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Abstract

We consider a family of conformal iterated function systems (for short, CIFSs) of generalized complex
continued fractions which is a generalization of the CIFS of complex continued fractions. We show the
packing dimension and the Hausdorff dimension of the limit set of each CIFS in the family are equal
and the packing measure of the limit set with respect to the packing dimension of the limit set is finite
in order to present new and interesting examples of infinite CIFSs. Note that the Hausdorff measure of
the limit set with respect to the Hausdorff dimension is zero. To prove the above results, we consider
three cases (essentially two cases) and define a ‘nice’ subset of the index set of the CIFS in each case. In
addition, we estimate the cardinality of the ‘nice’ subsets and the conformal measure of the CIFSs. 1

1 Introduction and the main results

Fractal geometry has been developed in order to study the geometrical properties of fractals. One of the major
studies in Fractal geometry is the study of estimating the dimensions and measures of fractals. By estimating
the dimensions and measures of fractals, it is possible to explain phenomena that appear in fractals which
are different from the ones that appear in ‘usual figures’ (see [4]). For this reason, the study of estimating
the dimensions and measures of fractals has been the major topic since Fractal geometry began to attract
attention not only in mathematics but also in many other fields.

Mathematically speaking, iterated function systems are a powerful method to construct fractals (more
precisely, limit set) and in many papers the study of estimating the dimensions and measures of the limit
sets has been studied. For example, Mauldin’s and Urbański’s paper [5] presents the general theory of
estimating the dimensions and measures of the limit set constructed by conformal iterated function systems
with finitely many mappings (for short, finite CIFSs). Note that by the formula and results in [5], we obtain
some estimations of the dimensions and measures of the limit sets. Indeed, by the formula on the Hausdorff
dimension of the limit set constructed by finite CIFSs in [5] we obtain the estimation of the Hausdorff
dimension of the limit sets, and by the theorem in [5] we deduce the positiveness and finiteness of the
Hausdorff measure and the packing measure of the limit sets with respect to the Hausdorff dimension of the
limit sets. By these results, we obtain that the packing dimension of the limit set constructed by finite CIFSs
equals the Hausdorff dimension of the limit set, we obtain the positiveness and finiteness of the Hausdorff
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measure of the limit set constructed by finite CIFSs with respect to the Hausdorff dimensions of the limit
set, and we obtain the positiveness and finiteness of the packing measure of the limit set with respect to the
packing dimension of the limit set.

In addition, Mauldin’s and Urbański’s paper [5] presents the general theory of estimating the dimensions
and measures of the fractals (more precisely, limit sets too) constructed by conformal iterated function
systems with infinitely many mappings (for short, infinite CIFSs), and now, there are many results of the
limit set constructed by infinite CIFSs (for example, see [6], [8], [3], [7], [9], [10] and so on). Note that they
generalized the above formula and theorems, and by the generalized theorems in their paper we may obtain
non-positiveness of the Hausdorff measure of the limit set constructed by infinite CIFSs with respect to the
Hausdorff dimension of the limit sets. This theorem indicates we may find a new phenomenon of infinite
CIFSs which cannot hold in finite CIFSs.

Moreover, in Mauldin’s and Urbański’s paper [5], they constructed an interesting example of an infinite
CIFS and the limit set which is related to the complex continued fractions. The precise construction of the
example is the following. Let X := {z ∈ C | |z − 1/2| ≤ 1/2}. We call Ŝ := {φ̂(m,n)(z) : X → X | (m,n) ∈
Z×N} the CIFS of complex continued fractions, where Z is the set of integers, N is the set of positive integers
and

φ̂(m,n)(z) :=
1

z +m+ ni
(z ∈ X).

Let Ĵ be the limit set of Ŝ (see Definition 2.1) and ĥ be the Hausdorff dimension of Ĵ . For each s ≥ 0, we
denote by Hs the s-dimensional Hausdorff measure and denoted by Ps the s-dimensional packing measure.
For this example, Mauldin and Urbański showed the following theorem.

Theorem 1.1 (D. Mauldin, M. Urbanski (1996)). Let Ŝ be the CIFS of complex continued fractions as

above. Then, we have that Hĥ(Ĵ) = 0 and 0 < P ĥ(Ĵ) <∞.

Note that they obtained an example of infinite CIFS for which the Hausdorff measure of the limit set
with respect to the Hausdorff dimension of the limit set is zero and the packing measure of the limit set with
respect to the packing dimension of the limit set is positive and finite. That is, they found a new phenomenon
of infinite CIFSs which cannot hold in finite CIFSs.

In our previous papers [1] and [2], we considered a family of CIFSs of generalized complex continued
fractions which is a generalization of the CIFS Ŝ of complex continued fractions, in order to present new
and interesting examples of infinite CIFSs. We estimated the Hausdorff dimension of the limit set of each
CIFS of the generalized complex continued fractions and showed non-positiveness of the Hausdorff measure
and positiveness of the packing measure of the limit set with respect to the Hausdorff dimension of the limit
set. Note that the family of the CIFSs introduced in the papers [1] and [2] has uncountably many elements.
On the other hand, we did not obtain results on the relationship between the Hausdorff dimension and the
packing dimension and the finiteness of the packing measure of the limit set with respect to the packing
dimensions of the limit set in [1] and [2], and we have been interested in the relationship and the finiteness
of the packing measure of the limit set. The aim of this paper is to show the relationship between the
Hausdorff dimension and the packing dimension of each limit set and the finiteness of the packing measure of
each limit set with respect to the packing dimensions in the family of the CIFSs of the generalized complex
continued fractions, in order to find new, interesting and uncountably infinite examples of infinite CIFSs with
the phenomenon which cannot hold in finite CIFSs.

The precise statement is the following. Let

A0 := {τ = u+ iv ∈ C | u ≥ 0 and v ≥ 1} and X := {z ∈ C | |z − 1/2| ≤ 1/2},

and we set Iτ := {m+ nτ ∈ C | m,n ∈ N} for each τ ∈ A0, where N is the set of the positive integers.

Definition 1.2 (The CIFS of generalized complex continued fractions). Let τ ∈ A0. Then, we say that
Sτ := {φb : X → X | b ∈ Iτ} is the CIFS of generalized complex continued fractions. Here, for each τ ∈ A0

and b ∈ Iτ , φb is defined by

φb(z) :=
1

z + b
(z ∈ X).

We call {Sτ}τ∈A0
the family of CIFSs of generalized complex continued fractions. For each τ ∈ A0, let

Jτ be the limit set of the CIFS Sτ (see Definition 2.1) and let hτ be the Hausdorff dimension of the limit set
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Jτ . We remark that this family of the CIFSs is a generalization of Ŝ in some sense. Indeed, Sτ is related to
‘generalized’ complex continued fractions since each point of the limit set Jτ of Sτ is of the form

1

b1 +
1

b2 +
1

b3 + · · ·

for some sequence (b1, b2, b3, . . .) in Iτ (See Definition 2.1). Note that there are many kinds of general theories
for continued fractions and related iterated function systems ([3], [5], [6], [8]). In [2], we showed the following
theorem.

Theorem 1.3 ([2, Theorem 1.3]). Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex continued

fractions. Then, for each τ ∈ A0, we have Hhτ (Jτ ) = 0 and 0 < Phτ (Jτ ).

We now present the main theorem in this paper.

Theorem 1.4 (the main theorem). Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex continued

fractions. Then, for each τ ∈ A0, we have Phτ (Jτ ) <∞.

Combining Theorem 1.3 and Theorem1.4, we obtain the following corollary.

Corollary 1.5. Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex continued fractions. Then, for

each τ ∈ A0, we have 0 < Phτ (Jτ ) < ∞. In particular, for each τ ∈ A0, the packing dimension of the limit
set Jτ equals the Hausdorff dimension hτ of the limit set Jτ .

Remark 1.6. By the general theory of finite CIFSs, the Hausdorff measure of the limit set of each finite
CIFS with respect to the Hausdorff dimension of the limit set and the packing measure of the limit set with
respect to the Hausdorff dimension of the limit set is positive and finite. However, Corollary 1.5 indicates that
for each Sτ of the family of CIFSs of generalized complex continued fractions which consists of uncountably
many elements, the packing dimension of the limit set equals the Hausdorff dimension of the limit set and
the Hausdorff measure of the limit set with respect to the Hausdorff dimension of the limit set is zero and the
packing measure of the limit set with respect to the Hausdorff dimension (which equals the packing dimension
of the limit set) is positive and finite. This is also a new phenomenon which cannot hold in the finite CIFSs.

Remark 1.7. It was shown that for each τ ∈ A0, Jτ \ Jτ is at most countable and hτ = dimH(Jτ ) ([1]).
Thus, for each τ ∈ A0, we have 0 < Phτ (Jτ ) = Phτ (Jτ ) < ∞. Also, for each τ ∈ A0, since the set of
attracting fixed points of elements of the semigroup generated by Sτ is dense in Jτ , Theorem 1.1 of [11]
implies that Jτ is equal to the Julia set of the rational semigroup generated by {φ−1

b | b ∈ Iτ}.

The ideas and strategies to prove the main theorem are the following. To prove the finiteness of the
packing measure of the limit set Jτ , we apply Lemma 4.10 in the paper [5] to Sτ for each τ ∈ A0. That is, it
suffices to show that for each r > 0 (which is sufficiently small) and b ∈ Iτ with diamφb(X)/r ≪ 1, we have

mτ (B(x, r)) & rhτ , (1.0.1)

where x := 1/b, B(x, r) is the open ball with the center x and the radius r with respect to the Euclidean
distance in C, mτ is hτ -conformal measure of Sτ (see Theorem 2.8) and ‘f(r) & g(r)’ means that there exists
a ‘small’ constant c > 0 such that f(r) ≥ cg(r) for all r > 0. Note that there is a useful inequality for the
conformal measure mτ :

mτ

(

⋃

a∈I

φa(X)

)

=
∑

a∈I

mτ (φa(X)) =
∑

a∈I

∫

X

|φ′a(y)|hτmτ (dy) &
∑

a∈I

|a|−2hτmτ (X) =
∑

a∈I

|a|−2hτ (1.0.2)

for each I ⊂ Iτ , where we use the property on the Sτ (see Lemma 3.2). To prove the above inequality (1.0.1),
we essentially consider the following two cases:

1. r ≪ |x| and

2. r ≫ |x|.

3



In the first case, by the assumptions, we deduce that |x|2 ≤ r and r < |x|. We next define Iτ,1 ⊂ Iτ and show
the following inclusions and inequality:

B(x, r) ⊃
⋃

a∈Iτ,1

φa(X), |Iτ,1| &
(

r

|x|2
)2

and |a| . |x|−1

for each a ∈ Iτ,1. Here, for any set A, we denote by |A| the cardinality of A. To prove the above inclusion
and inequalities, we prove some additional lemmas. Therefore, by the above inclusion, the inequality (1.0.2)
and the above inequalities, we have

mτ (B(x, r)) ≥ mτ





⋃

a∈Iτ,1

φa(X)



 &
∑

a∈Iτ,1

|a|−2hτ & |Iτ,1| · |x|2hτ

& r2 · |x|2hτ−4 & r2 · rhτ−2 = rhτ ,

where we use the inequality |x|2 ≤ r and hτ < 2.
In the second case, since r ≫ |x|, we have B(0, r̃) ⊂ B(x, r), where r̃ = cr and c > 0 is a ‘small’ positive

number. Next, we define Iτ (r̃) ⊂ Iτ and show the following inclusion and inequalities:

B(0, r̃) ⊃
⋃

a∈Iτ (r̃)

φa(X), |Iτ (r̃)| & r−2 and |a| . r−1

for each a ∈ Iτ (r̃) (see Lemma 3.5). Therefore, by the above inclusion, the inequality (1.0.2) and the above
inequalities, we have

mτ (B(x, r)) ≥ mτ (B(0, r̃)) ≥ mτ





⋃

a∈Iτ (r̃)

φa(X)



 &
∑

a∈Iτ (r̃)

|a|−2hτ

& |Iτ (r̃)| · r2hτ & r2hτ−2 > rhτ ,

where we use the inequalities r2hτ−2 > rhτ since r is sufficiently small and hτ < 2.
The rest of the paper is organized as follows. In Section 2, we summarize the general theory of the CIFSs

and recall some definitions and theorems in the theory. In Section 3, we present some results for the CIFSs
of generalized complex continued fractions in the paper [1] and [2]. Also, we prove a slight modification of
lemmas in the paper [1] and [2] to prove Theorem 1.4. In Section 4, we prove the main theorem (Theorem
1.4). In this section, we first show some additional lemmas to prove Theorem 1.4 and next present the setting
for the proof of the main theorem. Then, we finally show Theorem 1.4. To prove Theorem 1.4, we consider
three cases.

2 Conformal iterated function systems

In this section, we summarize the general theory of CIFSs ([1], [2], [5], [6]). We first recall the definition of
CIFSs and the limit set of the CIFSs.

Definition 2.1 (Conformal iterated function system). Let X ⊂ R
d be a non-empty compact and connected

set with the Euclidean norm | · | and let I be a finite set or bijective to N. Suppose that I has at least two
elements. We say that S := {φi : X → X | i ∈ I} is a conformal iterated function system (for short, CIFS)
if S satisfies the following conditions.

1. Injectivity: φi : X → X is injective for each i ∈ I.

2. Uniform Contractivity: There exists c ∈ (0, 1) such that, for all i ∈ I and x, y ∈ X, the following
inequality holds:

|φi(x)− φi(y)| ≤ c|x− y|.

3. Conformality: There exists ǫ > 0 and an open and connected subset V ⊂ R
d with X ⊂ V such that for

all i ∈ I, φi extends to a C1+ǫdiffeomorphism on V and φi is conformal on V i.e. for each x ∈ V and
i ∈ I, there exists Ci(x) > 0 such that for each u, v ∈ R

d,

|φ′i(x)u− φ′i(x)v| = Ci(x)|u− v|.

Here, φi(x) denotes the derivative of φi at x ∈ V .
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4. Open Set Condition (OSC): For all i, j ∈ I (i 6= j), φi(Int(X)) ⊂ Int(X) and φi(Int(X))∩φj(Int(X)) =
∅. Here, Int(X) denotes the set of interior points of X with respect to the topology in R

d.

5. Bounded Distortion Property(BDP): There exists K̃ ≥ 1 such that for all x, y ∈ V and for all w ∈
I∗ :=

⋃∞
n=1 I

n, the following inequality holds:

|φ′w(x)| ≤ K̃ · |φ′w(y)|.

Here, for each n ∈ N and w = w1w2 · · ·wn ∈ In, we set φw := φw1
◦ φw2

◦ · · · ◦ φwn
and |φ′w(x)| denotes

the norm of the derivative of φw at x ∈ X with respect to the Euclidean norm on R
d.

6. Cone Condition: For all x ∈ ∂X, there exists an open cone Cone(x, u, α) with a vertex x, a direction
u, an altitude |u| and an angle α such that Cone(x, u, α) is a subset of Int(X).

We endow I with the discrete topology and endow I∞ := IN with the product topology. Note that I∞ is
Polish in general and I∞ is a compact metrizable space if I is a finite set.

Let S be a CIFS and we set w|n := w1w2 · · ·wn ∈ In and φw|n := φw1
◦ φw2

◦ · · · ◦ φwn
for each

w = w1w2w3 · · · ∈ I∞. Note that
⋂

n∈N
φw|n(X) is a singleton (denoted by {xw}) and the coding map

πS : I
∞ → X of S defined by πS(w) := xw is well-defined. Then, the limit set JS of S is defined by

JS := π(I∞) =
⋃

w∈I∞

⋂

n∈N

φw|n(X)(⊂ X ⊂ R
d).

We set hS := dimH JS , where we denote by dimHA the Hausdorff dimension of a set A ⊂ R
d with respect

to the Euclidean distance.
We next recall the pressure function of CIFS S as follows in order to define the regularity of CIFSs.

Definition 2.2. For each n ∈ N, [0,∞]-valued function ψn
S is defined by

ψn
S(t) :=

∑

w∈In

||φ′w||tX (t ≥ 0).

Here, for a C1 map f : Y → R
d (Y ⊂ R

d), we set

|f ′(y)| := sup{|f ′(y)u| | u ∈ R
d, |u| = 1} (y ∈ Y ) and ||f ′||Y := sup{|f ′(y)| | y ∈ Y }.

We set θS := inf{t ≥ 0| ψ1
S(t) < ∞} and F (S) := {t ≥ 0 | ψ1

S(t) < ∞}. Note that by the following
lemma, we deduce that F (S) = (θS ,∞) or F (S) = [θS ,∞).

Lemma 2.3 ([5]). Let S be a CIFS. Then, ψ1
S(t) is non-increasing on [0,∞), and decreasing and convex on

F (S). In addition, we have ψ1
S(d) ≤ K̃d. In particular, θS ≤ d.

In addition, by the following proposition, we deduce the basic properties of ψn
S .

Proposition 2.4 ([5]). Let S be a CIFS. For all m,n ∈ N and t ≥ 0, we have

K̃−2tψk
S(t)ψ

n
S(t) ≤ ψm+n

S (t) ≤ ψm
S (t)ψn

S(t).

In particular, ψn
S(t) < ∞ for each n ∈ N if and only if ψn

S(t) < ∞ for some n ∈ N (or n = 1), and the
function n 7→ logψn

S(t) is subadditive for all t ≥ 0. By the subadditivity of logψn
S(t), we now define the

pressure function of S as follows.

Definition 2.5 (Pressure function). The pressure function of S is the function PS : [0,∞) → (−∞,∞]
defined by

PS(t) := lim
n→∞

1

n
logψn

S(t) ∈ (−∞,∞] (t ≥ 0).

Proposition 2.6 ([5]). Let S be a CIFS and PS be the pressure function of S. Then, PS(t) <∞ if and only
if ψ1

S(t) < ∞ for each t ≥ 0. In particular, θS = inf{t ≥ 0 | PS(t) < ∞}. In addition, PS is non-increasing
on [0,∞), and decreasing and convex on F (S).

Note that PS(0) = ∞ if and only if I is infinite. By using the pressure function in Definition 2.5, we
define the regularity of CIFSs.

Definition 2.7 (Regular, Strongly regular, Hereditarily regular). Let S be a CIFS. We say that

5



• S is regular if there exists t ≥ 0 such that PS(t) = 0,

• S is strongly regular if there exists t ≥ 0 such that PS(t) ∈ (0,∞) and

• S is hereditarily regular if, for all I ′ ⊂ I with |I \ I ′| <∞, S′ := {φi : X → X | i ∈ I ′} is regular.

Here, for any set A, we denote by |A| the cardinality of A.

Note that if a CIFS S is hereditarily regular then S is strong regular, and if S is strong regular then S is
regular.

We finally recall the hS-conformal measure of S. If a CIFS S is regular, there is the following ‘nice’
probability measure mS (hS-conformal measure of S) on JS . Indeed, we often use mS in order to estimate
the packing measure of the limit set of CIFSs.

Theorem 2.8 ([5] Lemma 3.13). Let S be a CIFS. If S is regular, then there exists the unique Borel
probability measure mS on X such that the following properties hold.

1. mS(JS) = 1.

2. For all Borel subset A on X and i ∈ I, mS(φi(A)) =
∫

A
|φ′i(y)|hSmS(dy).

3. For all i, j ∈ I with i 6= j, mS(φi(X) ∩ φj(X)) = 0.

We call mS the hS-conformal measure of S. As we mentioned above, by the existence of the conformal
measure of CIFSs, we estimate the packing measure and obtain the following key theorem to prove Theorem
1.4.

Theorem 2.9 ([5] Lemma 4.10). Let S be a regular CIFS and mS be the hS-conformal measure of S.
Suppose that there exist L > 0, ξ > 0 and γ ≥ 1 such that for all b ∈ I and r > 0 with γ ·diamφb(X) ≤ r ≤ ξ,
there exists x ∈ φb(V ) such that mS(B(x, r)) ≥ LrhS , B(x, r) is the open ball with the center x and the
radius r with respect to the Euclidean distance in R

d. Then, we have PhS (JS) <∞.

3 CIFSs of generalized complex continued fractions

In this section, we present some results on the CIFSs of generalized complex continued fractions introduced
in the papers [1] and [2], which are needed to prove the results of this paper. Note that these CIFSs are
important and interesting examples of infinite CIFSs. Rest of this paper, we denote by B(y, r) ⊂ R

d(d ∈ N)
the open ball with center y ∈ R

d and radius r > 0, with respect to the d-dimensional Euclidean norm and
we identify C with R

2.
We first present the following lemma shown in [1] and [2] in order to prove Theorem 1.4.

Lemma 3.1 (Lemmas 3.1, 3.3 and 3.4 in [2]). For all τ ∈ A0, Sτ is a hereditarily regular CIFS . In addition,
we have 1 < hτ < 2.

In addition, in order to prove Theorem 1.4, we next prove the following lemma (a slight modification of
Lemma 3.2 in [2]). For the readers, we give a proof of Lemma 3.2.

Lemma 3.2. Let τ ∈ A0. Then, there exists K0 ≥ 1 such that for all K ≥ K0 and a ∈ Iτ , the following
properties hold.

1. φa(X) ⊂ B(0,K|a|−1).

2. K−1|a|−2 ≤ |φ′a(z)| ≤ K|a|−2 for each z ∈ X.

3. K−1|a|−2 ≤ diamφa(X).

Proof. Let τ ∈ A0. Note that by using the BDP, there exists a constant C ≥ 1 such that for all z, w ∈ X,

|φ′a(z)| ≤ C · |φ′a(w)|. (3.0.1)

We set K0 := C(≥ 1) and let K ≥ K0 and a ∈ Iτ . Then, by the inequality (3.0.1) with w = 0 ∈ X, we have

|φa(z)| · |a| =
|a|

|a+ z| =
√

|a|2
|a+ z|2 =

√

|φ′a(z)|
|φ′a(0)|

≤
√
C ≤ K0 ≤ K.
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for each z ∈ X. It follows that φa(X) ⊂ B(0,K|a|−1). Also, by the inequality (3.0.1), we have

K−1|a|−2 = K−1|φ′a(0)| ≤ C−1|φ′a(0)| ≤ |φ′a(z)| and |φ′a(z)| ≤ C|φ′a(0)| ≤ K|φ′a(0)| = K|a|−2

for each z ∈ X, which deduce that K−1|a|−2 ≤ |φ′a(z)| ≤ K|a|−2. Moreover, by the inequality (3.0.1), we
have

diamφa(X) · |a|2 ≥ |φa(z)− φa(w)| · |a|2 =

∣

∣

∣

∣

1

z + a
− 1

w + a

∣

∣

∣

∣

· |a|2 =
|w − z|

|z + a||w + a| · |a|
2

= |w − z| ·
√

|a|2
|a+ z|2 ·

√

|a|2
|a+ w|2 = |w − z| ·

√

|φ′a(z)|
|φ′a(0)|

·
√

|φ′a(w)|
|φ′a(0)|

≥ |w − z| · C−1

for all z, w ∈ X = B(1/2, 1/2). Since diamX = sup{|z − w| | z, w ∈ X} = 1, we obtain that diamφa(X) ≥
C−1|a|−2 ≥ K−1|a|−2. Therefore, we have proved our lemma.

We recall the following notations used in the paper [2]. We identify Iτ with {t(s, t) ∈ R
2 | s + it ∈ Iτ}

and N
2 with {t(m,n) ∈ R

2 | m,n ∈ N}, where for any matrix A, we denote by tA the transpose of A. For
each τ = u+ iv ∈ A0, we set

Eτ :=

(

1 u
0 v

)

and Fτ := tEτEτ =

(

1 u
u |τ |2

)

.

Note that by direct calculations, EτN
2 = Iτ , Eτ is invertible and there exist the eigenvalues λ1 > 0 and

λ2 > 0 of Fτ with λ1 < λ2. Note that since Fτ is symmetric, there exist an eigenvector v1 ∈ R
2 of Fτ with

respect to λ1 and an eigenvector v2 ∈ R
2 of Fτ with respect to λ2 such that Vτ := (v1, v2) is an orthogonal

matrix.
For each τ ∈ A0, we set Nτ :=

√
2λ2/

√
λ1 + 1 (> 2). In addition, for each τ ∈ A0 and R > 0, we set

D1(τ,R) := {t(x, y) ∈ R
2 | R2/λ1 < x2 + y2 ≤ (NτR)

2/λ2} and

D2(τ,R) := {t(x, y) ∈ R
2 | R2 < x2 + y2 ≤ (NτR)

2}.

Note that R/
√
λ1 < (NτR)/

√
λ2 for each R > 0 since

√
λ2/

√
λ1 < Nτ and R < NτR for each R > 0 since

1 < Nτ . By these notations, we now present the following proposition and lemma shown in the paper [2].

Proposition 3.3 (Proposition 4.3 in [2]). Let R > 0. Then, for each R ≥ 6,

0 <
R2 − 7R+ 7

2
≤ |{t(m,n) ∈ N

2 | m2 + n2 ≤ R2}| ≤ R2.

Lemma 3.4 (Lemmas 4.2 and 4.4 in [2]). Let τ ∈ A0. Then, there exist C̃τ > 0 and L̃τ > 0 such that for
all R > C̃τ ,

|Iτ ∩D2(τ,R)| ≥ L̃τR
2 − 7Nτ

2
√
λ2
R.

We finally prove the following lemma (a slight modification of Lemma 3.4). For the readers we give a
proof of Lemma 3.5.

Lemma 3.5. Let τ ∈ A0. Then, there exist Qτ > 0 and Cτ > 0 such that for all R ≥ Cτ , we have

|Iτ ∩D2(τ,R)| > QτR
2. (3.0.2)

Proof. Let τ ∈ A0 and we set Qτ := L̃τ/2 > 0, where L̃τ > 0 is the number in Lemma 3.4. Note that there
exists Cτ > C̃τ such that for all R ≥ Cτ , (L̃τR

2)/2− (7NτR)/(2
√
λ2) > 0, which is equivalent to

L̃τR
2 − 7Nτ

2
√
λ2
R >

L̃τ

2
R2, (3.0.3)

where C̃τ > 0 is the number in Lemma 3.4. By Lemma 3.4 and the inequality (3.0.3), we deduce that

|Iτ ∩D2(τ,R)| ≥ L̃τR
2 − 7Nτ

2
√
λ2
R >

L̃τ

2
R2 = QτR

2

for all R ≥ Cτ . Therefore, we have proved our lemma.
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4 Proof of the main theorem

In this section, we prove the main theorem (Theorem 1.4). Rest of this paper, we use the notations in Section
3.

4.1 Lemmas for the proof of the main theorem

In this subsection, we prove the following lemmas to prove Theorem 1.4.

Lemma 4.1. Let f(z) := 1/z (z ∈ C \ {0}). Then, for each B(x, r)(⊂ C) with r < |x|, we have

f(B(x, r)) = B

( |x|2
|x|2 − r2

· 1
x
,

r

|x|2 − r2

)

.

Proof. Let a ∈ C. Then, |1/a − x/(|x|2 − r2)| = r/(|x|2 − r2) if and only if |r2 − x(x− a)| = r|a|, which is
also equivalent to the following equation:

r4 − r2(x(x− a) + x(x− a) + aa) + xx(x− a)(x− a) = 0. (4.1.1)

Since (x(x−a)+x(x−a)+aa) = xx+(x−a)(x−a), the equation (4.1.1) is equivalent to (r2−|x−a|2)(r2−|x|2) =
0. Since 0 < r < |x|, we deduce that |1/a − x/(|x|2 − r2)| = r/(|x|2 − r2) if and only if r = |x − a|. In
addition, since f(x) = 1/x and r < |x|, we obtain that

∣

∣

∣

∣

f(x)− |x|2
|x|2 − r2

· 1
x

∣

∣

∣

∣

=
r

|x|2 − r2
r

|x| <
r

|x|2 − r2
.

That is, f(x) ∈ B(x̄/(|x|2 − r2), r/(|x|2 − r2)) ). Therefore, we have proved our lemma.

Lemma 4.2. Let τ ∈ A0, x̃ ∈ R
2 and R̃ > 0. Then, we have

Eτ (B(E−1
τ x̃, R̃/

√

λ2)) ⊂ B(x̃, R̃).

Proof. Let t(x, y) ∈ B(E−1
τ x̃, R̃/

√
λ2). We set ỹ := t(x, y) − E−1

τ x̃. Since Vτ is orthogonal and |ỹ|2 =
|t(x, y)− E−1

τ x̃|2 < R̃2/λ2, we have

|Eτ
t(x, y)− x̃|2 = |Eτ ỹ|2 = tỹtEτEτ ỹ = tỹFτ ỹ

= tỹVτ

(

λ1 0
0 λ2

)

tVτ ỹ = λ1z
2
1 + λ2z

2
2 ≤ λ2|Vτ ỹ|2 = λ2|ỹ|2 < R̃2,

where t(z1, z2) :=
tVτ ỹ. Therefore, we have proved our lemma.

Lemma 4.3. Let τ ∈ A0, let w ∈ R
2 and R̄ > 0 with |w| > R̄. Then, for each M ≥ 2, we have

EτB

(

E−1
τ

(

w − R̄

M |w|w
)

,
R̄√
λ2M

)

⊂ B(0, |w|) ∩B(w, R̄) and

Eτ

(

N
2 ∩B

(

E−1
τ

(

w − R̄

M |w|w
)

,
R̄√
λ2M

))

⊂ Iτ ∩B(0, |w|) ∩B(w, R̄).

In particular, we have
∣

∣

∣

∣

N
2 ∩B

(

E−1
τ

(

w − R̄

M |w|w
)

,
R̄√
λ2M

)∣

∣

∣

∣

≤ |Iτ ∩B(0, |w|) ∩B(w, R̄)|.

Proof. Let τ ∈ A0, w ∈ R
2, R̄ > 0 and M ≥ 2, and assume that |w| > R̄. We first show that the following

inclusion:

B

(

w − R̄

M |w|w,
R̄

M

)

⊂ B(0, |w|) ∩B(w, R̄).

Indeed, Let z ∈ B
(

w − (R̄w)/(M |w|), R̄/M
)

. Since |w| > R̄ and M ≥ 2, we have 1 > R̄/(M |w|) and

|z| ≤
∣

∣

∣

∣

z −
(

w − R̄

M |w|w
)∣

∣

∣

∣

+

∣

∣

∣

∣

w − R̄

M |w|w
∣

∣

∣

∣

<
R̄

M
+

∣

∣

∣

∣

1− R̄

M |w|

∣

∣

∣

∣

|w| = R̄

M
+

(

1− R̄

M |w|

)

|w| = |w|.
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In addition, since M ≥ 2, we have (2R̄)/M ≤ R̄ and

|z − w| ≤
∣

∣

∣

∣

z −
(

w − R̄

M |w|w
)∣

∣

∣

∣

+

∣

∣

∣

∣

R̄

M

w

|w|

∣

∣

∣

∣

<
R̄

M
+
R̄

M
=

2R̄

M
≤ R̄.

Hence, we have proved the desired inclusion. By Lemma 4.2 with x̃ := w − (R̄w)/(M |w|) and R̃ := R̄/M ,
we have

EτB

(

E−1
τ

(

w − R̄

M |w|w
)

,
R̄√
λ2M

)

⊂ B

(

w − R̄

M |w|w,
R̄

M

)

⊂ B(0, |w|) ∩B(w, R̄).

Moreover, since Iτ = Eτ (N
2) it follows that

Eτ (N
2) ∩ Eτ

(

B

(

E−1
τ

(

w − R̄

M |w|w
)

,
R̄√
λ2M

))

⊂ Iτ ∩B(0, |w|) ∩B(w, R̄).

Finally, since Eτ is injective, we have proved our lemma.

We finally show the following lemma.

Lemma 4.4. Let τ ∈ A0. Then, there exist C ′
τ > 0 and Q′

τ > 0 such that for all w ∈ R
2 and R′ > 0 with

|w| > R′ ≥ C ′
τ , we have

|Iτ ∩B(0, |w|) ∩B(w,R′)| > Q′
τ (R

′)2

Proof. Let τ ∈ A0. Also, let w ∈ R
2 and R′ > 0 with |w| > R′ > 2

√
2λ2. We set ξ = t(ξ1, ξ2) :=

E−1
τ (w − (R′w)/(2|w|)) ∈ R

2 and let ζ1 and ζ2 be minimum integers with ζ1 ≥ ξ1 and ζ2 ≥ ξ2. We first show
that

B

(

ζ,
R′

2
√
λ2

−
√
2

)

⊂ B

(

ξ,
R′

2
√
λ2

)

= B

(

E−1
τ

(

w − R′

2|w|w
)

,
R′

2
√
λ2

)

, (4.1.2)

where ζ := t(ζ1, ζ2) ∈ N
2. Indeed, note that R′ > 2

√
2λ2 if and only if R′/(2

√
λ2)−

√
2 > 0. Since |ζ1−ξ1| ≤ 1

and |ζ2 − ξ2| ≤ 1, we have

|ζ − ξ|2 = |ζ1 − ξ1|2 + |ζ2 − ξ2|2 ≤ 2.

It follows that for each a ∈ B
(

ζ,R′/(2
√
λ2)−

√
2
)

,

|a− ξ| ≤ |a− ζ|+ |ζ − ξ| < R′

2
√
λ2

−
√
2 +

√
2 =

R′

2
√
λ2
.

Therefore, we have proved the inclusion (4.1.2).
We now set Q′

τ := 1/(32λ2) and let C ′
τ ≥ 34

√
λ2 be a number such that

(R′ − 2
√
2λ2)

2

16λ2
− (R′)2

32λ2
> 0 (4.1.3)

for each R′ ≥ C ′
τ .

Let R′ ≥ C ′
τ . Note that l := R′/(2

√
λ2) −

√
2 > 17 − 2 = 15 > 6 and by using a geometric observation,

we see that

|{t(m,n) ∈ N
2 | (m− ζ1)

2 + (n− ζ2)
2 ≤ l2}| = |{t(m,n) ∈ N

2 | m2 + n2 ≤ l2}|.
By proposition 3.3, we deduce that

|{t(m,n) ∈ N
2 | (m− ζ1)

2 + (n− ζ2)
2 ≤ l2}|

= |{t(m,n) ∈ N
2 | m2 + n2 ≤ l2}| ≥ l2 − 7l + 7

2
>
l2 − 7l

2
>
l2

4
,

where we use the following inequality (l2 − 7l)/2− l2/4 = (l2 − 14l)/4 = l(l − 14)/4 > 0 for each l > 15.
Finally, let w ∈ R

2 with |w| > R′. Note that R′ ≥ C ′
τ > 2

√
2λ2. By Lemma 4.3 with R̄ := R′ and M = 2,

the inclusion (4.1.2) and the definition of Q′
τ and C ′

τ , we have

|Iτ ∩B(0, |w|) ∩B(w,R′)| ≥
∣

∣

∣

∣

N
2 ∩B

(

E−1
τ

(

w − R′

2|w|w
)

,
R′

2
√
λ2

)∣

∣

∣

∣

≥
∣

∣

∣

∣

N
2 ∩B

(

ζ,
R′

2
√
λ2

−
√
2

)∣

∣

∣

∣

= |{t(m,n) ∈ N
2 | (m− ζ1)

2 + (n− ζ2)
2 ≤ l2}|

>
l2

4
=

(R′ − 2
√
2λ2)

2

16λ2
>

(R′)2

32λ2
= Q′

τ (R
′)2.

Thus, we have proved our lemma.
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4.2 Proof for Theorem 1.4

We now prove Theorem 1.4. Rest of this section, Let K ≥ 1 be a number which satisfies 1. ∼ 3. in Lemma
3.2.

Proof of Theorem 1.4. It suffices to show that Sτ satisfies the assumption of Theorem 2.9 for each τ ∈ A0.
Let τ ∈ A0 and we set r0 := min{1/8,KC−1

τ }(> 0), where Cτ > 0 is the number in Lemma 3.5. Note that
there exists R0 > max{C ′

τ , 1}(> 0) such that (R− 1)/R ≥ 1/2 for each R > R0, where C
′
τ > 0 is the number

in Lemma 4.4. Recall that Nτ =
√
2λ2/

√
λ1 + 1(> 2). We define constants L′

τ , ξ, γ and Lτ as follows:

L′
τ := min{Q′

τ/4, (R0 + 1)−2} (> 0),

ξ := r20(> 0),

γ := K(≥ 1) and

Lτ := min
{

L′
τ (8K)−hτ , QτK

2−3hτN−2hτ
τ 22−2hτ

}

(> 0).

Here, Qτ and Q′
τ are the numbers in Lemmas 3.5 and 4.4 respectively.

Let b := m+nτ ∈ Iτ and r > 0 with γ ·diam(φb(X)) ≤ r ≤ ξ. We set x := 1/b = φb(0) ∈ φb(X) ⊂ φb(V ).
To prove Theorem 1.4, it suffices to show the following claim:

Claim (⋆).

mτ (B(x, r)) ≥ Lτr
hτ .

Rest of this paper, we consider the following three cases.

Case 1. r ≤ |x|/2

Case 2. 2|x| ≥ r > |x|/2 and

Case 3. r > 2|x|.

We now consider Case 1. Note that by the assumption and Lemma 3.2, we have

0 < r (≤ |x|/2) < |x| and |x|2 = K ·K−1|b|−2 ≤ γ · diamφb(X) ≤ r. (4.2.1)

We set f(z) := 1/z (z ∈ C \ {0}). We set

w :=
|x|2

|x|2 − r2
· 1
x

and R :=
r

|x|2 − r2

for simplicity. Also, we set

Iτ (x, r) := {a ∈ Iτ | φa(X) ⊂ B(x, r)} = {a ∈ Iτ | B(a+ 1/2, 1/2) ⊂ f(B(x, r)) = B(w,R)} (4.2.2)

and Iτ,1 := Iτ (x, r)∩B(0, |w|), where we use Lemma 4.1 in the equation (4.2.2). Note that |w| = |x|/(|x|2−r2).
We next show that |Iτ,1| > L′

τR
2 for each R > 0. To prove this inequality, we consider the following two

cases (Cases 1-1, 1-2). Recall that R0 > max{C ′
τ , 1}(> 0) is the positive real number such that (R− 1)/R ≥

1/2 for each R > R0.
Case 1-1. R ≥ R0 + 1.

Note that by the equation (4.2.2), we have

Iτ,1 = {a ∈ Iτ | B(a+ 1/2, 1/2) ⊂ B(w,R)} ∩B(0, |w|)
⊃ {a ∈ Iτ | a ∈ B(w,R− 1)} ∩B(0, |w|) = Iτ ∩B(w,R− 1) ∩B(0, |w|). (4.2.3)

Since |x| > r, we have |w| > R (> R0 > 0). By the inclusion (4.2.3) and Lemma 4.4 with R′ := R − 1(≥
R0 ≥ C ′

τ ), we have

|Iτ,1| ≥ |Iτ ∩B(w,R− 1) ∩B(0, |w|)| > Q′
τ (R− 1)2 ≥ Q′

τ

4
R2 ≥ L′

τR
2.

Case 1-2. R0 + 1 > R.
We show that b ∈ Iτ,1. Note that since |b| = 1/|x| ≤ |x|/(|x|2−r2) = |w|, we have b ∈ B(0, |w|). Therefore, we
have only to show that b ∈ Iτ (x, r). By using a geometric observation, it suffices to show that |w−(b+1/2)| ≤
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R−1/2. To this end, we set A := 1−|b|2r2 for simplicity. Note that by the inequality (4.2.1) and |x| = 1/|b|,
A = 1− |b|2r2 > 0 and |b|2r − 1 ≥ 0. Then, we have

∣

∣2|b|2r −A
∣

∣

2 − |2r2|b|2b−A|2

= 4|b|4r2 − 2A · 2|b|2r +A2 −
(

2r2|b|2b−A
) (

2r2|b|2b−A
)

= 4|b|4r2 − 2A · 2|b|2r − (2|b|2r2)2 · |b|2 + 2|b|2r2A · (b+ b)

= 4|b|4r2 − 4A|b|2r − 4|b|6r4 + 4|b|2r2A · ℜ(b)
= 4|b|4r2(1− |b|2r2) + 4A|b|2r(rℜ(b)− 1)

= 4A|b|4r2 + 4A|b|2r(rℜ(b)− 1) = 4A|b|2r(|b|2r − 1 + rℜ(b)) ≥ 0,

where ℜ(b) ≥ 0 is the real part of b. In addition, since |b|2r − 1 ≥ 0, we have

2|b|2r −A = |b|2r2 + |b|2r + |b|2r − 1 ≥ |b|2r − 1 ≥ 0.

Therefore, we deduce that |2r2|b|2b−A| ≤ 2|b|2r −A and it follows that

∣

∣

∣

∣

w −
(

b+
1

2

)∣

∣

∣

∣

=

∣

∣

∣

∣

|x|2
|x|2 − r2

1

x
− b− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

b

1− |b|2r2 − b− 1

2

∣

∣

∣

∣

=
|2b− 2b(1− |b|2r2)− (1− |b|2r2)|

2(1− |b|2r2) =
|2b|b|2r2 −A|
2(1− |b|2r2)

≤ 2|b|2r −A

2(1− |b|2r2) =
|b|2r

1− |b|2r2 − 1− |b|2r2
2(1− |b|2r2) =

r

|x|2 − r2
− 1

2
= R− 1

2
.

Thus, we have proved B(b + 1/2, 1/2) ⊂ B(w,R) and b ∈ Iτ,1. By the assumption R0 + 1 > R, we deduce
that

|Iτ,1| ≥ 1 >

(

R

R0 + 1

)2

≥ L′
τR

2.

Hence, we have proved |Iτ,1| > L′
τR

2 for each R > 0.
We now show the statement of Claim (⋆) for Case 1. r ≤ |x|/2. Rest of this paper, we denote by mτ the

hτ -conformal measure for Sτ for each τ ∈ A0. Note that by Theorem 2.8 and Lemma 3.2, we have

mτ





⋃

a∈Iτ,1

φa(X)



 =
∑

a∈Iτ,1

mτ (φa(X)) =
∑

a∈Iτ,1

∫

X

|φ′a(y)|hτmτ (dy)

≥
∑

a∈Iτ,1

K−hτ |a|−2hτmτ (X) =
∑

a∈Iτ,1

K−hτ |a|−2hτ .

Therefore, since φa(X) ⊂ B(x, r) and |a| ≤ |w| for each a ∈ Iτ,1 we deduce that

mτ (B(x, r)) ≥ mτ

(

⋃

a∈I

φa(X)

)

=
∑

a∈Iτ,1

K−hτ |a|−2hτ ≥
∑

a∈Iτ,1

K−hτ |w|−2hτ ≥ |Iτ,1| ·K−hτ |w|−2hτ .

In addition, since r ≤ |x|/2, we obtain that |x|2 − r2 ≥ 3|x|2/4 (i.e. |w| = |x|/(|x|2 − r2) ≤ 4/(3|x|) ) and

mτ (B(x, r)) ≥ L′
τR

2 ·K−hτ

(

3|x|
4

)2hτ

≥ L′
τ

(

r

|x|2
)2

·K−hτ

(

9

16

)hτ

|x|2hτ

≥ L′
τK

−hτ 2−hτ · r2 |x|2hτ−4 ≥ L′
τ (2K)−hτ · r2rhτ−2 ≥ L′

τ (2K)−hτ rhτ

≥ Lτr
hτ ,

where we use the inequality |Iτ,1| > L′
τR

2 for each R > 0 and the inequality |x|2(hτ−2) ≥ rhτ−2 since |x|2 ≤ r
and hτ < 2 (see Lemma 3.1). Thus, we have proved the statement of Claim (⋆) for Case 1. r ≤ |x|/2.

We now consider Case 2. We set r̃ := r/4. Then, by the assumption, we have r̃ ≤ |x|/2. In addition,
since |x|2 = K ·K−1|b|−2 ≤ γ · diamφb(X) ≤ r ≤ ξ = r20, we have

|x|2 ≤ r0 · |x| ≤
1

8
· 2r = r̃,
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where used the definition of r0 > 0. Therefore, the positive real number r̃ satisfies the inequalities r̃ ≤ |x|/2
(the assumption of Case 1.), r̃ < |x| and |x|2 ≤ r̃ (the inequalities (4.2.1)) instead of r > 0. By the same
argument as Case 1. with r̃ > 0 instead of r > 0, we have

mτ (B(x, r)) ≥ mτ (B(x, r̃)) ≥ L′
τ (2K)−hτ r̃hτ ≥ L′

τ (2K)−hτ 4−hτ rhτ ≥ L′
τ (8K)−hτ rhτ ≥ Lτr

hτ .

Thus, we have proved the statement of Claim (⋆) for Case 2. 2|x| ≥ r > |x|/2.
We now consider Case 3. We set r̄ := r/2. Note that B(0, r̄) ⊂ B(x, r) since |y−x| ≤ |x|+|y| < r/2+r̄ = r

for each y ∈ B(0, r̄). We set rτ := KC−1
τ (> 0) for simplicity, where Cτ is the number in Lemma 3.5. We set

Iτ (r̄) := {a ∈ Iτ | r̄/Nτ ≤ K|a|−1 < r̄}.

We show that
|Iτ (r̄)| > QτK

2r̄−2. (4.2.4)

Indeed, note that by the definition of r > 0, ξ > 0 and r0 > 0, we have r̄ = r/2 < r0 ≤ rτ . We set R := Kr̄−1

for simplicity. Note that r̄ < rτ if and only if R > Cτ and

Iτ (r̄) = {a ∈ Iτ | Kr̄−1 < |a| ≤ NτKr̄
−1} = Iτ ∩D2(τ,Kr̄

−1) = Iτ ∩D2(τ,R).

By Lemma 3.5, we obtain that

|Iτ (r̃)| = |Iτ ∩D2(τ,R)| > QτR
2 = QτK

2r̄−2.

Therefore, we have proved the inequality (4.2.4). Now, by Theorem 2.8 and Lemma 3.2, we have

mτ





⋃

a∈Iτ (r̄)

φa(X)



 =
∑

a∈Iτ (r̄)

mτ (φa(X)) =
∑

a∈Iτ (r̄)

∫

X

|φ′a(y)|hτmτ (dy)

≥
∑

a∈Iτ (r̄)

K−hτ |a|−2hτmτ (X) =
∑

a∈Iτ (r̄)

K−hτ |a|−2hτ .

In addition, since φa(X) ⊂ B(0, r̄) (see Lemma 3.2) and |a|−1 ≥ r̄/(NτK) for each a ∈ Iτ (r̄) we deduce that

mτ (B(x, r)) ≥ mτ (B(0, r̄)) ≥ mτ





⋃

a∈Iτ (r̄)

φa(X)



 ≥
∑

a∈Iτ (r̄)

K−hτ

(

r̄

KNτ

)2hτ

= |Iτ (r̄)| ·K−3hτN−2hτ
τ r̄2hτ > QτK

2−3hτN−2hτ
τ · r̄2hτ−2

= QτK
2−3hτN−2hτ

τ 22−2hτ · r2hτ−2 ≥ QτK
2−3hτN−2hτ

τ 22−2hτ rhτ ≥ Lτr
hτ ,

where we use the inequalities (4.2.4) and r2hτ−2 > rhτ since r < r0 ≤ 1/8 < 1 and hτ < 2 (see Lemma 3.1).
Thus, we have proved the statement of Claim (⋆) for Case 3. r > 2|x|.

Hence, by the three cases (Cases 1. ∼ 3. ), we have proved Theorem 1.4.
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