
=A(0,n)m0+A(®,n)m1A(6" (®),1)10.

Hence,

5
A(@,14+1)m0 —A(@,1)m0 = A(®,1) 1 -A(6" (@), 1)10 = A(®, 1)1 - <1;’1+1 - 52;’;) .

Further, we have

m—1
A(wan)m,l = Z HA(leil(w)v l)mkarl,mfk

1<ip<-<ip_1<n k=1

m—1 51 i 62 i
0% O k1)
1<ij<-<im_1<nk=1 \ Pl b2

m—1 6.@,» 52@,-
=m ) H(”—")(m—k)

1<ij < <ig_1<nk=1 \ Pl P2

=m 'A(C(),I’l)mflﬂo.

Therefore,

(5.2) A(a)Jl-l- l)m,() —A((D,n)m‘o = m~A(a)7n)m,170 . <61w,,+] — 827(0"“) .

P1 p2

. . . . . S1.0;
By induction hypothesis, we may assume that (A(®,n),,—1,0) is not convergent as n — co. Since % —
B0,
P2
is complete.

€ {1/p1,—1/p2} we conclude by (5.2) that (A(@,n)u0) is not convergent as n — eo. The proof of (3)

|

Remark 5.2. If a— = a+ = 1, then the nowhere-differentiability of elements of .7 stated in Theorem 5.1
(3) will be compared with the fact that 7}, is a &' *¢diffeomorphism by Corollary 6.3.

6. CONJUGACIES BETWEEN INTERVAL MAPS

In this section we show how our results are related to interval conjugacies. This section is motivated by the
results in [JKPS09] for conjugacies between expanding C'*¢ maps on the unit interval with finitely many

full branches. Note that in [JKPS09] it is always assumed that the Julia set J is equal to the unit interval.

For p € (0,1)* we define the expanding linear maps gi,...,gs+1 : R — R which are for i € I given by

1

gi(x):= — (x— Z pj> .

pi 1<j<i
Clearly, (g1,...,8s+1) satisfies our standing assumptions. Moreover, (g1,...,gs+1) satisfies the open set
condition with the open set O := (0, 1) because g; ' (0) = (Xj<iPj>Xj<ipj)- The Julia set of (g1,...,8s11)
is equal to [0, 1]. We denote by 7, : £ — [0, 1] the coding map of the Julia set of (g1,...,gs1). Similarly,
we define

gp:10,1] = [0,1], gp(x):=gi(x), wherei=min{;je|g;(x)<[0,1]}.

Note that g, is the piecewise linear map on [0, 1] with (s+ 1) full branches and slopes given by (1/p;)ie;.
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Suppose that (fi,..., fy11) satisfies the open set condition and suppose that f; ' (0) < fljrll (O)foralliel
Denote the Julia set of (f, ..., fs+1) by J and its coding map by 7 : £ — J. We also define

fiJ—=J, f(x):=fi(x), wherei=min{jel]fj(x)€J}.

Further, we define
@, :J —[0,1], ®p(x) := my(w) for some /any o € =~ ' (x).
Note that ®p, is a well-defined, Borel measurable function satisfying ®,(maxJ) = 1 and ®p(minJ) = 0.

Let & := {® € X | @ is eventually constant}. For x € (X \ &) we denote by 7! (x) the unique ® € £\ &
such that m(®w) = x. For o € X\ & and x = n(w) we have f(x) = f, (x) and thus,

Further, g, (7 (®)) = g, (mp(®)) implies
Tpo0(w) =gpomy(w).

Hence, for x € n(X\ &),

(6.1) Dp(f(x)) =mpo m (f(x) = Tpo (@) = gp o Tp(®) = gp(Pp(x)).
If J is an interval, the following lemma appears implicitly in [JKPS09, Proof of Proposition 1.4].

Lemma 6.1. For every p € (0,1)° we have that ®p = Ty,

Proof. We proceed in two steps. First, we will show that ®p (x) = Ty (x) forx € £(£\ &). Let @ : R — [0, 1]
denote a bounded Borel measurable extension of @, such that ®,(y) = 0 for y € [0, minJ], and ®p(y) = 1
for y € [maxJ,4e|. Let @ € £\ &. For i < ®; we have fj(m(®w)) > maxJ, and for i > w; we have
fi(r(w)) < minJ. Since $p(maxJ) = 1 and ®p(minJ) = 0, the equality in (6.1) yields for x = 7 ()
M szq)p fz Z Pi+Po - CDp(f(x))—f— Z 0= Z Pi+ Po, ’gp(q)p(x))'
icl i<y i>m i<y

Since x = m(w) and w € £\ &, we have gp(Pp(x)) = gw, (Pp(x)). Hence, we have for every x € m(X\ &),

(&) Z Di+Po - gwl(CI) x)) = Z Pi+ Po, P% <<I3p(x)— Z Pi) =&, (x

i<Wy i< i<y
Further, for every x € [—co, minJ] U [max.J, +oo] we have My (®p) (x) = ®p (x). Let E := 1(L\ &) U[—o0, minJ]U
[maxJ, +eo]. Since f;(E) C E for every i € I, we can show inductively that for every x € E and n € N,

My (D) (x) = My(My~'®p) (x) = Y pi(My ' D) (i(x)) = Y. pip(fi(x)) = Pp ().

icel iel

By (2.2) (Remark: (2.2) is valid for any bounded measurable function / on R such that 4 = 1 around oo
and i = 0 around —eo) we conclude that for x € (X \ &),

Py (x) = lim My (x) = T (x)Pp () + (1 — T (x)) Pp(—o0) = Tp ().

n—soo

This completes the proof of @, (x) = T (x) for x € T(X\ &). Now, let ® € & and x = 7(®). Let (@) C
¥\ & such that (a)l("), ey a),g")) =(@,...,®,) and x, := m(®™), n > 1. By the continuity of 7 with respect
to the word metric, we have x, — x as n — co. By the definition of ®, we have ®p(x,) = mp(@™) and
Py (x) = mp (). So, by the continuity of 7, with respect to the word metric, we have ®p(x,) — Pp(x) as
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n — oo, Since @p (x,) = Tp(x,) by the first part of the proof, and since T}, is continuous by Theorem 2.4, we
can conclude that ®p,(x) = Ty (x). The proof is complete. O

Theorem 6.2 ([JKPS09, Theorem 1.2]). Suppose that (f;)ic are €' T¢-diffeomorphisms satisfying the open
set condition. Let J be an interval. Then for every p € (0,1)* the following rigidity dichotomy holds.

(1) If a— = a;(= 1) then @, is a €' F¢-diffeomorphism.
(2) If o < ay then &, =0 Leb-ae., Py € €* (R) and the set of non-differentiable points of @} has
positive Hausdorff dimension.

Combining the previous theorem with the fact that 7, € €% (P)(J) (see Theorem 4.1) we obtain the follow-
ing corollary from Lemma 6.1, Theorem 6.2 and Corollary 4.3. Recall that we have a_(p) < dimg (J) with
equality if and only if o = 4.

Corollary 6.3. Suppose that (f;)ic; are €' ¢-diffeomorphisms satisfying the open set condition. Let § :=
dimy (J). Forp € (0,1)* we have o (p) = o, (p) if and only if Ty is €% (R). If o (p) = | then o = o =
1, J =0 and Ty is a €' ¢-diffeomorphism.

7. APPENDIX: CONTRACTIONS NEAR INFINITY

The property that (f;);es is contracting near infinity depends on the choice of the metric d. We will show that,
by modifying the (f;);c; near infinity, we can always assume that an expanding family (f;);e; is contracting
near infinity with respect to a metric d which is strongly equivalent to the Euclidean metric on compact
subsets of R.

We consider the metric d on R induced by the bijection

X

h:R—[-1,1], h(x):= e

Namely, we set

d (x,y) = |h(x) = h(y)[
Note that the metric d generates the topology of the two-point compactification of R. Moreover, d is
strongly equivalent to the Euclidean metric on compact subsets of R.

Now suppose that (f;);cs is expanding with expansion rate A > 1. We can take g;, i € I, such that g; = f; in
a neighbourhood of R\ (V; UV_) and

gi(x) > A, asx— too.

Then we can prove the following lemma.

Lemma 7.1. There exist neighbourhoods V* of teo such that Lip(g;jy+) < 1 for eachi€ .

Proof. Letiel. Forx,y € Rif x,y are close to e or x,y are close to —eo, then we have

a1 dgi(x),8i(y)) _ [0+ ]x) (1+[y)]

d(x,y) (1+[gi () [(1+ g ()]

By our assumptions we have limsup,_,..u/gi(u) <A~ and lim, . g/(u) — A. Hence, it follows from (7.1)

&@—&@M
x—y

that for x,y sufficiently large,
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It remains to consider the case when x = oo. The case when x = —oo is similar and therefore omitted. For y

sufficiently large such that g;(y) > (A — 1)y, for some 11 with A — 1 > 1, we have
d(gi(=),&iy)) _ 14y _ 14y

_ < <.
d(ee,y) I+gi(y) — 1+ (A —n)y
Hence, there exists a neighbourhood V* of +-eo such that Lip(g;y+) < 1. O
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