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Abstract

We investigate i.i.d. random complex dynamical systems generated by probability measures
on finite unions of the loci of holomorphic families of rational maps on the Riemann sphere
Ĉ. We show that under certain conditions on the families, for a generic system, (especially,
for a generic random polynomial dynamical system,) for all but countably many initial values
z ∈ Ĉ, for almost every sequence of maps γ = (γ1, γ2, . . .), the Lyapunov exponent of γ at z
is negative. Also, we show that for a generic system, for every initial value z ∈ Ĉ, the orbit of
the Dirac measure at z under the iteration of the dual map of the transition operator tends
to a periodic cycle of measures in the space of probability measures on Ĉ. Note that these
are new phenomena in random complex dynamics which cannot hold in deterministic complex
dynamical systems. We apply the above theory and results of random complex dynamical
systems to finding roots of any polynomial by random relaxed Newton’s methods and we show
that for any polynomial g of degre two or more, for any initial value z ∈ C which is not a root
of g′, the random orbit starting with z tends to a root of g almost surely, which is the virtue
of the effect of randomness.

1 Introduction and the main results

In this paper, we investigate the independent and identically-distributed (i.i.d.) random dynamics

of rational maps on the Riemann sphere Ĉ and the dynamics of rational semigroups (i.e., semigroups

of non-constant rational maps where the semigroup operation is functional composition) on Ĉ.
One motivation for research in (complex) dynamical systems is to describe some mathematical

models in various fields to study nature and science. Since nature and any other environments
have a lot of random terms, it is very natural and important not only to consider the dynamics
of iteration, but also to consider random dynamics. Another motivation for research in complex
dynamics is Newton’s method to find roots of a complex polynomial, which often is expressed as
the dynamics of a rational map f on Ĉ with deg(f) ≥ 2, where deg(f) denotes the degree of f. In
various fields, we have many mathematical models which are described by the dynamical systems
associated with polynomial or rational maps. For each model, it is natural and important to
consider a randomized model, since we always have some kind of noise or random terms. Regarding
random (complex) dynamics, many researchers in various fields (mathematics, physics, chemistry,
etc.) have found and investigated many kinds of new phenomena in random (complex) dynamics
which cannot hold in deterministic dynamics. These phenomena arise from the effect of randomness
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and they are called randomness-induced phenomena or noise-induced phenomena ([22]).
In fact, recently these topics are getting more and more attention in many fields.

The first study of random complex dynamics was given by J. E. Fornaess and N. Sibony ([10]).
For research on random complex dynamics of quadratic polynomials, see [4]–[8], [11]. For recent
research on random complex dynamics and the various randomness-induced phenomena, see the
author’s works [36]–[41]. In this paper, we show that a generic random holomorphic dynamical

system associated with an analytic family of rational maps on Ĉ with some mild conditions has
randomness-induced order even if the noise is multiplicative and we have a common repelling
fixed point for any map in the system. Some of the new things of this paper are that (a) we can
deal with random holomorphic dynamical systems with multiplicative noise (Theorems 1.1,
1.2, 3.77, 3.82, Example 1.7, Section 5) and (b) we apply the results to the study of random
relaxed Newton’s methods which we introduce in this paper to find roots of any polynomial,
and we show that random relaxed Newton’s methods have some much better properties than those
of deterministic (relaxed) Newton’s method (Theorems 1.4, 4.4, Corollary 1.5, Remark 1.6).

In order to investigate random complex dynamics, it is very important to study the dynamics
of associated rational semigroups. In fact, random complex dynamics and the dynamics of rational
semigroups are related to each other very deeply. The first study of dynamics of rational semigroups
was conducted by A. Hinkkanen and G. J. Martin ([13]) and by F. Ren’s group ([12]). For recent
work on the dynamics of rational semigroups, see the author’s papers [32]–[41], and [19, 30, 42, 43].

To introduce the main idea of this paper, we let G be a rational semigroup and denote by F (G)

the Fatou set of G, which is defined to be the maximal open subset of Ĉ where G is equicontinuous
with respect to the spherical distance on Ĉ. We call J(G) := Ĉ \ F (G) the Julia set of G. The
Julia set is backward invariant under each element h ∈ G, but might not be forward invariant.
This is a difficulty of the theory of rational semigroups. Nevertheless, we utilize this as follows.
The key to investigating random complex dynamics is to consider the following kernel Julia set
of G, which is defined by Jker(G) =

∩
g∈G g

−1(J(G)). This is the largest forward invariant subset
of J(G) under the action of G. Note that if G is a group or if G is a commutative semigroup, then
Jker(G) = J(G). However, for a general rational semigroup G generated by a family of rational
maps h with deg(h) ≥ 2, it may happen that ∅ = Jker(G) ̸= J(G).

Let Rat be the space of all non-constant rational maps on the Riemann sphere Ĉ, endowed with
the distance κ which is defined by κ(f, g) := supz∈Ĉ d(f(z), g(z)), where d denotes the spherical

distance on Ĉ. Let Rat+ be the space of all rational maps g with deg(g) ≥ 2. Let P be the space of
all polynomial maps g with deg(g) ≥ 2. Let τ be a Borel probability measure on Rat with compact

support. We consider the i.i.d. random dynamics on Ĉ such that at every step we choose a
map h ∈ Rat according to τ. Thus this determines a Markov process on the state space Ĉ such
that for each x ∈ Ĉ and each Borel measurable subset A of Ĉ, the transition probability p(x,A)
from x to A is defined as p(x,A) = τ({g ∈ Rat | g(x) ∈ A}). Let Gτ be the rational semigroup
generated by the support of τ , i.e., Gτ = {h1 ◦ · · · ◦ hn | n ∈ N, hj ∈ supp τ for all j}. Moreover,
Jker(Gτ ) is called the kernel Julia set of τ.

For a metric space X, let M1(X) be the space of all Borel probability measures on X endowed
with the topology induced by weak convergence (thus µn → µ in M1(X) if and only if

∫
φdµn →∫

φdµ for each bounded continuous function φ : X → R). Note that if X is a compact metric
space, then M1(X) is compact and metrizable. For each τ ∈ M1(X), we denote by supp τ the
topological support of τ. Let M1,c(X) be the space of all Borel probability measures τ on X such
that supp τ is compact.

For each τ ∈ M1(Rat), let τ̃ := ⊗∞
n=1τ ∈ M1((Rat)

N). For a metric space X, we denote by
Cpt(X) the space of all non-empty compact subsets of X endowed with the Hausdorff metric. For

a rational semigroup G, we say that a non-empty compact subset L of Ĉ is a minimal set of
(G, Ĉ) if L = ∪h∈G{h(z)} for each z ∈ L.Moreover, we denote by Min(G, Ĉ) the sets of all minimal

sets of (G, Ĉ). Let τ ∈ M1,c(Rat). We say that a minimal set L ∈ Min(Gτ , Ĉ) is attracting for τ

if there exist two open subsets A,B of Ĉ with ♯(Ĉ\A) ≥ 3 and an n ∈ N such that L ⊂ B ⊂ B ⊂ A
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and such that for each (γ1, . . . , γn) ∈ (supp τ)n, we have γn ◦ · · · ◦ γ1(A) ⊂ B. In this case, we say
that L is an attracting minimal set of τ. Let Y be a subset of Rat endowed with the relative
topology from Rat. We say that Y is mild if for each τ ∈ M1,c(Y), there exists an attracting
minimal set of τ. For example, any non-empty open subset of P is a mild subset of Rat.

Let Y be a closed subset of an open subset of Rat, i.e., there exist an open subset V of Rat and
a closed subset C of Rat such that Y = V ∩ C. Let W = {fλ}λ∈Λ be a holomorphic family of
rational maps (see Definition 3.37) such that Λ is a connected complex manifold and λ 7→ fλ ∈
Rat is not constant. We say that Y is weakly nice with respect to W if Y = {fλ ∈ Rat | λ ∈ Λ}
(for more general definition, see 3.40). In this case, for each n ∈ N, we denote by Sn(W) the set

of points z ∈ Ĉ satisfying that (λ1, . . . , λn) ∈ Λn 7→ fλ1
◦ · · · ◦ fλn

(z) is constant on Λn. Also, we
set S(W) = ∩∞

n=1Sn(W). This S(W) is called the singular set of W. Note that ♯S1(W) <∞ and
♯S(W) < ∞ (Lemma 3.38). We say that Y is nice with respect to W if Y is weakly nice with

respect to W and for each τ ∈ M1,c(Y), for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W) and for each
z ∈ L, either (a) the map λ 7→ D(fλ)z is non-constant on Λ or (b) D(fλ)z = 0 for all λ ∈ Λ.

For any closed subset Y of an open subset of Rat, let O be the topology in M1,c(Y) such that
the sequence {τn}∞n=1 in M1,c(Y) tends to an element τ ∈ M1,c(Y) with respect to the topology O
if and only if (a) for each bounded continuous function φ : Y → C,

∫
φ dτn →

∫
φ dτn as n→ ∞,

and (b) supp τn → supp τ as n→ ∞ in Cpt(Y) with respect to the Hausdorff metric.

Let C(Ĉ) be the space of all complex-valued continuous functions on Ĉ endowed with the

supremum norm ∥ · ∥∞. Let Mτ be the operator on C(Ĉ) defined by Mτ (φ)(z) =
∫
φ(g(z))dτ(g).

ThisMτ is called the transition operator of the Markov process induced by τ. LetM∗
τ : M1(Ĉ) →

M1(Ĉ) be the dual ofMτ . ThisM
∗
τ can be regarded as the “averaged map” on the extensionM1(Ĉ)

of Ĉ (see Remark 3.9).
We now present the first main result of this paper.

Theorem 1.1 (For the detailed and more general version, see Theorems 3.77, 3.65). Let Y be a
mild subset of Rat+ and suppose that Y is nice with respect to a holomorphic family W of rational
maps. Then there exists an open and dense subset A of (M1,c(Y),O) such that for each τ ∈ A,
the following (I) and (II) hold.

(I) (Convergence) There exist numbers l, r ∈ N, probability measures η1, . . . , ηr ∈ M1(Ĉ) and

functions α1, . . . , αr : Ĉ → [0, 1] such that for each y ∈ Ĉ and for each φ ∈ C(Ĉ), we have

Mnl
τ (φ)(y) →

r∑
i=1

αi(y)

∫
φdηi as n→ ∞ (pointwise convergence) , (1)

i.e., we have (M∗
τ )

nl(δy) →
∑r

i=1 αi(y)ηi as n → ∞ in M1(Ĉ) with respect to the weak
convergence topology. Also, we have (M∗

τ )
l(
∑r

i=1 αi(y)ηi) =
∑r

i=1 αi(y)ηi.

(II) We have ♯Jker(Gτ ) <∞ and ♯Min(Gτ , Ĉ) <∞.Moreover, for each y ∈ Ĉ, there exists a Borel
subset Bτ,y of (Rat+)

N with τ̃(Bτ,y) = 1 such that for each γ = (γ1, γ2, . . . , ) ∈ Bτ,y, there

exists an element L = L(y, γ) ∈ Min(Gτ , Ĉ) for which we have that d(γn ◦ · · · ◦ γ1(y), L) → 0
as n→ ∞.

We remark that statements (I)(II) in Theorem 1.1 cannot hold for deterministic iteration dy-
namics of a single f ∈ Rat+, since the dynamics of f : J(f) → J(f), where J(f) denotes the Julia
set of f , is chaotic. In fact, it is well-known that (a) for a generic z ∈ J(f), the orbit {fn(z)}∞n=1

is dense in J(f) and for each l ∈ N, δfnl(y) does not converge to any probability measure on Ĉ
as n → ∞, (b) setting ⟨f⟩ := {fn | n ∈ N}, we have that Jker(⟨f⟩) = J(f) and Jker(⟨f⟩) is un-
countable, and (c) there are infinitely many minimal sets of f in J(f), i.e., we have infinitely many
periodic cycles of f in J(f). Thus Theorem 1.1 deals with some randomness-induced phenomena.

To present the second main theorem, for each τ ∈ M1,c(Rat) and for each L ∈ Min(Gτ , Ĉ) with
♯L <∞, we define the Lyapunov exponent of (τ, L) and denote it by χ(τ, L) (see Definition 3.28).
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Also, if Y is a weakly nice subset of Rat with respect to a holomorphic family W of rational maps,
we say that Y is exceptional with respect to W if there exists a non-empty subset L of S(W)

such that for each τ ∈ M1,c(Y), we have L ∈ Min(Gτ , Ĉ) and χ(τ, L) = 0. We say that Y is non-
exceptional with respect to W if Y is not exceptional with respect to W (For the definition in
more general setting, see Definition 3.54).

For each sequence γ = (γ1, γ2, . . .) ∈ (Rat)N, and for each m,n ∈ N with m ≥ n, we set

γm,n = γm ◦ · · · ◦ γn and we denote by Fγ the set of points z ∈ Ĉ satisfying that there exists
an open neighborhood of z on which the sequence {γn,1}∞n=1 is equicontinuous with respect to

the spherical distance on Ĉ. This Fγ is called the Fatou set of the sequence γ. Also, we set

Jγ := Ĉ \ Fγ and this Jγ is called the Julia set of γ.
We now present the second main theorem of this paper.

Theorem 1.2 ((Negativity of Lyapunov Exponents) For the detailed and more general ver-
sion, see Theorem 3.82). Let Y be a mild subset of Rat+ and suppose that Y is nice and non-
exceptional with respect to a holomorphic family W = {fλ}λ∈Λ of rational maps. Then there
exists an open and dense subset A of (M1,c(Y),O) such that for each τ ∈ A, all of the following
statements (I) and (II) hold.

(I) There exist a subset Ωτ of Ĉ with ♯(Ĉ\Ωτ ) ≤ ℵ0, a constant cτ < 0 and a constant ρτ ∈ (0, 1)
such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of (Rat+)

N with τ̃(Cτ,z) = 1
satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we have the
following (a) and (b).
(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

Here, for any g ∈ Rat and z ∈ Ĉ, we denote by ∥Dgz∥s the norm of the derivative of g
at z with respect to the spherical metric.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an

element L = L(τ, z, γ) ∈ Min(Gτ , Ĉ) which is either (i) “attracting for τ”, or (ii) “finite
and included in Jker(Gτ ) with χ(τ, L) < 0”, such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

where we set diam(B) = supx,y∈B d(x, y) for any set B ⊂ Ĉ, and such that

d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

(II) For τ̃ -a.e. γ ∈ (Rat+)
N, we have that Leb2(Jγ) = 0, where Leb2 denotes that 2-dimensional

Lebesgue measure on Ĉ.

Remark 1.3. In Theorems 3.77, 3.82, we show more generalized results in which we deal with
random dynamical systems of τ ∈ M1,c(Rat) such that supp τ is included in a finite union of loci
of holomorphic families {Wj}mj=1 of rational maps, and supp τ meets the locus of each Wj .

We remark that statements (I), (II) in Theorem 1.2 cannot hold for deterministic iteration
dynamics of a single f ∈ Rat+. In fact the dynamics of f : J(f) → J(f) is chaotic, and we

have Mañé’s result dimH({z ∈ Ĉ | lim infn→∞
1
n log ∥D(fn)z∥s > 0}) > 0, where dimH denotes

the Hausdorff dimension with respect to the spherical distance on Ĉ (see [23]). In particular,
the set of points z ∈ J(f) for which lim infn→∞

1
n log ∥D(fn)z∥s > 0 is uncountable. Also, it is

well-known that for any open subset U of Ĉ with U ∩ J(f) ̸= ∅, there exists an N ∈ N such
that for each n ∈ N with n ≥ N , we have fn(U) ⊃ J(f) and diam(fn(U)) ≥ diam(J(f)) > 0.
Thus Theorem 1.2 deals with a randomness-induced phenomenon. As we see in Theorems 1.1, 1.2,
under the assumptions of Theorems 1.1, 1.2, regarding generic random complex dynamical
systems (in particular, regarding generic random polynomial dynamical systems), the
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chaoticity is much weaker than that of deterministic complex dynamical systems.
This arises from the effect of randomness and Theorems 1.1, 1.2 deal with randomness-induced
phenomena. Note that the statements in Theorems 1.1, 1.2 are a kind of analogues of
the conjecture of density of hyperbolic maps ([25]) in deterministic complex dynamics.

We remark that in [10] and [38, 39], regarding random complex dynamical systems, results
on disappearance of chaos were shown. In [10], it was assumed that S(W) = ∅ and the noise is
very small, which implies that the systems in the paper have empty kernel Julia sets Jker(Gτ ) of
corresponding rational semigroups. In [39], it was also assumed that S(W) = ∅ (for a holomorphic
family W of polynomials, it was assumed that S(W) \ {∞} = ∅) but the range of the noise could
be big, and it was shown that the generic systems have empty kernel Julia sets, which implies
that the chaoticity of the systems is much weaker than that of deterministic complex dynamical
systems. In this paper, it is important that in Theorems 1.1 and 1.2, the set A may contain
many τ for which Jker(Gτ ) ̸= ∅ and there exists an element L ∈ Min(Gτ , Ĉ) which is
finite and χ(τ, L) > 0 (Theorem 1.4, Corollary 1.5, Lemma 4.3, Examples 1.7, 5.4– 5.7). Once
we have non-empty kernel Julia set, the analysis of the system is much more difficult
than the cases with empty kernel Julia sets, even if the kernel Julia set is finite. We need a
new framework and more technical arguments to study such systems.

We apply the results and the methods in the above to finding roots of any polynomial g ∈ P by
random relaxed Newton’s methods as we explained below. Let g ∈ P. Let Λ := {λ ∈ C | |λ−1| < 1}
and let Ng,λ(z) = z−λ g(z)

g′(z) for each λ ∈ Λ. Let Wg = {Ng,λ}λ∈Λ. Let Yg := {Ng,λ ∈ Rat | λ ∈ Λ}.
Then Yg is called the random relaxed Newton’s method set for g and Wg is called the
random relaxed Newton’s method family for g. Also, (Yg,Wg) is called the random relaxed
Newton’s method scheme for g. Moreover, for each τ ∈ M1,c(Yg), the random dynamical

system on Ĉ generated by τ is called a random relaxed Newton’s method (or random
relaxed Newton’s method system) for g. Furthermore, let Qg := {z0 ∈ C | g(z0) = 0}.

We now present the third main theorem of this paper.

Theorem 1.4 (For the details, see Theorem 4.4). Let g ∈ P. Let (Yg,Wg) be the random relaxed
Newton’s method scheme for g. Then we have the following (I) and (II).

(I) (Almost Sure Convergence to a Root of g) Let Λ = {λ ∈ C | |λ − 1| < 1}. Let
η ∈ M1,c(Λ) be an element such that int(supp η) ⊃ {λ ∈ C | |λ− 1| ≤ 1

2} and η is absolutely
continuous with respect to the 2-dimensional Lebesgue measure on Λ. Here, int(supp η) de-
notes the set of interior points of supp η with respect to the topology in Λ. Let η̃ = ⊗∞

n=1η ∈
M1(Λ

N). Then for each z0 ∈ C \ {z ∈ C | g′(z) = 0 and g(z) ̸= 0}, there exists a Borel
subset Cη,z0 of ΛN with η̃(Cη,z0) = 1 such that for each (λ1, λ2, . . .) ∈ Cη,z0 , the sequence
{Ng,λn

◦ · · · ◦Ng,λ1
(z0)}∞n=1 tends to a root x = x(z0, λ1, λ2, . . .) of g as n→ ∞ exponentially

fast.

Also, for η̃-a.e. λ = (λ1, λ2, . . .) ∈ ΛN, we have that Leb2(Jγ(λ)) = 0 and for each z ∈ Fγ(λ),

there exists a root x = x(τ, λ, z) of g such that Ng,λn ◦ · · · ◦ Ng,λ1(z) → x as n → ∞
exponentially fast. Here, we set γ(λ) = (Ng,λ1

, Ng,λ2
, . . .) ∈ YN

g for each λ = (λ1, λ2, . . .) ∈
ΛN.

(II) There exists an open and dense subset A of M1,c(Yg) such that we have all of the following
(i)(ii)(iii).

(i) Regarding any element η ∈ M1,c(Λ) as in (I), we have η̃ ∈ A, under the canonical
identification Λ ∼= Yg.

(ii) For each τ ∈ A, statements (I)(II) in Theorem 1.1 and statements (I)(II) in Theorem 1.2
hold for τ.

(iii) Let τ ∈ A. Then Min(Gτ , Ĉ) is equal to the union of {{x} | x ∈ Qg} ∪ {{∞}} and

{L ∈ Min(Gτ , Ĉ) | L ⊂ C \ Qg, L is attracting for τ}. Also, for each x ∈ Qg, the
minimal set {x} is attracting for τ. Furthermore, Jker(Gτ ) ̸= ∅.
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We say that a non-constant polynomial g is normalized if {z0 ∈ C | g(z0) = 0} is included in
D := {z ∈ C | |z| < 1}. For a given polynomial g, sometimes it is not difficult for us to find an
element a ∈ R with a > 0 such that g(az) is a normalized polynomial of z. It is well-known that if
g ∈ P is a normalized polynomial, then so is g′ (see [1]). Thus, we obtain the following corollary.

Corollary 1.5. Let g ∈ P be a normalized polynomial. Let Λ = {λ ∈ C | |λ−1| < 1}. Let z0 ∈ C\D.
Let η ∈ M1,c(Λ) be an element such that int(supp η) ⊃ {λ ∈ C | |λ − 1| ≤ 1

2} and η is absolutely
continuous with respect to the 2-dimensional Lebesgue measure on Λ. Let η̃ = ⊗∞

n=1η ∈ M1(Λ
N).

Then for η̃-a.e. (λ1, λ2, . . .) ∈ ΛN, {Ng,λn
◦· · ·◦Ng,λ1

(z0)}∞n=1 tends to a root x = x(z0, λ1, λ2, . . .) of
g as n→ ∞. Moreover, if, in addition to the assumptions of our theorem, we know the coefficients
of g explicitly, then by the following algorithm in which we consider deg(g)-random orbits of z0
under deg(g)-different random relaxed Newton’s methods, we can find all roots of g almost surely
with arbitrarily small errors.

(1) We first consider the random relaxed Newton’s method scheme (Yg1 ,Wg1) for g1 = g. By
Theorem 1.4, for η̃-a.e. (λ1, λ2, . . .) ∈ ΛN, {Ng1,λn

◦ · · · ◦ Ng1,λ1
(z0)}∞n=1 tends to a root

x = x(z0, λ1, λ2, . . .) of g. Let x1 be one of such x(z0, λ1, λ2, . . .) (with arbitrarily small
error).

(2) Let g2(z) = g(z)/(z − x1). By using synthetic division, we regard g2 as a polynomial which
divides g1 (with arbitrarily small error). Note that g2 is also a normalized polynomial. We
consider the random relaxed Newton’s method scheme (Yg2 ,Wg2) for g2. By Theorem 1.4, for
η̃-a.e. (λ1, λ2, . . .) ∈ ΛN, {Ng2,λn

◦ · · · ◦ Ng2,λ1
(z0)}∞n=1 tends to a root x = x(z0, λ1, λ2, . . .)

of g2, which is also a root of g (with arbitrarily small error).

(3) Let g3(z) = g2(z)/(z − x2) and as in the above, we find a root x3 of g with arbitrarily small
error. Continue this method.

We remark that in Theorem 1.4 and Corollary 1.5, we have several kinds of nice effects of
noise or randomnees, even though any system has non-empty kernel Julia set of the corresponding
rational semigroup (in fact, ∞ is a common repelling fixed point of any map in the system and
{z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0} ∪ {∞} is included in the kernel Julia set). In order to analyze
such systems with non-empty kernel Julia sets, we need a new framework and much more technical
arguments than those of [38], [39]. See the second remark after Remark 1.3.

Remark 1.6. (I) Regarding the original Newton’s method, M. Hurley showed in [15] that for
any k ∈ N with k ≥ 3, there exists a polynomial g of deg(g) = k such that the Newton’s method
map Ng(z) = Ng,1(z) = z − g(z)/g′(z) for g has 2k − 2 different attracting cycles. Thus this Ng

has k − 2 attracting cycles which are not zeros of g. Since attracting cycles are stable under small
perturbations, it follows that for any k ≥ 3, there exist a non-empty open subset Uk of Pk :=
{g ∈ P | deg(g) = k} and a non-empty open subset Vk of Ĉ such that for each (g, z0) ∈ Uk × Vk,
{Nn

g (z0)}∞n=1 cannot converge to any root of g.
(II) C. McMullen showed in [24] that for any k ∈ N, k ≥ 4 and for any l ∈ N, there exists NO

rational map Ñ : Pk → Ratl := {f ∈ Rat | deg(f) = l} such that for any g in an open dense subset

of Pk, for any z in an open dense subset of Ĉ, Ñ(g)n(z) tends to a root of g as n→ ∞.
(III) The essential assumptions on η in Theorem 1.4 (III) and η in Corollary 1.5

of this paper do not depend on g ∈ P. By (I)(II), it follows that the statements of Theo-
rem 1.4 and Corollary 1.5 cannot hold in the deterministic Newton’s method and any
other deterministic complex analytic iterative schemes to find roots of polynomials.
Thus Theorem 1.4 and Corollary 1.5 deal with randomness-induced phenomena.

(IV) J. Hubbard, D. Schleicher and S. Sutherland showed in [16] that for each k ∈ N, there
exists a finite subset Bk of C with ♯Bk ≤ 1.1k(log k)2 satisfying that for any normalized polynomial
g with deg(g) = k and for every root x of g, there exists a point z0 ∈ Bk such that {Nn

g (z0)}∞n=1

converges to x.
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Note that this is the first paper to investigate random relaxed Newton’s method systematically.
It is important that in Theorem 1.4 (III) and Corollary 1.5, the size of the noise is big which
enables the system to make the minimal set with period greater than 1 collapse. However, since
the size of the noise is big, it is not enough for us to consider the arguments which are similar to
those of deterministic dynamics of one map, thus we have to develop the theory of random complex
dynamical systems with noise or randomness of any size as in Theorems 1.1, 1.2.

As we see before, in Theorems 1.1 and 1.2, the chaoticity of random complex dynamical systems
is much weaker than that of deterministic dynamical systems. However, the random systems may
have still a kind of complexity or chaoticity. For example, when we consider the function TL,τ

of probability of tending to one L ∈ Min(Gτ , Ĉ), then under certain conditions, this function is

continuous on Ĉ and even more, this is α-Hölder continuous on Ĉ for some α ∈ (0, 1) but there

exists an element β ∈ (0, 1) such that TL,τ cannot be β-Hölder continuous on Ĉ. This implies that
the system generated by τ does not act mildly (i.e., the transition operator Mτ of τ does not act

mildly) on the Banach space Cβ(Ĉ) of β-Hölder continuous functions on Ĉ endowed with β-Hölder

norm ∥ · ∥β (e.g., there exists a φ ∈ Cβ(Ĉ) such that ∥Mn
τ (φ)∥β → ∞ as n→ ∞). Thus regarding

the random (complex) dynamical systems, we have the gradations between chaos and order
(see [38, 39, 17, 18, 20, 41]).

In Theorems 3.80 and 3.83, we show the results on random dynamical systems generated by
measures τ on a nice subset Y of Rat without assuming Y is mild. We show that considering the
mild part M1,c,mild(Y) (the set of elements τ which has an attractor, see Definition 3.78), there
exists an open and dense subset A of M1,c,mild(Y) such that for each τ ∈ A, statements (I)(II) in
Theorem 1.1 and statements (I)(II) in Theorem 1.2 hold. Also, denoting by M1,c,JF (Y) the set

of elements τ ∈ M1,c(Y) for which J(Gτ ) = Ĉ and either Min(Gτ , Ĉ) = {Ĉ} or ∪L∈Min(Gτ ,Ĉ)L ⊂
S(W), we show that the union of A and M1,c,JF (Y) is dense in M1,c(Y) (Theorems 3.80 and 3.83).

Example 1.7. We give some examples of Y satisfying the assumptions in Theorems 1.1, 1.2,
3.77, 3.82. For the details and the proofs, see Section 5. In the following, A denotes the open
and dense subset of (M1,c(Y),O) or (M1,c(Y, {Wj}mj=1),O) (for the notation, see Definition 3.40)
in Theorems 1.1, 1.2, 3.77, 3.82. As mentioned before, if Jker(Gτ ) ̸= ∅, it is much more diffi-
cult to show the statements on convergence of measures and negativity of Lyapunov
exponents in Theorems 1.1, 1.2, 3.77, 3.82 than the cases with Jker(Gτ ) = ∅.

(i) For each q ∈ N with q ≥ 2, let Pq := {f ∈ P | deg(f) = q}. Let (q1, . . . , qm) ∈ Nm with
q1 < q2 < · · · < qm and let Wj = {f}f∈Pqj

, j = 1, . . . ,m and let Y = ∪m
j=1Pqj . In this case,

S(Wj) \ {∞} = ∅ for each j and the set Ωτ in Theorem 1.2 can be taken as Ĉ. (Note that
this result has been already obtained in [39].)

(ii) Let q ∈ N with q ≥ 2 and let W = {zq + c}c∈C. Let Y = {zq + c | c ∈ C}. In this case,

S(W) \ {∞} = ∅ and the set Ωτ in Theorem 1.2 can be taken as Ĉ. (Note that this result
has been already obtained in [39].)

(iii) Let W = {λz(1 − z)}λ∈C\{0} and let Y = {λz(1 − z) ∈ P2 | λ ∈ C \ {0}}. In this case,
S(W) = {0, 1} ∪ {∞} and S(W) \ {∞} ̸= ∅. There exists a non-empty open subset A′ of A
such that for each τ ∈ A′, we have Jker(Gτ ) ̸= ∅ and Ωτ in Theorem 1.2 cannot be equal to

Ĉ. We can classify elements τ ∈ A in terms of averaged behavior (Example 5.4).

(iv) Let f ∈ P such that if z0 ∈ C and f(z0) = 0, then f ′(z0) ̸= 0. Let W = {z + λf(z)}λ∈C\{0}
and let Y = {z + λf(z) ∈ P | λ ∈ C \ {0}}. In this case, S(W) = {z0 ∈ C | f(z0) = 0} ∪ {∞}
and S(W) \ {∞} ̸= ∅. Then there exists a non-empty open subset A′ of A such that for each

τ ∈ A′, we have Jker(Gτ ) ̸= ∅ and Ωτ in Theorem 1.2 cannot be equal to Ĉ.

(v) Let n ∈ N with n ≥ 2 and let w = e2πi/n ∈ C. Let Wi = {wi(z + λ(zn − 1))}λ∈C\{0} for
each i = 1, . . . , n. Let i1, . . . , im ∈ {1, . . . , n} with i1 < i2 · · · < im. For these i1, . . . , im, let
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Y = ∪m
j=1{wij (z+ λ(zn − 1)) ∈ P | λ ∈ C \ {0}}. Then there exists a non-empty open subset

A′ of A such that for each τ ∈ A′, we have Jker(Gτ ) ̸= ∅ and Ωτ in Theorem 1.2 cannot be

equal to Ĉ.

The strategy to prove Theorems 1.1, 1.2, 3.77, 3.82 is as follows. Let Y be a mild subset of
Rat+ and suppose that Y is nice with respect to a holomorphic family W = {fλ}λ∈Λ of rational
maps. Let τ0 ∈ M1,c(Y). Then there exists an element τ which is arbitrarily close to τ0 and
int(supp τ) ̸= ∅. Here, int (supp τ) denotes the set of interior points of supp τ with respect to the
topology in Y which is endowed with the relative topology from Rat. We show that for such τ ,
we have Jker(Gτ ) ⊂ S(W) and hence ♯Jker(Gτ ) < ∞, by using Montel’s theorem (Lemmas 3.44,
3.45). In Proposition 3.63, we develop a theory on the systems with finite kernel Julia sets
based on careful observations on limit functions on the Fatou sets by using the hyperbolic
metrics on the Fatou components (Lemma 3.60), and we obtain that for each L ∈ Min(Gτ , Ĉ)
with L∩F (Gτ ) ̸= ∅, the dynamics in Fatou components which meet L are locally contracting and

♯Min(Gτ , Ĉ) <∞. Also, we develop a theory on bifurcation of minimal sets under perturbation
which was initiated by the author of this paper in [39] in Lemma 3.71, and applying it and

enlarging the support of τ a little bit, we obtain that any L ∈ Min(Gτ , Ĉ) with L ∩ F (Gτ ) ̸= ∅ is
attracting for τ. By the theory of finite Markov chains ([9]), we see that for such τ and for each

L ∈ Min(Gτ , Ĉ) with L ⊂ Jker(Gτ ), there exists a canonical invariant measure on L (Lemmas 3.22,

3.23, Definition 3.28). It is very important and useful to show that for any y ∈ Ĉ, letting Ey :=
{γ = (γ1, γ2, . . .) ∈ (supp τ)N | y ∈ ∩∞

n=1γ
−1
n,1(J(Gτ ))},

for τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ Ey, we have d(γn,1(y), Jker(Gτ )) → 0 as n→ ∞,

by using careful observations on random dynamical systems on general compact metric spaces
(Lemma 3.15).

We next observe the local dynamics of Gτ at each point of S(W). By enlarging the support of τ

a little bit, by some careful arguments, it turns out that we may assume that each L ∈ Min(Gτ , Ĉ)
with L ⊂ S(W) satisfies one of the following conditions (I)–(IV). (I) “Uniformly expanding”.
(II) “Attracting”. (III) “There exist a point z1 ∈ L and elements g1, g2, g3 ∈ Gτ such that
g1(z1) = z1, ∥D(g1)z1∥s > 1, g2(z1) = z1, ∥D(g2)z1∥s < 1, g3(z1) = z1, and g3 has a Siegel disk
with center z1”. (IV) “There exists a point z1 ∈ L such that for each λ ∈ Λ, we have D(fλ)z1 = 0.
Moreover, there exist a point z2 ∈ L and an element g ∈ Gτ such that g(z2) = z2 and ∥Dgz2∥s > 1”.
By using some results on rational semigroups from [13], it turns out that if L is of type (III) or (IV),
then L ⊂ int(J(Gτ )). Here, int(J(Gτ )) denotes the set of interior points of J(Gτ ) with respect to

the topology in Ĉ. In particular, for each z ∈ F (Gτ ), we have G(z) ∩ L = ∅. It turns out that for
each z ∈ F (Gτ ), if G(z) does not meet any attracting minimal set of τ , then G(z) meets a minimal
set L which is uniformly expanding. Thus G(z) meets a backward image of L under some element
of Gτ , which is included in a compact subset of J(Gτ ) \ S(W). By enlarging the support of τ a
little bit again, we obtain that for each z ∈ F (Gτ ), G(z) meets an attracting minimal set of τ.
From these arguments, we can show that this τ is weakly mean stable, i.e., there exist a positive
integer n and two non-empty open subsets V1,τ , V2,τ of Ĉ with V1,τ ⊂ V2,τ and ♯(Ĉ\V2,τ ) ≥ 3 such
that (a) for each (γ1, . . . , , γn) ∈ (supp τ)n, we have γn · · · γ1(V2,τ ) ⊂ V1,τ , (b) we have ♯Dτ < ∞,

where Dτ := ∩g∈Gτ g
−1(Ĉ \ V2,τ ), and (c) for each L ∈ Min(Gτ , Ĉ) with L ⊂ Dτ , there exist an

element z ∈ L and an element gz ∈ Gτ such that z is a repelling fixed point of gz. From this fact,
we can prove the existence of an open and dense subset A in Theorems 1.1, 3.77. If we assume
further that Y is non-exceptional with respect to W, then we can show that there exists an open
and dense subset A′ of A such that for each τ ∈ A′, (1) for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W),

we have χ(τ, L) ̸= 0, and (2) for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W), if χ(τ, L) > 0, then for
each z ∈ L and for each g ∈ supp τ , we have Dgz ̸= 0. Combining this fact and the observations
on the local behavior of the systems around the minimal sets with non-zero Lyapunov exponents
(Lemmas 3.29–3.35), we can prove that each element of τ ∈ A′ satisfies statements (I)(II) in
Theorem 1.2.

8



By the above arguments, we obtain the following.

Corollary 1.8 (For more generalized result, see Theorem 3.77). Under the assumptions of Theo-
rem 1.1, the set of weakly mean stable elements τ ∈ (M1,c(Y),O) is open and dense in (M1,c(Y),O).

Note that weak mean stability is a new concept introduced by the author of this paper, and it
is crucial to consider the density of weakly mean stable elements to prove Theorems 1.1, 1.2, 3.77,
3.82. We emphasize that weak mean stability implies many interesting properties (Lemma 3.74,
Theorem 3.81). We remark that in [38], the notion mean stability (i.e., every minimal set is
attracting) was introduced by the author of this paper and it was proved in [39] that the set of
mean stable elements τ ∈ M1,c(P) is open and dense in M1,c(P).Mean stability implies weak mean
stability, but the converse is not true. In fact, there are many examples of mild and nice sets Y
for which there exists a non-empty open subset A′′ of A (where A is the set in Theorems 1.1, 1.2)
such that each τ ∈ A′′ is not mean stable (but is weakly mean stable). For such examples,
see Theorems 1.4, 4.4, Example 1.7 (iii)–(v) and Examples 5.4–5.7.

Regarding Theorem 1.2, the simplest system which has the properties described in Theo-
rem 1.2(I)(a)(b) and (II) (negativity of Lyapunov exponents, etc.) is the system given by random
perturbation of a hyperbolic polynomial map with small uniform additive noise (e.g. random it-
eration of the maps z2 + cn, where the complex numbers cn are chosen from a small disc around
0 uniformly). In this case, a random orbit can easily go away from the Julia set of the semigroup
associated with the system and tend to one of the common attractors. However, we remark that in
Theorem 1.2, we do not assume any kind of hyperbolicity, and the size of the noise (or randomness)
might be very big. In the proof of Theorem 1.2, we need many technical arguments, of which ideas
are decribed before.

We remark that there have been many studies on random dynamical systems of diffeomor-
phisms (or homeomorphisms) on manifolds. In [2] and [21], the setting and the proofs for random
dynamical systems of diffeomorphisms or homeomorphisms are completely different from those in
this paper, but it is interesting to see that the results in [2] and [21] are, formally, in the same
spirit.

In Section 2, we give some fundamental notations and definitions, and present some basic
facts on rational semigroups. In Section 3, we develope the theory of random complex dynamical
systems with possibly non-empty kernel Julia sets. In particular we study various kinds of Fatou
sets and Julia sets for the iteration of M∗

τ and the function TL,τ of probability of tending to one

L ∈ Min(Gτ , Ĉ). Applying them, we prove several theorems including Theorems 1.1, 1.2 and the
detailed versions Theorems 3.77, 3.82 of them. In Section 4, we apply Theorems 1.1, 1.2, 3.77, 3.82
and the other results in Section 3 to random relaxed Newton’s methods in which we find roots of
given polynomials, and we show Theorem 1.4 and the detailed version Theorem 4.4. In Section 5,
we give some examples to which we can apply the main theorems and we classify elements τ ∈ A
for some sets Y. In section 6, we give the list of notations of this paper.

2 Preliminaries

In this section, we give some fundamental notations and definitions.
Notation. Let (X, d) be a metric space, A a subset of X, and r > 0. We set B(A, r) :=
{z ∈ X | d(z,A) < r}.Moreover, for a subset C of C, we set D(C, r) := {z ∈ C | infa∈C |z−a| < r}.
Moreover, for any topological space Y and for any subset A of Y , we denote by int(A) the set of
all interior points of A. We denote by Con(A) the set of all connected components of A.

Definition 2.1. Let Y be a metric space. We set CM(Y ) := {f : Y → Y | f is continuous} en-
dowed with the compact-open topology. Also, we set OCM(Y ) := {f ∈ CM(Y ) | f is an open map}
endowed with the relative topology from CM(Y ). Moreover, we denote by C(Y ) the space of all
continuous functions φ : Y → C. If Y is compact, we endow C(Y ) with the supremum norm ∥·∥∞.
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Remark 2.2. CM(Y ) and OCM(Y ), are semigroups with the semigroup operation being functional
composition. If Y is a compact metric space, then CM(Y ) is a complete separable metric space.

Definition 2.3. A rational semigroup is a semigroup generated by a family of non-constant
rational maps on Ĉ with the semigroup operation being functional composition([13, 12]). A poly-
nomial semigroup is a semigroup generated by a family of non-constant polynomial maps. We
set Rat : = {h : Ĉ → Ĉ | h is a non-constant rational map} endowed with the distance κ which is

defined by κ(f, g) := supz∈Ĉ d(f(z), g(z)), where d denotes the spherical distance on Ĉ. Moreover,
we set Rat+ := {h ∈ Rat | deg(h) ≥ 2} endowed with the relative topology from Rat. Also, we set

P := {g : Ĉ → Ĉ | g is a polynomial,deg(g) ≥ 2} endowed with the relative topology from Rat.

Remark 2.4. ([3, Theorem 2.8.2, Corollary 2.8.3]) Let Ratm := {g ∈ Rat | deg(g) = m} for each
m ∈ N and let Pm := {g ∈ P | deg(g) = m} for each m ∈ N with m ≥ 2. Then for each m, Ratm
(resp. Pm) is a connected component of Rat (resp. P). Moreover, Ratm (resp. Pm) is open and
closed in Rat (resp. P) and is a finite dimensional complex manifold. Also, hn → h in P if and
only if deg(hn) = deg(h) for each large n and the coefficients of hn tend to the coefficients of h
appropriately as n→ ∞.

Definition 2.5. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). The
Fatou set of G is defined to be

F (G) := {z ∈ Y | ∃ neighborhood U of z s.t.{g|U : U → Ĉ}g∈G is equicontinuous on U}.

(For the definition of equicontinuity, see [3].) The Julia set of G is defined to be J(G) := Ĉ\F (G).
If G is generated by {gi}mi=1 (i.e., G = {gi1 ◦ · · · ◦ gin | n ∈ N, i1, . . . , in ∈ {1, . . . ,m}}) , then we
write G = ⟨g1, g2, . . . , gm⟩. If G is generated by a subset Γ of CM(Y ) (i.e., G is equal to the set
{h1 ◦ · · · ◦ hn | n ∈ N, h1, . . . , hn ∈ Λ}), then we write G = ⟨Γ⟩. For a subset A of Y , we set
G(A) :=

∪
g∈G g(A) and G−1(A) :=

∪
g∈G g

−1(A). We set G∗ := G ∪ {Id}, where Id denotes the
identity map.

Lemma 2.6 ([13, 12]). Let Y be a compact metric space and let G be a subsemigroup of OCM(Y ).
Then, for each h ∈ G, h(F (G)) ⊂ F (G) and h−1(J(G)) ⊂ J(G). Note that the equality does not
hold in general.

Regarding the dynamics of rational semigroups G, we have the following. F (G) is G-forward

invariant and J(G) is G-backward invariant. Here, we say that a set A ⊂ Ĉ is G-backward
invariant, if g−1(A) ⊂ A for each g ∈ G, and we say that A is G-forward invariant, if g(A) ⊂ A,
for each g ∈ G. If ♯(J(G)) ≥ 3, then J(G) is a perfect set and ♯(E(G)) ≤ 2, where E(G) :=

{z ∈ Ĉ | ♯G−1(z) < ∞}. (E(G) is called the exceptional set of G.) Moreover, if ♯J(G) ≥ 3 and

if z ∈ Ĉ \ E(G), then J(G) ⊂ G−1(z). In particular, if ♯J(G) ≥ 3 and z ∈ J(G) \ E(G), then

G−1(z) = J(G). Also, if ♯(J(G)) ≥ 3, then J(G) is the smallest closed subset of Ĉ containing
at least three points which is G-backward invariant. Furthermore, if ♯(J(G)) ≥ 3, then we have

J(G) = {z ∈ Ĉ | z is a repelling fixed point of some g ∈ G} = ∪g∈GJ(g). For the proofs of these
results, see [13] and [29]. We remark that [29] is a very nice introductory article of rational
semigroups.

The following is the key to investigating random complex dynamics.

Definition 2.7. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). We
set Jker(G) :=

∩
g∈G g

−1(J(G)). This is called the kernel Julia set of G.

Remark 2.8. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). (1)
Jker(G) is a compact subset of J(G). (2) For each h ∈ G, h(Jker(G)) ⊂ Jker(G). (3) Let G be
a rational semigroup and suppose F (G) ̸= ∅. Then int(Jker(G)) = ∅. For, suppose F (G) ̸= ∅
and int(Jker(G)) ̸= ∅. Let A = int(Jker(G)). Then for each g ∈ G, we have g(A) ⊂ A since
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g(Jker(G)) ⊂ Jker(G). Moreover, since F (G) ̸= ∅, we have ♯(Ĉ \ A) ≥ 3. By Montel’s theorem,
it follows that ∅ ̸= A ⊂ F (G). However, this is a contradiction since A ⊂ Jker(G) ⊂ J(G). (4)
If G ⊂ OCM(G) and G is generated by a single map or if G is a group, then Jker(G) = J(G).
However, for a general rational semigroup G, it may happen that ∅ = Jker(G) ̸= J(G) (see [38]).

In the rest of this paper we sometimes need some results of random complex dynamical systems
from [38, 39].

3 Random complex dynamical systems

In this section, we develope the theory of random complex dynamical systems and prove several
theorems including Theorems 1.1, 1.2 and the detailed versions Theorems 3.77, 3.82 of them.

3.1 Random dynamical systems on general compact metric spaces

In this subsection we show some results on random dynamical systems on general compact metric
spaces. It is sometimes important to investigate the dynamics of sequences of maps.

Definition 3.1. Let Y be a compact metric space. For each γ = (γ1, γ2, . . .) ∈ (CM(Y ))N and
each m,n ∈ N with m ≥ n, we set γm,n = γm ◦ · · · ◦ γn and we set γ0,1 = Id. Also, we set

Fγ,0 := {z ∈ Y | {γn,1}n∈N is equicontinuous at the one point z},
Fγ := {z ∈ Y | ∃ neighborhood U of z s.t. {γn,1}n∈N is equicontinuous on U},

Jγ,0 := Y \ Fγ,0 and Jγ := Y \ Fγ . The set Fγ is called the Fatou set of the sequence γ and
the set Jγ is called the Julia set of the sequence γ. Moreover, we set F γ,0 := {γ} × Fγ,0(⊂
(CM(Y ))N × Y ), F γ := {γ} × Fγ (⊂ (CM(Y ))N × Y ), Jγ,0 := {γ} × Jγ,0(⊂ (CM(Y ))N × Y ) and
Jγ := {γ} × Jγ (⊂ (CM(Y ))N × Y ).

Remark 3.2. Let γ ∈ (Rat)N. Then by Montel’s theorem, Jγ,0 = Jγ . Also, if γ ∈ (Rat+)
N, then

by [3, Theorem 2.8.2], Jγ ̸= ∅. Moreover, if Γ is a non-empty compact subset of Rat+ and γ ∈ ΓN,
then by [33], Jγ is a perfect set and Jγ has uncountably many points.

Lemma 3.3. Let Y be a compact metric space. Let Γ be a non-empty closed subset of an open
subset of CM(Y ). Then

∪
γ∈ΓN F γ,0,

∪
γ∈ΓN F γ ,

∪
γ∈ΓN Jγ,0 and

∪
γ∈ΓN Jγ are Borel measurable

subsets of ΓN × Y and∪
γ∈ΓN

F γ,0 = {(γ, y) ∈ ΓN × Y | lim
m→∞

sup
n≥1

diamγn,1(B(y,
1

m
)) = 0}, (2)∪

γ∈ΓN

F γ =
∪
p∈N

{(γ, y) ∈ ΓN × Y | lim
m→∞

sup
n≥1

sup
y′∈B(y, 1p )

diamγn,1(B(y′,
1

m
)) = 0}. (3)

Proof. By the definition of F γ , we obtain (2) and (3). From (2) and (3), it follows that
∪

γ∈ΓN F γ,0

and
∪

γ∈ΓN F γ are Borel subsets of ΓN × Y. Thus
∪

γ∈ΓN Jγ,0 and
∪

γ∈ΓN Jγ are also Borel subsets

of ΓN × Y.

We now give some notations on random dynamics.

Definition 3.4. For a metric space Y , we denote by M1(Y ) the space of all Borel probability mea-
sures on Y endowed with the topology such that µn → µ in M1(Y ) if and only if for each bounded
continuous function φ : Y → C,

∫
φ dµn →

∫
φ dµ. Note that if Y is a compact metric space, then

M1(Y ) is a compact metric space with the metric d0(µ1, µ2) :=
∑∞

j=1
1
2j

|
∫
ϕjdµ1−

∫
ϕjdµ2|

1+|
∫
ϕjdµ1−

∫
ϕjdµ2| , where

{ϕj}j∈N is a dense subset of C(Y ). Furthermore, for each τ ∈ M1(Y ), the topological support supp τ
of τ is defined as supp τ := {z ∈ Y | ∀ neighborhood U of z, τ(U) > 0}. Note that supp τ is a closed
subset of Y. Furthermore, we set M1,c(Y ) := {τ ∈ M1(Y ) | supp τ is a compact subset of Y }.

For a complex Banach space B, we denote by B∗ the space of all continuous complex linear
functionals ρ : B → C, endowed with the weak∗ topology.
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For any τ ∈ M1(CM(Y )), we will consider the i.i.d. random dynamics on Y such that at every
step we choose a map g ∈ CM(Y ) according to τ (thus this determines a time-discrete Markov
process with time-homogeneous transition probabilities on the state space Y such that for each
x ∈ Y and each Borel measurable subset A of Y , the transition probability p(x,A) from x to A is
defined as p(x,A) = τ({g ∈ CM(Y ) | g(x) ∈ A})).

Definition 3.5. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )).

1. We denote by supp τ the topological support of τ (thus supp τ is a closed subset of CM(Y )).
Moreover, we set Xτ := (supp τ)N (= {γ = (γ1, γ2, . . .) | γj ∈ supp τ (∀j)}) endowed with
the product topology. Furthermore, we set τ̃ := ⊗∞

j=1τ. This is the unique Borel probability
measure on Xτ such that for each cylinder set A = A1 × · · · × An × supp τ × supp τ × · · ·
in Xτ , τ̃(A) =

∏n
j=1 τ(Aj). We denote by Gτ the subsemigroup of CM(Y ) generated by the

subset supp τ of CM(Y ).

2. Let Mτ be the operator on C(Y ) defined by Mτ (φ)(z) :=
∫
supp τ

φ(g(z)) dτ(g). Mτ is called

the transition operator of the Markov process induced by τ. Moreover, let M∗
τ : C(Y )∗ →

C(Y )∗ be the dual of Mτ , which is defined as M∗
τ (µ)(φ) = µ(Mτ (φ)) for each µ ∈ C(Y )∗

and each φ ∈ C(Y ). Remark: we have M∗
τ (M1(Y )) ⊂ M1(Y ) and for each µ ∈ M1(Y ) and

each open subset V of Y , we have M∗
τ (µ)(V ) =

∫
supp τ

µ(g−1(V )) dτ(g).

3. We denote by Fmeas(τ) the set of µ ∈ M1(Y ) satisfying that there exists a neighborhood B
of µ in M1(Y ) such that the sequence {(M∗

τ )
n|B : B → M1(Y )}n∈N is equicontinuous on B.

We set Jmeas(τ) := M1(Y ) \ Fmeas(τ).

4. We denote by F 0
meas(τ) the set of µ ∈ M1(Y ) satisfying that {(M∗

τ )
n : M1(Y ) → M1(Y )}n∈N

is equicontinuous at the one point µ. Note that Fmeas(τ) ⊂ F 0
meas(τ).

5. We set J0
meas(τ) := M1(Ĉ) \ F 0

meas(τ).

Remark 3.6. We have Fmeas(τ) ⊂ F 0
meas(τ) and J

0
meas(τ) ⊂ Jmeas(τ).

Remark 3.7. Let Γ be a closed subset of an open subset U of Rat. Then there exists a τ ∈ M1(U)
such that supp τ (in the sense of Definition 3.4) is equal to Γ. By using this fact, we sometimes
apply the results on random complex dynamics to the study of the dynamics of rational semigroups.

Definition 3.8. Let Y be a compact metric space. Let Φ : Y → M1(Y ) be the topological
embedding defined by: Φ(z) := δz, where δz denotes the Dirac measure at z. Using this topological
embedding Φ : Y → M1(Y ), we regard Y as a compact subset of M1(Y ).

Remark 3.9. If h ∈ Rat and τ = δh, then we have M∗
τ ◦Φ = Φ ◦ h on Ĉ. Moreover, for a general

τ ∈ M1(Rat), M
∗
τ (µ) =

∫
h∗(µ)dτ(h) for each µ ∈ M1(Ĉ). Therefore, for a general τ ∈ M1(Rat),

the map M∗
τ : M1(Ĉ) → M1(Ĉ) can be regarded as the “averaged map” on the extension M1(Ĉ)

of Ĉ.

Definition 3.10. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Regarding Y as a
compact subset of M1(Y ) as in Definition 3.8, we use the following notation.

1. We denote by Fpt(τ) the set of z ∈ Y satisfying that there exists a neighborhood B of z
in Y such that the sequence{(M∗

τ )
n|B : B → M1(Y )}n∈N is equicontinuous on B. We set

Jpt(τ) := Y \ Fpt(τ).

2. Similarly, we denote by F 0
pt(τ) the set of z ∈ Y such that the sequence {(M∗

τ )
n|Y : Y →

M1(Y )}n∈N is equicontinuous at the one point z ∈ Y. We set J0
pt(τ) := Y \ F 0

pt(τ).

Also, the set Jker(Gτ ) is called the kernel Julia set of τ.
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Remark 3.11. We have Fpt(τ) ⊂ F 0
pt(τ) and J

0
pt(τ) ⊂ Jpt(τ)∩J0

meas(τ) (regarding Y as a compact
subset of M1(Y ) by using the topological embedding Φ : Y → M1(Y )).

Remark 3.12. If τ = δh ∈ M1(Rat+) with h ∈ Rat+, then J
0
pt(τ) and Jmeas(τ) are uncountable.

In fact, we have ∅ ̸= J(h) ⊂ J0
pt(τ) and J(h) is uncountable.

Lemma 3.13. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Let y ∈ Y. Suppose
τ̃({γ ∈ (CM(Y ))N | y ∈ Jγ,0}) = 0. Then y ∈ F 0

pt(τ).

Proof. By (3) in Lemma 3.3 and the assumption of our lemma, we obtain that for τ̃ -a.e.γ ∈
(CM(Y ))N, limm→∞ supn≥1 diam(γn,1(B(y, 1

m ))) = 0. Let ϵ > 0. By Egoroff’s theorem, there
exists a Borel subset A1 of Xτ with τ̃(Xτ \A1) < ϵ such that

sup
n≥1

diam(γn,1(B(y,
1

m
))) → 0 (4)

as m → ∞ uniformly on A1. Let φ ∈ C(Y ). Then there exists a δ1 > 0 such that if d(z1, z2) < δ1
then |φ(z1)− φ(z2)| < ϵ. By (4), there exists a δ2 > 0 such that for each z ∈ Y with d(z, y) < δ2,
for each γ ∈ A1, and for each n ∈ N, we have d(γn,1(z), γn,1(y)) < δ1. Therefore for each z ∈ Y
with d(z, y) < δ2, we have

|Mn
τ (φ)(z)−Mn

τ (φ)(y)| ≤
∫
A1

|φ(γn,1(z)− φ(γn,1(y))|dτ̃(γ) +
∫
Xτ\A1

|φ(γn,1(z))− φ(γn,1(y))|dτ̃(γ)

≤ τ̃(A1) · ϵ+ 2ϵ · sup
a∈Ĉ

|φ(a)|

≤ ϵ(1 + 2∥φ∥∞).

It follows that y ∈ F 0
pt(τ). Thus we have proved our lemma.

For a smooth Riemannian real manifold Y with dimY = p, we denote by Lebp the (p-
dimensional) Lebesgue measure on Y.

Corollary 3.14. Let Y be a compact smooth manifold with dim(Y ) = p and let τ ∈ M1(CM(Y )).
Suppose that for τ̃ -a.e.γ ∈ (CM(Y ))N, Lebp(Jγ,0) = 0. Then Lebp(J

0
pt(τ)) = 0.

Proof. Under the assumptions of our corollary, Lemma 3.3 and Fubini’s theorem imply that for
Lebp-a.e.y ∈ Y , we have τ̃({γ ∈ (CM(Y ))N | y ∈ Jγ,0}) = 0. By Lemma 3.13, it follows that for
Lebp-a.e.y ∈ Y , y ∈ F 0

pt(τ). Thus we have proved our corollary.

The following lemma is very important and useful to prove many results.

Lemma 3.15. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Let V be a non-empty open
subset of Y . Suppose that for each g ∈ supp τ , g(V ) ⊂ V. Let Lker := ∩g∈Gτ

g−1(Y \V ). Let y ∈ Y
and let E := {γ ∈ Xτ | y ∈ ∩∞

j=1γ
−1
j,1 (Y \ V )} (Remark: E depends on V ). Then for τ̃ -a.e.γ ∈ E,

we have d(γn,1(y), Lker) → 0 as n→ ∞.

Proof. For each δ > 0 and n ∈ N, let A(δ, n) := {γ ∈ E | γn,1(y) ∈ (Y \ V ) \ B(Lker, δ)} and
C(δ) := {γ ∈ E | ∃n0 ∈ N s.t. ∀n ≥ n0, γn,1(y) ∈ B(Lker, δ)}. In order to prove our lemma, it
suffices to show that

τ̃(E \ C(δ)) = 0 for each δ > 0. (5)

Since E \ C(δ) = ∩∞
N=1 ∪∞

n=N A(δ, n), we have

τ̃(E \ C(δ)) = lim
N→∞

τ̃(∪∞
n=NA(δ, n)) ≤ lim

N→∞

∞∑
n=N

τ̃(A(δ, n)).
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Thus, in order to show (5), it suffices to prove that

∞∑
n=1

τ̃(A(δ, n)) <∞ for each δ > 0. (6)

In order to prove (6), let δ > 0. Then for each z ∈ (Y \ V ) \ B(Lker, δ), there exists an element
gz ∈ G and a neighborhood Uz of z in Y such that gz(Uz) ⊂ V. Since H := (Y \ V ) \B(Lker, δ) is
compact, there exist finitely many points z1, . . . , zr ∈ Y such that H ⊂ ∪r

j=1Uzj . Since g(V ) ⊂ V
for each g ∈ supp τ , we may assume that there exists an l ∈ N such that for each j = 1, . . . , r, there
exists an element γj = (γj1, . . . , γ

j
l ) ∈ (supp τ)l with gzj = γjl ◦ · · · ◦ γ

j
1. Then for each j = 1, . . . , r,

there exists a neighborhood Wj of γj in (supp τ)l such that for each α = (α1, . . . , αl) ∈ Wj ,
αl ◦ · · · ◦α1(Uzj ) ⊂ V. Let δ0 := minrj=1 τ

l(Wj) > 0, where τ l = ⊗l
n=1τ ∈ M1((CM(Y ))l). For each

i = 0, 1, . . . , l − 1 and for each n ∈ N, let

H(δ, i, n) := {γ ∈ (supp τ)N | γi+nl,1(y) ∈ (Y \ V ) \B(Lker, δ), γi+(n+1)l,1(y) ∈ V }

and
I(δ, i, n) := {γ ∈ (supp τ)N | γi+nl,1(y) ∈ (Y \ V ) \B(Lker, δ)}.

Note that if n ̸= m then H(δ, i, n) ∩ H(δ, i,m) = ∅. Let Q1, . . . , Qs be mutually disjoint Borel
subsets of (Y \ V ) \ B(Lker, δ) such that (Y \ V ) \ B(Lker, δ) = ∪s

p=1Qp and such that for each
p = 1, . . . , s there exists a j(p) ∈ {1, . . . , r} with Qp ⊂ Uzj(p) . Then for each i = 0, 1 . . . , l − 1, we
have

τ̃(H(δ, i, n)) = τ i+(n+1)l(

s⨿
p=1

{γ ∈ (supp τ)i+(n+1)l | γi+nl,1(y) ∈ Qp, γi+(n+1)l,1(y) ∈ V })

=

s∑
p=1

τ i+(n+1)l({γ ∈ (supp τ)i+(n+1)l | γi+nl,1(y) ∈ Qp, γi+(n+1)l,1(y) ∈ V })

≥
s∑

p=1

τ i+(n+1)l({γ ∈ (supp τ)i+(n+1)l | γi+nl,1(y) ∈ Qp, (γi+nl+1, . . . , γi+(n+1)l) ∈Wj(p)})

=

s∑
p=1

τ i+nl({γ ∈ (supp τ)i+nl | γi+nl,1(y) ∈ Qp}) · τ l(Wj(p))

≥ δ0τ̃(I(δ, i, n)),

where
⨿

denotes the disjoint union. Therefore

1 ≥ τ̃(
∪
n∈N

{γ ∈ (supp τ)N | γn,1(y) ∈ V })

≥ τ̃(

∞∪
n=1

H(δ, i, n)) =

∞∑
n=1

τ̃(H(δ, i, n)) ≥
∞∑

n=1

δ0τ̃(I(δ, i, n)).

Thus
∑∞

n=1 τ̃(I(δ, i, n)) <∞ for each i = 0, 1, . . . , l − 1. Hence

∞∑
n=1

τ̃(A(δ, n)) =

l−1∑
i=0

∞∑
n=1

τ̃(I(δ, i, n)) <∞.

Therefore (6) holds. Thus we have proved our lemma.
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3.2 Minimal sets with finite cardinality and related lemmas

In this subsection, we show some lemmas regarding random dynamical systems having minimal
sets with finite cardinality.

Definition 3.16. For a topological space Y , we denote by Cpt(Y ) the space of all non-empty
compact subsets of Y . If Y is a metric space, we endow Cpt(Y ) with the Hausdorff metric.

Definition 3.17. LetX be a metric space and letG be a subsemigroup of CM(Y ). Let Y ∈ Cpt(X)
be such that G(Y ) ⊂ Y. Let K ∈ Cpt(Y ). We say that K is a minimal set of (G,Y ) if K is
minimal among the space {L ∈ Cpt(Y ) | G(L) ⊂ L} with respect to inclusion. Moreover, we
denote by Min(G,Y ) the set of all minimal sets for (G,Y ).

Remark 3.18. Let G be a rational semigroup. By Zorn’s lemma, it is easy to see that if K1 ∈
Cpt(Ĉ) and G(K1) ⊂ K1, then there exists a K ∈ Min(G, Ĉ) with K ⊂ K1. Moreover, it is easy to

see that for each K ∈ Min(G, Ĉ) and each z ∈ K, G(z) = K. In particular, if K1,K2 ∈ Min(G, Ĉ)
with K1 ̸= K2, then K1 ∩K2 = ∅. Moreover, by the formula G(z) = K, we obtain that for each

K ∈ Min(G, Ĉ), either (1) ♯K <∞ or (2) K is perfect and ♯K > ℵ0. Furthermore, it is easy to see

that if Γ ∈ Cpt(Rat), G = ⟨Γ⟩, and K ∈ Min(G, Ĉ), then K =
∪

h∈Γ h(K).

Remark 3.19. In [38, Remark 3.9], for the statement “for eachK ∈ Min(G,Y ), either (1) ♯K <∞
or (2) K is perfect”, we should assume that each element g ∈ G is a finite-to-one map. See [39,
Remark 2.24].

We now show some lemmas on the minimal sets whose cardinalities are finite (Lemmas 3.22,
3.23).

Definition 3.20. Let S be a finite space and let S = 2S . Let {Xn} be a Markov chain on the state
space S with transition probability p. Suppose that p is irreducible. Then by [9, Lemma 6.6.2],
there exists a positive integer d such that for each x ∈ S, the number d is equal to the greatest
common divisor of {n ∈ N | pn(x, x) > 0}. This d is called the period of this Markov chain.

Definition 3.21. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). For each r ∈ N, we
set Gr

τ := ⟨{g1 ◦ · · · ◦ gr | g1, . . . , gr ∈ supp τ}⟩.
The following lemma is an easy consequence of [9, Theorem 6.6.4, Lemma 6.7.1] and some

fundamental arguments.

Lemma 3.22. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). Let K be a nonempty
finite subset of Y. Suppose that Gτ (K) ⊂ K. Let {Ki | i = 1, . . . , q} = Min(Gτ ,K) where q =
♯Min(Gτ ,K). For each i = 1, . . . q, let pi ∈ N be the period of the finite Markov chain with
state space Ki induced by τ (i.e. the finite Markov chain with state space Ki whose transition
probability p(x,A) from x ∈ Ki to A ⊂ Ki satisfies p(x,A) = τ({g ∈ supp τ | g(x) ∈ A})). Let
m =

∏q
i=1 pi ∈ N. Let {Hj | j = 1, . . . , r} = Min(Gm

τ ,K) where r = ♯(Min(Gm
τ ,K)). Then all of

the following hold.

(1) Let i = 1, . . . , q. Then ♯(Min(Gpi
τ ,Ki)) = pi. Moreover, there exist Ki,1, . . .Ki,pi

∈ Min(Gpi
τ ,Ki)

such that {Ki,k | k = 1, . . . , pi} = Min(Gpi
τ ,Ki), Ki = ∪pi

k=1Ki,k and h(Ki,k) ⊂ Ki,k+1 for
each h ∈ supp τ , where Ki,pi+1 := Ki,1. Also, for each k = 1, . . . , pi there exists a unique
element ωi,k ∈ M1(Ki,k) such that (M∗

τ )
pi(ωi,k) = ωi,k. Also, M

npi
τ (φ) → (

∫
φ dωi,k)1Ki,k

in
C(Ki,k) as n → ∞ for each φ ∈ C(Ki,k), suppωi,k = Ki,k and M∗

τ ωi,k = ωi,k+1 in M1(Ki)
for each k = 1, . . . , pi, where ωi,pi+1 := ωi,1. Here, for each subset B of Y , we denote by 1B
the characteristic function of B.

(2) We have r =
∑q

i=1 pi and ∪r
j=1Hj = ∪q

i=1Ki. Moreover, we have that {Hj | j = 1, . . . , r} =
{Ki,k | i = 1, . . . , q, k = 1, . . . , pi} = Min(Gnm

τ ,K) for each n ∈ N. Moreover, for each j =
1, . . . , r, there exists a unique Borel probability measure ηj on Hj such that (Mm

τ )∗(ηj) = ηj.
Also, Mnm

τ (φ) → (
∫
φ dηj)·1Hj

in C(Hj) as n→ ∞ for each φ ∈ C(Hj). Also, supp ηj = Hj

for each j = 1, . . . , r. Moreover, if Hj = Ki,k, then ηj = ωi,k.
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(3) Let y ∈ Y and let Ω be a Borel subset of Xτ . Let A := {γ ∈ Ω | d(γn,1(y),K) → 0 (n→ ∞)}
and Aj := {γ ∈ Ω | d(γnm,1(y),Hj) → 0 (n → ∞)} for each j = 1, . . . , r. Then for each
φ ∈ C(Y ), we have

∫
A
φ(γnm,1(y))dτ̃(γ) →

∑r
j=1 τ̃(Aj)

∫
φdηj as n→ ∞.

Proof. By [9, Theorem 6.6.4 and Lemma 6.7.1], it is easy to see that statements (1)(2) hold.
Statement (3) follows from statements (1)(2) and some fundamental arguments (or one can show
statement (3) directly from statements (1)(2)).

Lemma 3.23. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). Let V be a non-empty
open subset of Y. Suppose that for each g ∈ supp τ , g(V ) ⊂ V. Let Lker := ∩g∈Gτ

g−1(Y \ V ).
Suppose that 1 ≤ ♯Lker < ∞. Let {Ki | i = 1, . . . , q} = Min(Gτ , Lker) where q = ♯Min(Gτ , Lker).
For each i = 1, . . . q, let pi ∈ N be the period of the finite Markov chain with state space Ki induced
by τ . Let m =

∏q
i=1 pi ∈ N. Let {Hj | j = 1, . . . , r} = Min(Gm

τ , Lker) where r = ♯(Min(Gm
τ , Lker)).

Then all of the following hold.

(1) Let i = 1, . . . , q. Then ♯(Min(Gpi
τ ,Ki)) = pi. Moreover, there exist Ki,1, . . .Ki,pi ∈ Min(Gpi

τ ,Ki)
such that {Ki,k | k = 1, . . . , pi} = Min(Gpi

τ ,Ki), Ki = ∪pi

k=1Ki,k and h(Ki,k) ⊂ Ki,k+1 for
each h ∈ supp τ , where Ki,pi+1 := Ki,1. Also, for each k = 1, . . . , pi there exists a unique
element ωi,k ∈ M1(Ki,k) such that (M∗

τ )
pi(ωi,k) = ωi,k. Also, M

npi
τ (φ) → (

∫
φ dωi,k)1Ki,k

in
C(Ki,k) as n → ∞ for each φ ∈ C(Ki,k), suppωi,k = Ki,k and M∗

τ ωi,k = ωi,k+1 in M1(Ki)
for each k = 1, . . . , pi, where ωi,pi+1 := ωi,1.

(2) We have r =
∑q

i=1 pi and ∪r
j=1Hj = ∪q

i=1Ki. Moreover, we have that {Hj | j = 1, . . . , r} =
{Ki,k | i = 1, . . . , q, k = 1, . . . , pi} = Min(Gnm

τ ,K) for each n ∈ N. Moreover, for each j =
1, . . . , r, there exists a unique Borel probability measure ηj on Hj such that (Mm

τ )∗(ηj) = ηj.
Also, Mnm

τ (φ) → (
∫
φ dηj)·1Hj in C(Hj) as n→ ∞ for each φ ∈ C(Hj). Also, supp ηj = Hj

for each j = 1, . . . , r. Moreover, if Hj = Ki,k, then ηj = ωi,k.

(3) Let y ∈ Y and let Ω be a Borel subset of Xτ . Let A := {γ ∈ Ω | y ∈ ∩∞
j=1γ

−1
j,1 (Y \ V )}

and Aj := {γ ∈ A | d(γnm,1(y),Hj) → 0 (n → ∞)} for each j = 1, . . . , r. Then for each
φ ∈ C(Y ), we have

∫
A
φ(γnm,1(y))dτ̃(γ) →

∑r
j=1 τ̃(Aj)

∫
φdηj as n→ ∞.

Proof. Let K = Lker. Then by the assumptions of our lemma, we have that Gτ (K) ⊂ K and
1 ≤ ♯K <∞. By Lemmas 3.15 and 3.22, the statement of our lemma holds.

3.3 Invariant measures and Lyapunov exponents

In this subsection, we define invariant measures and the Lyapunov exponents for random dynam-
ical systems generated by elements of M1(Rat). Also, we show some results on random complex
dynamical systems having minimal sets with non-zero Lyapunov exponents.

For a holomorphic map φ : U → Ĉ defined on an open subset U of Ĉ and for any z ∈ U , we
denote by Dφz : TzU → Tφ(z)Ĉ the complex differential map of φ at z, where TzU denotes the

complex tangential space of U at z and Tφ(z)Ĉ denotes the complex tangential space of Ĉ at φ(z).

Also, we denote by ∥Dφz∥s the norm of Dφz with respect to the spherical metric on Ĉ.

Definition 3.24. Let Y be a compact metric space and let Γ be a non-empty subset of CM(Y ).
We endow Γ with the relative topology from CM(Y ). We define a map f : ΓN × Y → ΓN × Y as
follows: For a point (γ, y) ∈ ΓN × Y where γ = (γ1, γ2, . . .), we set f(γ, y) := (σ(γ), γ1(y)), where
σ : ΓN → ΓN is the shift map, that is, σ(γ1, γ2, . . .) = (γ2, γ3, . . .). The map f : ΓN × Y → ΓN × Y
is called the skew product associated with the generator system Γ. Moreover, we use the
following notation.

1. Let π : ΓN × Ĉ → ΓN and πY : ΓN × Y → Y be the canonical projections. Note that
π−1{γ} = {γ} × Ĉ for each γ ∈ ΓN. For each γ ∈ ΓN and n ∈ N, we set fnγ := fn|π−1{γ} :
π−1{γ} → π−1{σn(γ)}. Moreover, we set fγ,n := γn ◦ · · · ◦ γ1.
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2. We set J̃(f) :=
∪

γ∈ΓN Jγ , where the closure is taken in the product space ΓN×Y. Furthermore,

we set F̃ (f) := (ΓN × Y ) \ J̃(f).

3. For each γ ∈ ΓN, we set Ĵγ,Γ := π−1{γ} ∩ J̃(f), F̂ γ,Γ := π−1({γ}) \ Ĵγ,Γ, Ĵγ,Γ := πY (Ĵ
γ,Γ),

and F̂γ,Γ := Y \ Ĵγ,Γ.

4. When Γ ⊂ Rat, for each z = (γ, y) ∈ ΓN × Ĉ, we set Dfz := D(γ1)y.

Remark 3.25. Under the above notation, let G = ⟨Γ⟩. Then πY (J̃(f)) ⊂ J(G) and π ◦ f = σ ◦ π
on ΓN × Y. Note that Ĵγ,Γ is the set of accumulation points of fiberwise Julia sets Jγ′

, γ′ ∈ ΓN,
in the fiber π−1{γ}, for each γ ∈ ΓN. Note also that Jγ ⊂ Ĵγ,Γ, Jγ ⊂ Ĵγ,Γ for each γ ∈ ΓN.

Moreover, for each γ ∈ ΓN, γ1(Jγ) ⊂ Jσ(γ), γ1(Ĵγ,Γ) ⊂ Ĵσ(γ),Γ, and f(J̃(f)) ⊂ J̃(f). Furthermore,

if Γ ∈ Cpt(Rat), then for each γ ∈ ΓN, γ1(Jγ) = Jσ(γ), γ
−1
1 (Jσ(γ)) = Jγ , γ1(Ĵγ,Γ) = Ĵσ(γ),Γ,

γ−1
1 (Ĵσ(γ),Γ) = Ĵγ,Γ, f(J̃(f)) = J̃(f) = f−1(J̃(f)), and f(F̃ (f)) = F̃ (f) = f−1(F̃ (f)) (see [33,

Lemma 2.4]).

We now define τ -invariant measures, τ -ergodic measures and the Lyapunov exponents for τ ∈
M1(Rat).

Definition 3.26. Let τ ∈ M1(Rat). Let ρ ∈ M1(Ĉ). We say that ρ is τ-invariant if M∗
τ (ρ) = ρ.

Moreover, we say that a τ -invariant measusure ρ is τ-ergodic if A is a Borel subset of Ĉ with
ρ(A) > 0 and Mτ (1A)(z) = 1A(z) for ρ-a.e.z ∈ Ĉ, then ρ(A) = 1. For a τ -ergodic measure ρ, we

set χ(τ, ρ) :=
∫
log ∥Dfz∥sd(τ̃ ⊗ ρ)(z), where f : Xτ × Ĉ → Xτ × Ĉ denotes the skew product map

associated with supp τ (see Definition 3.24). This is called the Lyapunov exponent of (τ, ρ).

Remark 3.27. Let τ ∈ M1(Rat). Let ρ ∈ M1(Ĉ) be a τ -invariant measure. Let f : Xτ × Ĉ →
Xτ × Ĉ be the skew product map associated with supp τ. Then by [27, Lemma 3.1], the measure

τ̃ ⊗ ρ ∈ M1(Xτ × Ĉ) is f -invariant. Also, by [27, Theorem 4.1], if ρ is τ -ergodic, then τ̃ ⊗ ρ is
ergodic with respect to f.

Definition 3.28. Let τ ∈ M1(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Let m ∈ N be the period
of the finite Markov chain with state space L induced by τ (see Definition 3.20). Then by [9,
Theorem 6.6.4 and Lemma 6.7.1] we have the following.

• ♯Min(Gm
τ , L) = m and setting {Lj | j = 1, . . . ,m} = Min(Gm

τ , L) we have L = ∪m
j=1Lj .

• Renumbering L1, . . . , Lm above, for each j = 1, . . . ,m there exists a unique ωL,j ∈ M1(Lj)
such thatMmn

τ (φ) → (ωL,j(φ)) ·1Lj
in C(Lj) as n→ ∞ for each φ ∈ C(Lj), (M

m
τ )∗(ωL,j) =

ωL,j , suppωL,j = Lj and M∗
τ ωL,j = ωL,j+1 where ωL,m+1 := ωL,1.

• ωL := 1
m

∑m
j=1 ωL,j is τ -ergodic.

We call ωL the canonical τ-ergodic measure on L. By [27, Lemma 3.1, Theorem 4.1], τ̃ ⊗ωL ∈
M1(Xτ × Ĉ) is f -invariant and ergodic with respect to f , where f : Xτ × Ĉ → Xτ × Ĉ is the skew
product map associated with supp τ. We set χ(τ, L) :=

∫
log ∥Dfz∥sd(τ̃ ⊗ ωL)(z). This is called

the Lyapunov exponent of (τ, L).

We now show a lemma and its corollary on τ -invariant and τ -ergodic measures µ with negative
Lyapunov exponents (Lemma 3.29 and Corollary 3.30).

Lemma 3.29. Let τ ∈ M1,c(Rat). Let µ ∈ M1(Ĉ) be a τ -invariant and τ -ergodic measure. Suppose

χ(τ, µ) < 0. Then for (τ̃ ⊗ µ)-a.e. (γ, z0) ∈ (Rat)N × Ĉ, there exist a constant δ1 = δ1(γ, z0) > 0,
a constant C = C(γ, z0) > 0 and a constant α = α(γ, z0) ∈ (0, 1) such that for each m ∈ N, we
have diam(γm,1(B(z0, δ1))) ≤ Cαm. In particular, for (τ̃ ⊗ µ)-a.e. (γ, z0) ∈ (Rat)N × Ĉ, we have

z0 ∈ Fγ . Moreover, for µ-a.e. z0 ∈ Ĉ, we have z0 ∈ F 0
pt(τ).
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Proof. For each r ∈ N, let ψr : supp τ × Ĉ → R be the function defined by

ψr(h, y) =

{
log ∥Dhy∥s if log ∥Dhy∥s ≥ −r
−r if log ∥Dhy∥s < −r.

Let φr : Xτ × Ĉ → R be the function defined by φr(γ, y) = ψr(γ1, y). Since χ(τ, µ) < 0, there
exists an r ∈ N such that

∫
φr(z)d(τ̃ ⊗µ)(z) < 0. Let c0 = −

∫
φr(z)d(τ̃ ⊗µ)(z) > 0. By Birkhoff’s

ergodic theorem, there exists a Borel subset A of Xτ × Ĉ with (τ̃ ⊗ µ)(A) = 1 such that for each

(γ, z0) ∈ A, 1
n

∑n−1
j=0 φr(f

j(γ, z0)) → −c0 as n → ∞. Let ϵ0 ∈ (0, 14c0). Let (γ, z0) ∈ A. There
exists an n0 ∈ N such that for each n ∈ N with n ≥ n0,

1

n

n−1∑
j=0

ψr(γj+1, γj,1(z0)) =
1

n

n−1∑
j=0

φr(f
j(γ, z0)) ≤ −c0 + ϵ0,

where γ0,1 = Id. Let ϵ1 ∈ R with 0 < ϵ1 <
1
4c0. Since supp τ is compact, there exists a δ > 0 such

that for each w ∈ Ĉ, for each h ∈ supp τ and for each z ∈ B(w, δ), we have

log ∥Dhz∥s ≤ ψr(h,w) + ϵ1, thus ∥Dhz∥s ≤ exp(ψr(h,w) + ϵ1).

There exists a δ1 > 0 with δ1 <
δ
2 such that for each j = 1, . . . , n0, γj,1(B(z0, δ1)) ⊂ B(γj,1(z0),

δ
2 ).

Therefore we obtain

γn0,1(B(z0, δ1)) ⊂ B(γn0,1(z0), δ1 exp((

n0−1∑
j=0

ψr(γj+1, γj,1(z0))) + n0ϵ1))

⊂ B(γn0,1(z0), δ1 exp((−c0 + ϵ0 + ϵ1)n0)).

Hence we can show that for each m ∈ N ∪ {0},

γn0+m,1(B(z0, δ1)) ⊂ B(γn0+m,1(z0), δ1 exp(

n0+m−1∑
j=0

(ψr(γj+1, γj,1(z0)) + (n0 +m)ϵ1))

⊂ B(γn0+m,1(z0), δ1 exp((−c0 + ϵ0 + ϵ1)(n0 +m)))

⊂ B(γn0+m,1(z0),
δ

2
)

by induction on m ∈ N ∪ {0}. Therefore there exist a constant δ1 = δ1(γ, z0) > 0, a constant
C = C(γ, z0) > 0 and a constant α = α(γ, z0) ∈ (0, 1) such that for each m ∈ N, we have

diam(γm,1(B(z0, δ1))) ≤ Cαm. Hence z0 ∈ Fγ . Thus for µ-a.e. z0 ∈ Ĉ, we obtain that τ̃({γ ∈
(supp τ)N | z0 ∈ Jγ}) = 0. By Lemma 3.13, it follows that for µ-a.e.z0 ∈ Ĉ, z0 ∈ F 0

pt(τ). Hence we
have proved our lemma.

Corollary 3.30. Let τ ∈ M1,c(Rat) and let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose χ(τ, L) < 0.
Then for each z0 ∈ L, for τ̃ -a.e.γ ∈ (Rat)N, we have z0 ∈ Fγ . Moreover, L ⊂ F 0

pt(τ).

Proof. Since suppωL = L, Lemma 3.29 implies the statement of our corollary.

We now show some lemmas on minimal sets of Gτ with positive Lyapunov exponents (Lem-
mas 3.31–3.35).

Lemma 3.31. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose χ(τ, L) > 0.
Suppose also that for each z0 ∈ L and for each g ∈ supp τ , Dgz0 ̸= 0. Let α > 0. Then there exist
δ1 > 0, δ2 > 0 with δ2 < α, and a Borel subset A of (supp τ)N with τ̃(A) = 1, where δ1 and A do
not depend on α, such that for each z0 ∈ L, for each z ∈ B(z0, δ2) \ {z0} and for each γ ∈ A,
there exists an n1 = n1(γ, z) ∈ N with γn1,1(z) ̸∈ B(L, δ1). In particular, for each z0 ∈ L, for
τ̃ -a.e.γ ∈ (supp τ)N, we have z0 ∈ Jγ .
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Proof. Since supp τ is compact, there exists a δ > 0 such that for each w0 ∈ L and for each
g ∈ supp τ , g : B(w0, 5δ) → Ĉ is injective. Let u := min{d(a, b) | a, b ∈ L, a ̸= b} > 0 (if ♯L = 1
then let u = 1). Let 0 < ϵ < 1

4χ(τ, L). Then there exists a δ1 > 0 with δ1 < min{u
2 , δ} such that

(i) for each w0 ∈ L and for each g ∈ supp τ , we have g(B(w0, δ1)) ⊂ B(g(w0),
u
2 ), and

(ii) for each w0 ∈ L and for each g ∈ supp τ , there exists an inverse branch g−1
w0

: B(g(w0), 2δ1) →
B(w0, δ) of g with g−1

w0
(g(w0)) = w0 such that for each w ∈ B(g(w0), 2δ1), we have

log ∥D(g−1
w0

)w∥s ≤ log ∥D(g−1
w0

)g(w0)∥s + ϵ. (7)

By Birkhoff’s ergodic theorem, there exists a Borel subset A of Xτ with τ̃(A) = 1 such that for
each (γ, z0) ∈ A× L, there exists an n0 = n0(γ, z0) ∈ N such that for each n ∈ N with n ≥ n0 we
have

| 1
n

n−1∑
j=0

log ∥D(γj+1)γj,1(z0)∥s − χ(τ, L)| < ϵ, thus en(χ(τ,L)−ϵ) ≤ ∥D(γn,1)z0∥s ≤ en(χ(τ,L)+ϵ). (8)

Let δ2 := 1
2 min{α, δ1} > 0. Let z0 ∈ L. Let z ∈ B(z0, δ2) \ {z0}. Let γ ∈ A. We now prove the

following claim.
Claim 1. There exists an n ∈ N such that γn,1(z) ̸∈ B(L, δ1).

To prove this claim, suppose that for each n ∈ N, γn,1(z) ∈ B(L, δ1). Let n0 = n0(γ, z0) be
the number defined above. Let m ∈ N with m ≥ n0. Then we have γm(γm−1,1(z)) = γm,1(z),
γm((γm)−1

γm−1,1(z0)
(γm,1(z))) = γm,1(z), γm−1,1(z) ∈ B(γm−1,1(z0), 5δ), (γm)−1

γm−1,1(z0)
(γm,1(z)) ∈

B(γm−1,1(z0), 5δ), and γm : B(γm−1,1(z0), 5δ) → Ĉ is injective. Hence

γm−1,1(z) = (γm)−1
γm−1,1(z0)

(γm,1(z)).

Similarly, it is easy to see that for each j = 1, . . . ,m,

γm−j,1(z) = (γm−j+1)
−1
γm−j,1(z0)

(γm−j+1,1(z)). (9)

Combining (7), (8), (9), we obtain that

d(z, z0) ≤ δ1 exp(−
m∑
j=1

log ∥D(γj)γj−1,1(z0)∥s +mϵ1)

= δ1∥D(γm,1)z0∥−1
s · emϵ

≤ δ1e
−m(χ(τ,L)−ϵ) · emϵ

= δ1e
−m(χ(τ,L)−2ϵ).

Since the above inequality holds for any m ∈ N, it follows that z = z0. However, this is a contra-
diction. Therefore Claim 1 holds.

We now let z0 ∈ L and γ ∈ A. Suppose z0 ∈ Fγ . Then there exists a number δ3 > 0 with δ3 < δ2
such that for each z ∈ B(z0, δ3) \ {z0} and for each n ∈ N, we have d(γn,1(z), γn,1(z0)) < δ1. Since
Gτ (L) ⊂ L, it implies that d(γn,1(z), L) < δ1 for each n ∈ N. However, this contradicts Claim 1.
Thus we have z0 ∈ Jγ .

Hence, for each z0 ∈ L, for τ̃ -a.e. γ ∈ (supp τ)N, we have z0 ∈ Jγ .

Lemma 3.32. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose χ(τ, L) > 0.

Suppose also that for each x ∈ L and for each g ∈ supp τ , we have Dgx ̸= 0. Let y ∈ Ĉ. Let
B = {γ ∈ Xτ | d(γn,1(y), L) → 0 as n → ∞}. Then for τ̃ -a.e. γ ∈ B, there exists a number
n0 = n0(γ, y) ∈ N such that for each n ∈ N with n ≥ n0, we have γn,1(y) ∈ L.
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Proof. Suppose that there exists a Borel subset B0 of B with τ̃(B0) > 0 such that for each
γ ∈ B0 and for each n ∈ N, γn,1(y) ̸∈ L. Since τ̃ is invariant under the shift map σ : Xτ → Xτ ,
Lemma 3.31 implies that for τ̃ -a.e. γ ∈ B0, lim supn→∞ d(γn,1(y), L) > 0. However, this is a
contradiction. Hence the statement of our lemma holds.

Lemma 3.33. Let τ ∈ M1,c(Rat). Let y ∈ Ĉ. Then there exists a subset A of Ĉ with ♯(Ĉ\A) ≤ ℵ0

such that for each x ∈ A, τ({g ∈ Rat | g(x) = y}) = 0.

Proof. For each finite subset F = {x1, . . . , xn} of Ĉ such that x1, . . . , xn are mutually distinct, let
BF := {g ∈ Rat | g(xi) = y, for each i = 1, . . . , n}. Since supp τ is compact, there exists an N ∈ N
such that for each g ∈ supp τ , deg(g) ≤ N. Hence, if ♯F > N , then τ(BF ) = τ(BF ∩ supp τ) =

τ(∅) = 0. For each k ∈ Z with 0 ≤ k ≤ N , let Fk = {F ⊂ Ĉ | ♯F = N + 1 − k, τ(BF ) > 0}. Note
that F0 = ∅ from the above argument. We now prove the following claim.
Claim 1. Let k ∈ Z with 0 ≤ k < N. If ♯Fk ≤ ℵ0, then ♯Fk+1 ≤ ℵ0.

To prove this claim, let 0 ≤ k < N and suppose we have that ♯Fk ≤ ℵ0. Let H be the set
{H ∈ Fk+1 | ∃F ∈ Fk such that H ⊂ F}. Then ♯H ≤ ℵ0. Moreover, for each H1,H2 ∈ Fk+1 \ H
with H1 ̸= H2, we have

τ(BH1
∩BH2

) = 0. (10)

For, let x ∈ H2 \H1 and let F = H1 ∪ {x}. Then ♯F = N + 1− k and H1 ⊂ F. Since H1 ̸∈ H, we
have F ̸∈ Fk. Hence τ(BF ) = 0. Since BH1

∩ BH2
⊂ BF , (10) holds. By (10), ♯(Fk+1 \ H) ≤ ℵ0.

Therefore ♯Fk+1 ≤ ℵ0. Thus we have prove Claim 1.
By Claim 1, we obtain that ♯{H ⊂ Ĉ | ♯H = 1, τ(BH) > 0} ≤ ℵ0. Hence the statement of our

lemma holds.

Lemma 3.34. Let τ ∈ M1,c(Rat). Let C be a non-empty finite subset of Ĉ. Then there exists a

subset AC of Ĉ with ♯(Ĉ \AC) ≤ ℵ0 such that for each x ∈ AC ,

τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(x) ∈ C}) = 0.

Proof. Let Dy,n = {x ∈ Ĉ | τn({(γ1, . . . , γn) ∈ (supp τ)n | γn · · · γ1(x) = y}) > 0} for each y ∈ C
and each n ∈ N, where τn = ⊗n

j=1τ ∈ M1,c((supp τ)
n). By using the argument in the proof of

Lemma 3.33, we can show that ♯Dy,n ≤ ℵ0. Let AC = Ĉ \ (∪y∈C,n∈NDy,n). Then ♯(Ĉ \ AC) ≤ ℵ0.
For each x ∈ AC , we have

τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(x) ∈ C})
≤ τ̃(∪n∈N,y∈C{γ ∈ Xτ | γn,1(x) = y})

≤
∑

n∈N,y∈C

τ̃({γ ∈ Xτ | γn,1(x) = y})

=
∑

n∈N,y∈C

τ̃({(γ1, . . . , γn) ∈ (supp τ)n | γn · · · γ1(x) = y} ×
∞∏

j=n+1

supp τ)

=
∑

n∈N,y∈C

τn({(γ1, . . . , γn) ∈ (supp τ)n | γn · · · γ1(x) = y}) = 0.

Thus the statement of our lemma holds.

Lemma 3.35. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose that χ(τ, L) > 0

and for each x ∈ L and for each g ∈ supp τ , Dgx ̸= 0. Then for each y ∈ Ĉ, we have

τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) = τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L})

and
♯{y ∈ Ĉ | τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) > 0} ≤ ℵ0.
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Proof. Lemma 3.32 implies that for each y ∈ Ĉ,

τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) = τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L}).

Hence

{y ∈ Ĉ | τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) > 0}
= {y ∈ Ĉ | τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L}) > 0} ⊂ Ĉ \AL,

where AL is the set for L coming from Lemma 3.34. Since ♯(Ĉ \ AL) ≤ ℵ0, the statement of our
lemma holds.

3.4 Systems with finite kernel Julia sets

In this subsection, we show a theorem on the random dynamical systems generated by elements
τ ∈ M1,c(Rat) with Jker(Gτ ) <∞.

Theorem 3.36. Let τ ∈ M1,c(Rat). Suppose we have all of the following.

(i) ♯Jker(Gτ ) <∞.

(ii) For each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) ̸= 0.

(iii) For each L ∈ Min(Gτ , Jker(Gτ )) with χ(τ, L) > 0, for each g ∈ supp τ and for each x ∈ L,
we have Dgx ̸= 0.

Let H+ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and we denote by Ω the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+

L}) = 0. Then, ♯(Ĉ \ Ω) ≤ ℵ0 and for each
z ∈ Ω, τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ (Rat)N, Leb2(Jγ) = 0. Furthermore,

J0
pt(τ) ⊂ Ĉ \ Ω and ♯(J0

pt(τ)) ≤ ℵ0.

Proof. Under the assumptions of our theorem, Lemma 3.35 implies that

Ω = {y ∈ Ĉ | τ̃({γ ∈ Xτ | d(γn,1(y),∪L∈H+L) → 0 as n→ ∞}) = 0}. (11)

From (11) and Lemma 3.35, it follows that ♯(Ĉ \ Ω) ≤ ℵ0. Let z ∈ Ω. Let Cz = {γ ∈ Xτ | z ∈
Jγ}. Suppose τ̃(Cz) > 0. Let H− be the set of all L ∈ Min(Gτ , Jker(Gτ )) with χ(τ, L) < 0. By
Lemma 3.15 (with V = F (Gτ )), Remark 3.25 and the assumptions of our theorem, we have that
for τ̃ -a.e.γ ∈ Cz, d(γn,1(z),∪L∈H+∪H−L) → 0 as n→ ∞. Combining this with (11), we obtain that

for τ̃ -a.e. γ ∈ Cz, d(γn,1(z),∪L∈H−L) → 0 as n→ ∞. (12)

Let 0 < ϵ < 1
2 τ̃(Cz). By Corollary 3.30, for each z0 ∈ ∪L∈H−L, for τ̃ -a.e. γ, we have z0 ∈ Fγ .

Combining this with the argument to deduce (4) in the proof of Lemma 3.13, we obtain that there
exist a Borel subset A1 of Xτ with τ̃(A1) ≥ 1− ϵ and a δ > 0 such that for each z0 ∈ ∪L∈H−L, for

each γ ∈ A1, we have supn≥1 diamγn,1(B(z0, δ)) ≤ 1
10diamĈ. In particular,

for each z0 ∈ ∪L∈H−L and for each γ ∈ A1, B(z0, δ) ⊂ Fγ . (13)

By (12) and Egoroff’s theorem, there exist a Borel subset A2 of Cz with τ̃(A2) ≥ τ̃(Cz) − ϵ and
an n0 ∈ N such that for each γ ∈ A2,

γn0,1(z) ∈ B(∪L∈H−L, δ). (14)

By (13) and (14), we obtain A2 ∩ σ−n0(A1) = ∅. Therefore τ̃(A2) ≤ τ̃(Xτ \ σ−n0(A1)) ≤ ϵ.
Combining this with that τ̃(A2) ≥ τ̃(Cz) − ϵ, we obtain that τ̃(Cz) ≤ 2ϵ. However, this is a
contradiction because ϵ < 1

2 τ̃(Cz). Thus, we have proved that for each z ∈ Ω, τ̃(Cz) = 0. By
Fubini’s theorem, it follows that for τ̃ -a.e.γ, Leb2(Jγ) = 0. Moreover, by Lemma 3.13, we obtain

that J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0. Thus we have proved our theorem.

21



3.5 Random dynamical systems generated by measures on weakly nice
sets

In this subsection, we show several results (including Theorems 1.1, 1.2 and their detailed and more
generalized version Theorems 3.77, 3.82) regarding random complex dynamical systems generated
by measures on weakly nice subsets of Rat.

We now consider holomorphic families of rational maps.

Definition 3.37. Let Λ be a complex manifold. Let W = {fλ}λ∈Λ be a family of rational maps

on Ĉ. We say that W is a holomorphic family of rational maps if (z, λ) ∈ Ĉ×Λ 7→ fλ(z) ∈ Ĉ
is holomorphic on Ĉ× Λ. Throughout the paper, we always assume that Λ is connected.
If W = {fλ}λ∈Λ is a holomorphic family of rational maps and each fλ is a polynomial, then we
say that W is a holomorphic family of polynomial maps. We say that a holomorphic family
W = {fλ}λ∈Λ of rational maps is non-constant if λ ∈ Λ 7→ fλ ∈ Rat is non-constant.

For each n ∈ N, we set

Sn(W) = {z ∈ Ĉ | (λ1, . . . , λn) ∈ Λn 7→ fλ1
◦ · · · ◦ fλn

(z) is constant on Λn}.

Moreover, we set S(W) := ∩∞
n=1Sn(W). Each point of S(W) is called a singular point of W and

the set S(W) is called the singular set of W.

Lemma 3.38. Let W = {fλ}λ∈Λ be a holomorphic family of rational maps. Then Sn+1(W) =
∩λn+1∈Λf

−1
λn+1

(Sn(W)) and S(W) = ∩∞
n=1 ∩(λ1,...,λn)∈Λn (fλ1 ◦ · · · ◦ fλn)

−1(S1(W)). Moreover, if,

in addition to the assumption, W is non-constant, then ♯S1(W) < ∞ and ♯Sn(W) < ∞ for each
n ∈ N.

Proof. We may assume that W is non-constant. We first show that ♯S1(W) < ∞. Suppose that

♯S1(W) = ∞. Then there exist a sequence {zn} in S1(W) and a point z∞ ∈ Ĉ such that zn → z∞
and zn ̸= z∞ for each n ∈ N. By conjugating the family W by an element of Aut(Ĉ), we may
assume that z∞ ∈ C. Let b ∈ Λ. Then there exist an open connected neighborhood Λ0 of b in Λ
and an open connected neighborhood U of z∞ in C such that fλ(z) ∈ C for all λ ∈ Λ0 and all
z ∈ U. We may suppose that Λ0 ⊂ Cr where r = dimΛ ∈ N. Let n ∈ N, (i1, . . . , in) ∈ ({1, . . . , r})n

and z ∈ U. Let g(z) = ∂nfλ(z)
∂λi1 ···∂λin

|λ=b for each z ∈ U. Then g : U → C is holomorphic in U and

g(zj) = 0 for each large j. Hence g(z) = 0 for all z ∈ U. Therefore for each z ∈ U , the function

λ 7→ fλ(z) ∈ C is constant on Λ0. Thus, for each z ∈ U , the function λ 7→ fλ(z) ∈ Ĉ is constant
on Λ. Hence U ⊂ S1(W). Therefore

z∞ ∈ int(S1(W)). (15)

In particular, int(S1(W)) ̸= ∅. We now suppose that Ĉ ̸= int(S1(W)). Then ∂(int(S1(W))) ̸=
∅. If we take any w0 ∈ ∂(int(S1(W))), then by the argument of the proof of (15), we obtain
w0 ∈ int(S1(W)). However, this contradicts w0 ∈ ∂(int(S1(W))). Therefore, we must have that

Ĉ = int(S1(W)). Hence, the function λ 7→ fλ ∈ Rat is constant on Λ. However, this contradicts to
the assumption that W is non-constant. Thus, we have that ♯S1(W) <∞.

It is easy to see that Sn+1(W) ⊂ ∩λn+1∈Λf
−1
λn+1

(Sn(W)). Since ♯S1(W) < ∞, it follows that

♯Sn(W) < ∞. We now prove ∩λn+1∈Λf
−1
λn+1

(Sn(W)) ⊂ Sn+1(W). Let z ∈ ∩λn+1∈Λf
−1
λn+1

(Sn(W)).

Then for each λn+1 ∈ Λ, we have fλn+1
(z) ∈ Sn(W). Since ♯Sn(W) < ∞ and Λ is connected, it

follows that ♯{fλn+1
(z) ∈ Sn(W) | λn+1 ∈ Λ} = 1. Therefore we obtain that the cardinality of the

set {fλ1
◦ · · · ◦ fλn+1

(z) | (λ1 . . . , λn+1) ∈ Λn+1} is equal to 1. In particular, z ∈ Sn+1(W). Thus
we have proved our lemma.

Corollary 3.39. Let W = {fλ}λ∈Λ be a holomorphic family of rational maps. Then fλ(S(W)) ⊂
S(W) for all λ ∈ Λ.
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We now define weakly nice subsets of Rat.

Definition 3.40. We say that a subset Y of Rat is weakly nice (with respect to holomorphic
families {Wj}mj=1 of rational maps) if there exist an open subset U of Rat and finitely many non-
constant holomorphic families Wj = {fj,λ}λ∈Λj

, j = 1, . . . ,m, of rational maps such that for each
j = 1, . . . ,m, {fj,λ | λ ∈ Λj} is a closed subset of U and Y = ∪m

j=1{fj,λ | λ ∈ Λj}.
Moreover, for a weakly nice set Y with respect to holomorphic families {Wj}mj=1 of rational

maps, we set

M1(Y, {Wj}mj=1) := {τ ∈ M1(Y) | supp τ ∩ {fj,λ | λ ∈ Λj} ̸= ∅ (∀j = 1, . . . ,m)}

and
M1,c(Y, {Wj}mj=1) := M1,c(Y) ∩M1(Y, {Wj}mj=1).

Here, for the notation “supp τ”, see Definition 3.4 (setting Y = Y). (Thus supp τ is a closed subset
of Y.) Also, each point of ∩m

j=1S(Wj) is called a singular point of (Y, {Wj}mj=1) and the set
∩m
j=1S(Wj) is called the singular set of (Y, {Wj}mj=1).

Definition 3.41 ([38, 39]). Let Y be a closed subset of an open subset of Rat. Let O be the
topology in M1,c(Y) such that the sequence {τn}∞n=1 in M1,c(Y) tends to an element τ ∈ M1,c(Y)
with respect to the topology O if and only if (a) for each bounded φ ∈ C(Y),

∫
φdτn →

∫
φdτ as

n → ∞, and (b) supp τn → supp τ as n → ∞ in Cpt(Y) with respect to the Hausdorff topology.
We call O the wH-topology in M1,c(Y).

Remark 3.42. In general the topologyO is really different from the weak-∗ topology. For example,
let Y = {z2 + c | c ∈ C} ∼= C and let τn = (1 − 1

n )δ0 +
1
nδ1 for each n ∈ N, and let τ = δ0, where

δz denotes the Dirac measure concentrated at z ∈ C ∼= Y. Then τn → τ as n→ ∞ with respect to
the weak-∗ topology, but τn ̸→ τ as n→ ∞ with respect to the topology O.

By the definition of weakly nice subsets, it is easy to see the following lemma.

Lemma 3.43. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then M1,c(Y, {Wj}mj=1) is closed in M1,c(Y) with respect to the topology
O.

The following lemma is easy to show but it is one of the keys to proving many results.

Lemma 3.44. Let Y be a weakly nice subset of Rat with respect to some holomorphic fami-
lies {Wj}mj=1 of rational maps. We endow Y with the relative topology from Rat. Let τ ∈
M1(Y, {Wj}mj=1). Suppose that int(supp τ) ̸= ∅ with respect to the topology in Y and F (Gτ ) ̸= ∅.
Then Jker(Gτ ) ⊂ S(Wj) for some j = 1, . . . ,m and ♯Jker(Gτ ) <∞.

Proof. Let Wj = {fj,λ}λ∈Λj for each j. Then there exists an element j ∈ {1, . . . ,m} such that
int(supp τ)∩ {fj,λ | λ ∈ Λj} ̸= ∅. Suppose Jker(Gτ ) \ S(Wj) ̸= ∅. Let z0 ∈ Jker(Gτ ) \ S(Wj). Then

there exists an element n ∈ N such that the map (λ1, . . . , λn) ∈ Λn
j 7→ fj,λ1 ◦ · · · ◦ fj,λn(z0) ∈ Ĉ

is non-constant on Λn
j . Moreover, we have that z0 ∈ Jker(Gτ ) and Gτ (Jker(Gτ )) ⊂ Jker(Gτ ).

Hence, combining the open mapping theorem for holomorphic mappings and the assumption
“int(supp τ) ̸= ∅” implies that int(Jker(Gτ )) ̸= ∅. However, this contradicts to the assumption
F (Gτ ) ̸= ∅ and Remark 2.8(3). Thus we must have that Jker(Gτ ) ⊂ S(Wj). Since ♯(Sn(Wj)) <∞
(see Lemma 3.38), it follows that ♯Jker(Gτ ) <∞.

Lemma 3.45. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ}λ∈Λj

, j = 1, . . . ,m. Let τ ∈ M1(Y, {Wj}mj=1).
Suppose that for each j = 1, . . . ,m, we have int(supp τ ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ with respect to
the topology in {fj,λ | λ ∈ Λj} (which is endowed with the relative topology from Rat), and that
F (Gτ ) ̸= ∅. Then Jker(Gτ ) ⊂ ∩m

j=1S(Wj).
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Proof. By using the argument in the proof of Lemma 3.44, it is easy to see that our lemma
holds.

Lemma 3.46. Let Y be a weakly nice subset of Rat with respect to some holomorphic fami-
lies {Wj}mj=1 of rational maps. Let τ ∈ M1(Y, {Wj}mj=1). Let L ∈ Min(Gτ , Ĉ) such that L ⊂
∩m
j=1S(Wj). Then for each ρ ∈ M1(Y, {Wj}mj=1), we have L ∈ Min(Gρ, Ĉ).

Proof. Let z ∈ L. Let Wj = {fj,λ}λ∈Λj
for each j. Let ρ ∈ M1(Y, {Wj}mj=1). Let h ∈ supp ρ.

Then there exist an i ∈ {1, . . . ,m} and an element λ0 ∈ Λi such that h = fi,λ0
. Since we have

supp τ ∩ {fi,λ | λ ∈ Λi} ̸= ∅, there exists an element λ1 ∈ Λi such that fi,λ1 ∈ supp τ. Since

L ∈ Min(Gτ , Ĉ), we have fi,λ1
(z) ∈ L. Moreover, since L ⊂ S(Wi) (which follows from the

assumption L ⊂ ∩m
j=1S(Wj)), we have that h(z) = fi,λ0(z) = fi,λ1(z) ∈ L. Hence h(L) ⊂ L.

Therefore L ∈ Min(Gρ, Ĉ).

Definition 3.47. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Let τ ∈ M1,c(Y, {Wj}mj=1). Then we set

Smin({Wj}mj=1) = ∪L∈Min(Gτ ,Ĉ),L⊂∩m
j=1S(Wj)

L.

Note that this definition does not depend on the choice of τ ∈ M1,c(Y, {Wj}mj=1) due to Lemma 3.46.

We now give the definition of attracting minimal sets which was introduced by the author in
[39].

Definition 3.48. Let Γ ∈ Cpt(Rat). We say that a minimal set L ∈ Min(⟨Γ⟩, Ĉ) is attracting

(for Γ) if there exist two open subsets A,B of Ĉ with ♯(Ĉ \ A) ≥ 3 and an n ∈ N such that
L ⊂ B ⊂ B ⊂ A and such that for each (γ1, . . . , γn) ∈ Γn, we have γn ◦ · · · ◦ γ1(A) ⊂ B. In this
case, we say that L is an attracting minimal set of Γ. Also, for an element τ ∈ M1,c(Rat),

if L ∈ Min(Gτ , Ĉ) is attracting for supp τ then we say that L is attracting for τ, that L is an
attracting minimal set of supp τ , and that L is an attracting minimal set of τ.

Definition 3.49. Let Y be a subset of Rat endowed with the relative topology from Rat. We say
that Y is mild if for each Γ ∈ Cpt(Y), there exists an attracting minimal set of Γ.

We give some examples of mild sets.

Example 3.50 (Examples of mild sets).

(a) Any non-empty open subset U of P is a mild set. For, for each Γ ∈ Cpt(U), the set {∞} is
an attracting minimal set of Γ. Also, for any Λ ∈ Cpt(P), there exists an open subset V of
Rat with V ⊃ Λ such that V is mild.

(b) Let Λ ∈ Cpt(Rat) such that Λ is an attracting minimal set of Λ. Then there exists an open
subset U of Rat with U ⊃ Λ such that U is mild.

(c) Let a ∈ Ĉ and let Y = {f ∈ Rat | a is an attracting fixed point of f}. Then Y is a mild
subset of Rat.

We now give the definition of mean stability which is introduced by the author in [38].

Definition 3.51. Let Γ ∈ Cpt(Rat). Let G = ⟨Γ⟩. We say that Γ is mean stable if there exist
non-empty open subsets U and V of F (G) and a number n ∈ N such that all of the following hold.

(a) V ⊂ U and U ⊂ F (G).

(b) For each γ ∈ ΓN, γn,1(U) ⊂ V.

(c) For each z ∈ Ĉ, there exists an element g ∈ G such that g(z) ∈ U.
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Also, if Γ is mean stable, we say that G is mean stable (this notion does not depend on the choice
of Γ ∈ Cpt(Rat) with ⟨Γ⟩ = G). Moreover, for an element τ ∈ M1,c(Rat), if supp τ is mean stable,
then we say that τ is mean stable.

Remark 3.52. If τ ∈ M1,c(Rat) is mean stable and J(Gτ ) ̸= ∅, then the random dynamical
system generated by τ has many nice properties (e.g. Jker(Gτ ) = ∅, stability of the limit state

functions under the perturbation, negativity of Lyapunov exponent for any point of z ∈ Ĉ for τ̃ -a.e.
γ etc., see [38, 39]).

Moreover, if Γ ∈ Cpt(Rat) and ♯J(⟨Γ⟩) ≥ 3, then Γ is mean stable if and only if each L ∈
Min(⟨Γ⟩, Ĉ) is attracting for Γ (see [39, Remark 3.7]).

We now give a result of the density of mean stable elements. Recall that an element g ∈ Aut(Ĉ)
is called loxodromic if g has exactly two fixed points a, b ∈ Ĉ and the modulus of multiplier of
(g, a) is strictly larger than 1 and the modulus of multiplier of (g, b) is strictly less than 1.

Lemma 3.53. Let Y be a mild subset of Rat and suppose that Y is weakly nice with respect
to some holomorphic families {Wj}mj=1 of rational maps, where Wj = {fj,λ}λ∈Λj for each j =

1, . . . ,m. Suppose that for each τ ∈ M1,c(Y, {Wj}mj=1) and for each L ∈ Min(Gτ , Ĉ), we have
L ∩ (∪m

j=1S(Wj) ∩ J(Gτ )) = ∅. Suppose also that for each z ∈ Smin({Wj}mj=1) and for each j =
1, . . . ,m, either (a) the map λ 7→ D(fj,λ)z is nonconstant on Λj, or (b) D(fj,λ)z = 0 for all λ ∈ Λj.
Then A := {τ ∈ M1,c(Y, {Wj}mj=1) | τ is mean stable} is open and dense in M1,c(Y, {Wj}mj=1) with
respect to the topology O.

Proof. By [38, Lemma 3.62], A is open in M1,c(Y, {Wj}mj=1) with respect to the topology O. To
prove the density ofA, let ρ ∈ M1,c(Y, {Wj}mj=1). Then there exists an element ρ0 ∈ M1,c(Y, {Wj}mj=1)
which is arbitrarily close to ρ with respect to O such that for each j ∈ {1, . . . ,m}, int(supp ρ0 ∩
{fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}, where Wj = {fj,λ}λ∈Λj

. For
each j we endow {fj,λ | λ ∈ Λj} with the relative topology from Rat. By Lemma 3.45 and the

assumption of our lemma, we obtain Jker(Gρ0
) = ∅. Since Y is mild, each g ∈ supp ρ0 ∩ Aut(Ĉ)

is loxodromic. Let ρ1 ∈ M1,c(Y, {Wj}mj=1) be an element such that ρ1 is close enough to ρ0 with
respect to the topology O and supp ρ0∩{fj,λ | λ ∈ Λj} ⊂ int(suppρ1∩{fj,λ | λ ∈ Λj}) with respect
to the topology in {fj,λ | λ ∈ Λj} for each j. Then by the assumptions of our lemma, Lemma 3.38,

[39, Lemmas 3.8, 3.16, and Theorem 3.26] and their proofs, we obtain that each L ∈ Min(Gρ1 , Ĉ)
is attracting for ρ0. From [39, Remark 3.7], it follows that ρ1 is mean stable.

Thus A is dense in M1,c(Y, {Wj}mj=1).

Definition 3.54. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. We say that Y is exceptional with respect to {Wj}mj=1 if there
exists a non-empty subset L of ∩m

j=1S(Wj) such that for each τ ∈ M1,c(Y, {Wj}mj=1), we have that

L ∈ Min(Gτ , Ĉ) and χ(τ, L) = 0. We say that Y is non-exceptional with respect to {Wj}mj=1

if Y is not exceptional with respect to {Wj}mj=1.

Proposition 3.55. Let Y be a mild subset of Rat and suppose that Y is weakly nice and non-
exceptional with respect to some holomorphic families {Wj}mj=1 of rational maps. Then there exists
a dense subset A of the topological space (M1,c(Y, {Wj}mj=1),O) such that all of the following (a)(b)
hold.

(a) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(τ, L) ̸= 0.

(b) Let τ ∈ A. Then ♯Jker(Gτ ) < ∞ and Jker(Gτ ) ⊂ ∩m
j=1S(Wj). Moreover, setting H+ :=

{L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and denoting by Ω the set of points y ∈ Ĉ for which

τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+
L}) = 0, we have that ♯(Ĉ \ Ω) ≤ ℵ0 and for

each z ∈ Ω, τ̃({γ ∈ (supp τ)N | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e. γ ∈ (Rat)N, we have

Leb2(Jγ) = 0. Furthermore, J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0.
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Proof. For each j = 1, . . . ,m, let Wj = {fj,λ}λ∈Λj and we endow {fj,λ | λ ∈ Λj} with the relative

topology from Rat. Suppose that for each τ ∈ M1,c(Y, {Wj}mj=1) and for each L ∈ Min(Gτ , Ĉ),
we have L ̸⊂ ∩m

j=1S(Wj). Let A be the set of elements ρ ∈ M1,c(Y, {Wj}mj=1) satisfying that
int(supp ρ∩{fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj} for all j = 1, . . . ,m.
Then A is dense in M1,c(Y, {Wj}mj=1) and satisfies (a). Let τ ∈ A. By Lemma 3.45, the fact that
Gτ (Jker(Gτ )) ⊂ Jker(Gτ ) and the above assumption, we have Jker(Gτ ) = ∅. From [38, Theorem
1.5], it follows that Leb2(Jγ) = 0 for τ̃ -a.e.γ ∈ RatN and J0

pt(τ) = ∅. Hence A satisfies (b).

Thus we may assume that there exist a τ ∈ M1,c(Y, {Wj}) and an L ∈ Min(Gτ , Ĉ) such that
L ⊂ ∩m

j=1S(Wj)). For such L, Lemma 3.46 implies that for each ρ ∈ M1,c(Y, {Wj}mj=1), we have

L ∈ Min(Gρ, Ĉ) and L ⊂ ∩m
j=1S(Wj). Let

{L1, . . . , Lr} := {K ⊂ ∩m
j=1S(Wj) | K ∈ Min(Gρ, Ĉ) for each ρ ∈ M1,c(Y, {Wj}mj=1)}.

Here, note that the right hand side of the above is a finite set since ∩jS(Wj) is a finite set (see
Lemma 3.38).

Since (Y, {Wj}mj=1) is non-exceptional with respect to {Wj}mj=1, for each k = 1, . . . , r there
exists a τk ∈ M1,c(Y, {Wj}mj=1) such that χ(τk, Lk) ̸= 0. Let Wj = {fj,λ | λ ∈ Λj} for each
j = 1. . . . ,m. We consider the following two cases.
Case (I). For each k = 1, . . . , r, for each z ∈ Lk and for each j = 1, . . . ,m, there exists a λ ∈ Λj

such that D(fj,λ)z ̸= 0.
Case (II). There exist a k ∈ {1, . . . , r}, a point z ∈ Lk and an element j ∈ {1, . . . ,m} such that
for each λ ∈ Λj , D(fj,λ)z = 0.
Suppose that we have Case (I). We now prove the following claim.
Claim 1. For each k there exists an element ρk ∈ M1,c(Y, {Wj}mj=1) which is arbitrarily close to
τk such that ♯suppρk < ∞, such that for each g ∈ suppρk and for each z ∈ Lk, we have Dgz ̸= 0,
and such that χ(ρk, Lk) ̸= 0.

To prove this claim, for each τ ∈ M1,c(Y, {Wj}mj=1) and for each L ∈ Min(Gτ , Ĉ), let µτ,L be
the canonical τ -ergodic measure on L (see Definition 3.28). Let k ∈ {1, . . . , r}. We now consider
the following two cases.
Case (I)(a). χ(τk, Lk) ̸= −∞. Case (I)(b). χ(τk, Lk) = −∞.
Suppose we have Case (I)(a). Let Bk := {g ∈ Y | Dgz = 0 for some z ∈ Lk}. Since χ(τk, Lk) =∫
Lk

∫
Y log ∥Dgz∥sdτk(g)dµτk,Lk

(z), we obtain that τk(Bk) = 0. Let Ck,n be the set of elements

g ∈ Y with κ(g,Bk) ≥ 1/n. Then
∫
Lk

∫
Ck,n

log ∥Dgz∥sdτk(g)dµτk,Lk
(z) → χ(Lk, τk) as n → ∞

and
τk|Ck,n

τk(Ck,n)
→ τk as n→ ∞ in M1.c(Y,O). Modifying

τk|Ck,n

τk(Ck,n)
, we obtain ρk which is arbitrarily

close to τk such that ♯suppρk < ∞, such that for each g ∈ suppρk and for each z ∈ Lk, we have
Dgz ̸= 0, and such that χ(ρk, Lk) ̸= 0.

We now suppose that we have Case (I)(b). Let αn(g, z) = max{log ∥Dgz∥s,−n} for each n ∈ N.
Since χ(τk, Lk) = −∞, we have

∫
Lk

∫
Y αn(g, z)dτk(g)dµτk,Lk

(z) → −∞ as n→ ∞. Hence for each

M < 0 there exists an n ∈ N such that
∫
Lk

∫
Y αn(g, z)dτk(g)dµτk,Lk

(z) < M . Therefore there exists

a ρk ∈ M1,c(Y, {Wj}mj=1) which is arbitrarily close to τk such that ♯suppρk <∞, such that for each

g ∈ suppρk and for each z ∈ Lk, we have Dgz ̸= 0, and such that
∫
Lk

∫
Y αn(g, z)dρk(g)dµρk,Lk

(z) <
M
2 . Hence χ(ρk, Lk) ≤

∫
Lk

∫
Y αn(g, z)dρk(g)dµρk,Lk

(z) < M
2 . Thus we have proved Claim 1.

For each n ∈ N, let

Dk,n := {((λji)i=1,...,n)j=1,...,m ∈
m∏
j=1

Λn
j | D(fj,λji)z = 0 for some z ∈ Lk}.

Moreover, let

Ek,n := {(pij)i=1,...,n,j=1,...,m ∈ (0, 1)nm |
∑
i,j

pi,j = 1} × ((

m∏
j=1

Λn
j ) \Dk,n)
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and let αk,n : Ek,n → R be the function defined by αk,n((pij), (λji)) = χ(
∑m

j=1

∑n
i=1 pijδfj,λji

, Lk).

Then (
∏m

j=1 Λ
n
j ) \Dk,n is connected and αk,n : Ek,n → R is real-analytic. Hence claim 1 implies

the following claim.
Claim 2. There exists an n0 ∈ N such that for each n ∈ N with n ≥ n0, the function αk,n : Ek,n → R
is not identically equal to zero in any open subset of Ek,n.

We now let ζ ∈ M1,c(Y, {Wj}mj=1) be an arbitrary element. Then there exists an element
ζ0 ∈ M1,c(Y, {Wj}mj=1) arbitrarily close to ζ such that ♯supp ζ0 < ∞ and such that for each
g ∈ supp ζ0, for each k, and for each z ∈ Lk, we have Dgz ̸= 0. We may assume that for some
n ≥ n0 there exists an element (((pij)i=1,...,n)j=1,...,m, ((λji)i=1,...,n)j=1,...,m) ∈ ∩r

k=1Ek,n such that
ζ0 =

∑m
j=1

∑n
i=1 pijδfj,λji

. By claim 2, there exists a ζ1 close to ζ0 such that for each g ∈ supp ζ1,

for each k, and for each z ∈ Lk, we have Dgz ̸= 0, and such that for each k, χ(ζ1, Lk) ̸= 0. By
enlarging the support of ζ1, we obtain an element ζ2 ∈ M1,c(Y, {Wj}mj=1) which is close to ζ1 such
that for each g ∈ supp ζ2, for each k, and for each z ∈ Lk, we have Dgz ̸= 0, such that for each k,
χ(ζ2, Lk) ̸= 0, and such that for each j = 1, . . . ,m, int(supp ζ2 ∩ {fj,λ | λ ∈ Wj}) ̸= ∅ in the space
{fj,λ | λ ∈ Wj} which is endowed with the relative topology from Rat. By Lemma 3.45, we obtain
that Jker(Gζ2) ⊂ ∩m

j=1S(Wj). In particular, ♯Jker(Gζ2) < ∞ by Lemma 3.38. By Theorem 3.36,
denoting by H+ the set of elements L ∈ Min(Gζ2 , Jker(Gζ2)) with χ(ζ2, L) > 0 and denoting by Ω

the set of elements y ∈ Ĉ for which ζ̃2({γ ∈ Xζ2 | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+L}) = 0, we have

that ♯(Ĉ\Ω) ≤ ℵ0 and for each z ∈ Ω, ζ̃2({γ ∈ Xζ2 | z ∈ Jγ}) = 0. Moreover, for ζ̃2-a.e.γ ∈ (Rat)N,

Leb2(Jγ) = 0. Furthermore, J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0.
We now suppose that we have Case (II). Let

I := {k ∈ {1, . . . , r} | ∃z ∈ Lk ∃j ∈ {1, . . . ,m} such that for each λ ∈ Λj , D(fj,λ)z = 0}.

We modify the argument in Case (I). Namely, we can choose ζ1 and ζ2 in the argument of Case
(I) so that χ(ζ1, Lk) = χ(ζ2, Lk) = −∞ for any k ∈ I. For any k ̸∈ I, we use the same argument
in that of Case (I). Thus we have proved our proposition.

Lemma 3.56. Under the assumptions of Proposition 3.55, there exists an open dense subset A of
the topological space (M1,c(Y, {Wj}mj=1),O) such that all of the following hold.

(i) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(τ, L) ̸= 0.

(ii) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), if χ(τ, L) > 0, then for

each z ∈ L and for each g ∈ Gτ , we have Dgz ̸= 0.

Proof. Let Wj = {fj,λ}λ∈Λj
for all j. We use the arguments in the proof of Proposition 3.55.

We may assume that there exists a τ ∈ M1,c(Y, {Wj}mj=1) and an L ∈ Min(Gτ , Ĉ) such that
L ⊂ ∩m

j=1S(Wj). Let L1, . . . , Lr be as in the proof of Proposition 3.55. Let ζ ∈ M1,c(Y, {Wj}mj=1).
Let ζ0 ∈ M1,c(Y, {Wj}mj=1) with ♯supp ζ0 <∞ which is arbirarily close to ζ with respect to O. We
classify the elements k of {1, . . . , r} into the following two types (I) and (II).

Type (I). There exist an element i = 1, . . . ,m and an element z0 ∈ Lk such that D(fi,λ)z0 = 0
for all λ ∈ Λi.

Type (II). Not type (I).
Note that if k is of type (I), then χ(ζ0, Lk) = −∞. Note also that if k is of type (II), then

perturbing ζ0 if necessary, we may assume that for each g ∈ supp ζ0 and for each z ∈ Lk, we
have Dgz ̸= 0. Therefore, by using the arguments in the proof of Proposition 3.55, we can take
ζ1 ∈ M1,c(Y, {Wj}mj=1) with ♯supp ζ1 < ∞ which is arbitrarily close to ζ0 such that the following
hold.

(a) χ(ζ1, Lk) = −∞ for any k of type (I).

(b) For any k of type (II), for any z ∈ Lk and for any g ∈ supp ζ1, we have Dgz ̸= 0.
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(c) For any k of type (II) and for any z ∈ Lk, we have χ(ζ1, Lk) ̸= 0.

Hence for any ζ2 ∈ M1,c(Y, {Wj}mj=1) which is close enough to ζ1, we have the following.

(a)’ χ(ζ2, Lk) < 0 for any k of type (I).

(b)’ For any k of type (II), for any z ∈ Lk and for any g ∈ supp ζ2, we have Dgz ̸= 0.

(c)’ For any k of type (II) and for any z ∈ Lk, we have χ(ζ2, Lk) ̸= 0.

Thus we have proved our lemma.

Definition 3.57. For a topological spaceX, we denote by Con(X) the set of connected components
of X.

Definition 3.58. Let τ ∈ M1(Rat). For an element L ∈ Min(Gτ , Ĉ), we denote by Uτ,L the space
of all finite linear combinations of unitary eigenfunctions of Mτ : C(L) → C(L), where we say that
an element φ ∈ C(L)\{0} is a unitary eigenfunction ofMτ : C(L) → C(L) if there exists an element
α ∈ C with |α| = 1 such that Mτ (φ) = αφ in L. Also, we say that an element α ∈ C with |α| = 1
is a unitary eigenvalue of Mτ : C(L) → C(L) if there exists an element φ ∈ C(L) \ {0} such that
Mτ (φ) = αφ. Moreover, we denote by Uτ,L,∗ the set of unitary eigenvalues of Mτ : C(L) → C(L).

Definition 3.59. Let U be an open subset of Ĉ and let {φn : U → Ĉ}∞n=1 be a sequence of

holomorphic maps from U to Ĉ. We say that a map ψ : U → Ĉ is a limit function of {φn}∞n=1

if there exists a subsequence {φnj
}∞j=1 of {φn}∞n=1 such that φnj

→ ψ as j → ∞ locally uniformly
on U.

The following lemma is very important to analyze the random dynamical system generated by
τ ∈ M1,c(Rat) with ♯Jker(Gτ ) < ∞. The proof is based on careful observations of limit functions
on Fatou components of Gτ by using the hyperbolic metrics on the Fatou components of Gτ .

Lemma 3.60. Let τ ∈ M1,c(Rat) and suppose ♯J(Gτ ) ≥ 3. Let L ∈ Min(G, Ĉ) with L∩F (Gτ ) ̸= ∅.
Let ΩL := ∪U∈Con(F (Gτ )),U∩L ̸=∅U. Suppose that ♯((∂ΩL) ∩ Jker(Gτ )) < ∞. Then we have the

following (I)(II)(III).

(I) There exists a Borel subset A of Xτ with τ̃(A) = 1 such that for each γ = (γ1, γ2, . . .) ∈ A
and for each z ∈ ΩL, there exists a δ = δ(z, γ) > 0 satisfying that d(γn,1(z), L) → 0 and
diam(γn,1(B(z, δ))) → 0 as n→ ∞.

(II) We have C(L) = Uτ,L ⊕ {φ ∈ C(L) | Mn
τ (φ) → 0 as n → ∞} in the Banach space

C(L) endowed with the supremum norm and dimC Uτ,L < ∞. Moreover, setting rL :=
dimC Uτ,L, we have ♯Min(GrL

τ , L) = rL. Also, there exist L1, . . . , LrL ∈ Min(GrL
τ , L) such

that {Lj | j = 1, . . . , rL} = Min(GrL
τ , L), L = ∪rL

j=1Lj and h(Lj) = Lj+1 for each h ∈
supp τ , where LrL+1 := L1. Moreover, for each j = 1, . . . , rL, there exists a unique ele-
ment ωL,j ∈ M1(Lj) such that (MrL

τ )∗(ωL,j) = ωL,j . Also, for each j = 1, . . . , rL, we have
MnrL

τ (φ) → (
∫
φ dωL,j) · 1Lj

in the Banach space C(Lj) endowed with the supremum norm
as n → ∞ for each φ ∈ C(Lj), suppωL,j = Lj and M∗

τ (ωL,j) = ωL,j+1 in M1(L) where
ωL,rL+1 = ωL,1. Also, we have Uτ,L,∗ = {α ∈ C | αrL = 1} and for each α ∈ Uτ,L,∗, we have
dimC{φ ∈ C(L) |Mτφ = αφ} = 1.

(III) The function TL,τ : Ĉ → [0, 1] of probability of tending to L is locally constant on F (Gτ ).
Here, we set TL,τ (z) = τ̃({γ = (γ1, γ2, . . .) ∈ Xτ | d(γn,1(z), L) → 0 as n → ∞}) for each

z ∈ Ĉ.
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Proof. Let Ω = ΩL. Let U ∈ Con(Ω). Let a ∈ U ∩ L. To prove item (I), it suffices to prove that
there exists a Borel subset Aa of Xτ with τ̃(Aa) = 1 such that for each γ ∈ Aa, each limit function
of the sequence {γn,1}∞n=1 around a is constant. Since L ∩ F (Gτ ) ̸= ∅, we have L ∩ Jker(Gτ ) = ∅.
Hence there exists a δ > 0 such that

B(Jker(Gτ ), δ) ∩Gτ (B(a, δ)) = ∅. (16)

Since we are assuming ♯(J(Gτ )) ≥ 3, we have that J(Gτ ) is perfect. Since we are assuming
♯(∂Ω ∩ Jker(Gτ )) <∞, taking δ so small, we may assume that

J(Gτ ) \B((∂Ω) ∩ Jker(Gτ ), δ) ̸= ∅. (17)

Here, if (∂Ω) ∩ Jker(Gτ ) = ∅, then we set B((∂Ω) ∩ Jker(Gτ , δ) = ∅. By (16) and (17), taking δ so
small, we may assume that for each U0 ∈ Con(F (Gτ )) with L ∩ U0 ̸= ∅, we have

(∂U0) \B((∂Ω) ∩ Jker(Gτ ), δ) ̸= ∅. (18)

For each z ∈ (∂Ω) \ B((∂Ω) ∩ Jker(Gτ ), δ), there exist an element gz ∈ Gτ and an open disk

neighborhood Vz of z in Ĉ such that gz(Vz) ⊂ F (Gτ ). Since (∂Ω) \ (B((∂Ω) ∩ Jker(Gτ ), δ) is
compact, there exists a finite set {z1, . . . , zp} in (∂Ω) \B((∂Ω) ∩ Jker(Gτ ), δ) such that

∪p
j=1Vzj ⊃ (∂Ω) \B((∂Ω) ∩ Jker(Gτ ), δ) and gzj (Vzj ) ⊂ F (Gτ ) for each j. (19)

For each j = 1, . . . , p there exists an element αj = (αj
1, . . . , α

j
k(j)) ∈ (supp τ)k(j) for some k(j) ∈ N

such that gzj = αj
k(j) ◦ · · · ◦ αj

1. Since Gτ (F (Gτ )) ⊂ F (Gτ ), we may assume that there exists

a k ∈ N such that for each j = 1, . . . , p, we have k(j) = k. For each j = 1, . . . , p, let Wj be
a compact neighborhood of αj in (supp τ)k such that for each β = (β1, . . . , βk) ∈ Wj , we have
βk ◦ · · · ◦ β1(Vzj ) ⊂ F (Gτ ). Also, for each j = 1, . . . , p, let Bj := ∪B∈Con(Ω),B∩Vzj

̸=∅B. Let n ∈ N
and let cq = 1/q for each q ∈ N. Let (i1, . . . , il) be a finite sequence of positive integers with
i1 < · · · < il. Let q > 0. We denote by Aq,j(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies
all of the following (a) and (b).

(a) γkt,1(a) ∈ (Ĉ \B(∂Ω), cq)) ∩Bj if t ∈ {i1, . . . , il}.

(b) γkt,1(a) ̸∈ (Ĉ \B(∂Ω, cq)) ∩Bj if t ∈ {1, . . . , il} \ {i1, . . . , il}.

Moreover, when l ≥ n, we denote by Bq,j,n(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies
items (a) and (b) above and the following (c).

(c) (γkis+1, . . . , γkis+k) ̸∈Wj for each s = n, n+ 1, . . . , l.

Furthermore, we denote by Cq,j,n(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies items (a)
and (b) above and the following (d).

(d) (γkis+1, . . . , γkis+k) ̸∈Wj for each s = n, n+ 1, . . . , l − 1.

Furthermore, for each q, j, n, l with l ≥ n, let Bq,j,n,l :=
∪

i1<···<il
Bq,j,n(i1, . . . , il). Let D :=∪∞

q=1

∪p
j=1

∪
n∈N

∩
l≥nBq,j,n,l. We show the following claim.

Claim 1. Let γ ∈ Xτ be such that there exists a non-constant limit function of the sequence
{γn,1|U : U → Ĉ}∞n=1. Then γ ∈ D.

To show this claim, let γ ∈ Xτ be an element such that there exists a non-constant limit function
of {γn,1|U : U → Ĉ}∞n=1. Then there exists a q ∈ N, a j ∈ {1, . . . , p}, and a strictly increasing
sequence {il}∞l=1 in N such that γ ∈

∩∞
l=1Aq,j(i1, . . . , il) and any subsequence of {γkil,1|U : U →

Ĉ}∞l=1 does not converge to a constant map. Suppose that there exists a strictly increasing sequence
{lp}∞p=1 in N such that for each p ∈ N, (γkilp+1, . . . , γkilp+k) ∈ Wj . Since ♯J(Gτ ) ≥ 3, for each
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A ∈ Con(F (Gτ )), we can take the hyperbolic metric on A. From the definition of Wj and [26, Pick
Theorem], we obtain that there exists a constant 0 < α < 1 such that for each p ∈ N and for each
a′ in a small neighborhood Ua of a, we have ∥(γkilp+k · · · γkilp+1

)′(γkilp ,1(a
′))∥h ≤ α, where for each

g ∈ Gτ and for each z ∈ F (Gτ ), ∥g′(z)∥h denotes the norm of the derivative of g at z measured
from the hyperbolic metric on the element of Con(F (Gτ )) containing z to that on the element of
Con(F (Gτ )) containing g(z). Hence, for each a′ ∈ Ua, ∥(γkilp ,1)

′(a′)∥h → 0 as p → ∞. However,

this is a contradiction, since {γkilp ,1|U}
∞
p=1 does not converge to a constant map. Therefore, γ ∈ D.

Thus, we have proved claim 1.
Let η := maxpj=1(⊗k

s=1τ)((supp τ)
k \Wj) (< 1). Then we have for each (l, n) with l ≥ n,

τ̃(Bq,j,n(i1, . . . , il+1)) ≤ τ̃(Cq,j,n(i1, . . . , il+1) ∩ {γ ∈ Xτ | (γkil+1+1, . . . , γkil+1+k) ̸∈Wj})
≤ τ̃(Cq,j,n(i1, . . . , il+1)) · η.

Hence, for each l with l ≥ n,

τ̃(Bq,j,n,l+1) =τ̃(
∪

i1<···<il+1

Bq,j,n(i1, . . . , il+1)) =
∑

i1<···<il+1

τ̃(Bq,j,n(i1, . . . , il+1))

≤
∑

i1<···<il+1

ητ̃(Cq,j,n(i1, . . . , il+1)) = ητ̃(
∪

i1<···<il+1

Cq,j,n(i1, . . . , il+1)) ≤ ητ̃(Bq,j,n,l).

Therefore τ̃(D) ≤
∑∞

q=1

∑p
j=1

∑
n∈N τ̃(

∩
l≥nBq,j,n,l) = 0. Hence we have proved item (I) of our

lemma.
We now prove item (II). Since L∩ Jker(Gτ ) = ∅, Lemmas 3.13 and 3.15 imply that L ⊂ F 0

pt(τ).
Thus we obtain that for each φ ∈ C(L), {Mn

τ (φ)|L}∞n=1 is equicontinuous on L. Combining this
with item (I) and the argument in [38, page 83-87], we easily see that item (II) holds. Note that

in [38, page 83-87], we work on the system on the whole Ĉ, but here, we work on the system on
L and ΩL by using the argument based on the hyperbolic metric on each connected component of
ΩL which is amost the same as the argument given in [38, page 83-87].

We now prove (III). Let U be a connected component of F (Gτ ) and let x1, x2 ∈ U. Let Hi :=
{γ ∈ Xτ | d(γn,1(xi), L) → 0 as n → ∞} for each i = 1, 2. Then TL,τ (xi) = τ̃(Hi). Let Ii := {γ ∈
Hi | ∃n ∈ N such that γn,1(xi) ∈ Ω}. Let A be as in (I). Since τ̃(A) = 1 and τ̃ is σ-invariant, we
have τ̃(Ii) = τ̃(Ii ∩ ∩∞

n=1σ
−n(A)). By (I), we have I1 ∩ ∩∞

n=1σ
−n(A) = I2 ∩ ∩∞

n=1σ
−n(A). Hence

τ̃(I1) = τ̃(I2). Let γ ∈ H1 \ I1. Then d(γn,1(x1), L ∩ J(Gτ )) → 0 as n → ∞ and every limit
function of {γn,1}∞n=1 on U should be constant. Therefore γ ∈ H2 \ I2. Thus H1 \ I1 ⊂ H2 \ I2.
Similarly, we have H2 \ I2 ⊂ H1 \ I1. Hence H1 \ I1 = H2 \ I2. From these arguments, it follows
that TL,τ (x1) = TL,τ (x2). Therefore TL,τ is locally constant on F (Gτ ).

Thus, we have completed the proof of Lemma 3.60.

Definition 3.61. Under the assumptions of Lemma 3.60, we call the number rL the period of
(τ, L).

Remark 3.62. The above argument in the proof of item (I) generalizes the argument in the
proof of [38, Lemma 5.2]. In the proof of [38, Lemma 5.2], in order to make the argument more

precise, “and {γkil,1|U : U → Ĉ}∞l=1 converges to a non-constant map.” ([38, page 81,line -5])

should be “and any subsequence of {γkil,1|U : U → Ĉ}∞l=1 does not converge to a constant map.”
and “converges to a non-constant map.” ([38, page 82, line 4]) should be “does not converge
to a constant map.” Also, in the proof of [38, Lemma 5.3], the definition of En,m should be
“En,m := {γ ∈ A | γik,1(a0) ∈ ∪p

j=1Vzj ∩B(∂J(Gτ ), b), i = n, . . . ,m}, where the number b is equal
to min{d(u, v) | u ∈ ∂J(Gτ ), v ∈ ∪p

j=1 ∪(γ1,...,γk)∈Wj
γk · · · γ1(Vzj )} > 0”. (This is a correction to

the proofs in [38].)

The following is an important result on random dynamical systems generated by τ ∈ M1,c(Rat)
with ♯Jker(Gτ ) < ∞. In the proof we use the no-wandering-domain theorem ([31]) and the well-
known fact that the number of periodic non-repelling cycles of one element f ∈ Rat+ is finite (its
sofisticated result is known as the Fatou-Shishikura inequality ([28])).
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Proposition 3.63. Let τ ∈ M1,c(Rat) with ♯J(Gτ ) ≥ 3. Suppose ♯Jker(Gτ ) < ∞. Then 1 ≤
♯Min(Gτ ) < ∞ and for each L ∈ Min(Gτ ) with L ∩ F (Gτ ) ̸= ∅, statements (I)(II)(III) of
Lemma 3.60 hold.

Proof. By Lemma 3.60, for each L ∈ Min(Gτ ) with L ∩ F (Gτ ) ̸= ∅, statements (I)(II)(III) of
Lemma 3.60 hold. Also, by Lemma 3.60, we obtain that

for each W ∈ Con(F (Gτ )), ♯{L ∈ Min(Gτ , Ĉ) | L ∩W ̸= ∅} ≤ 1. (20)

We now suppose that ♯Min(Gτ , Ĉ) = ∞. Then, since we are assuming ♯Jker(Gτ ) < ∞, we obtain
that

♯{L ∈ Min(Gτ , Ĉ) | L ∩ F (Gτ ) ̸= ∅} = ∞. (21)

We now show the following claim.
Claim 1. Let {Lj}∞j=1 be a sequence in Min(Gτ , Ĉ) consisting of mutually distinct elements such

that for each j, Lj ∩ F (Gτ ) ̸= ∅. Moreover, let {wj}∞j=1 be a sequence in Ĉ such that wj ∈ Lj for

each j and {wj} tends to a point w∞ ∈ Ĉ. Then w∞ ∈ Jker(Gτ ).
To show this claim, suppose that w∞ ̸∈ Jker(Gτ ). Then there exists an element α ∈ Gτ such

that α(w∞) ∈ F (Gτ ). Let U ∈ Con(F (Gτ )) with α(w∞) ∈ U. Then for each large j, we have
U ∩ Lj ̸= ∅. However, this contradicts (20). Hence, Claim 1 holds.

Let {Lj}∞j=1 be a sequence in Min(Gτ , Ĉ) consisting of mutually distinct elements such that
for each j, Lj ∩ F (Gτ ) ̸= ∅. For each j, let zj ∈ Lj ∩ F (Gτ ) be a point. Since ♯J(Gτ ) ≥ 3, by the
density of repelling fixed points in the Julia set ([29]), either there exists a loxodromic element of

Aut(Ĉ) ∩G or there exists an element in G of degree two or more.

Suppose that there exists a loxodromic element g ∈ Aut(Ĉ)∩G. Let ag be the attracting fixed
point of g. Then for each j, we have gn(zj) → ag as n → ∞. This implies ag ∈ Lj for each j.
However, this is a contradiction.

Suppose that there exists an element g ∈ G with deg(g) ≥ 2. By the no-wandering-domain
theorem ([31]), we have that for each z ∈ F (Gτ ), g

n(z) tends to one of the following cycles. (I)
attracting cycle. (II) parabolic cycle. (III) Siegel disc cycle. (IV) Hermann ring cycle. Moreover,
by the Fatou-Shishikura inequality ([28]), the number of those cycles for one element g is finite.
Suppose that there exist a subsequence {zjk} of {zj} and a sequence {nk} in N such that gnk(zjk)
tends to an attracting or parabolic cycle cg of g. Then cg ∈ Ljk for each large k ∈ N and this is a
contradiction. Therefore, there exist a subsequence {zjk} of {zj} and a sequence {nk} in N such
that gnk(zjk) belongs to a Siegel disk cycle or Hermann ring cycle of g for each k. By taking a
higher iterate of g, we may assume that the period of the cycle is one. Also, by renaming gnk(zjk)
as zk, we may assume that there exists a B ∈ Con(F (g)) which is either Siegel disk or Hermann
ring of g such that for each j, we have zj ∈ B ∩ Lj ∩ F (Gτ ). Note that each B ∩ Lj ∩ F (Gτ ) is a
union of analytic Jordan curves in B. Let

D := {z ∈ Ĉ | for each δ > 0, ♯{j ∈ N | B(z, δ) ∩B ∩ Lj ∩ F (Gτ ) ̸= ∅} = ∞}.

Then by Claim 1, we have D ⊂ Jker(Gτ ). Since we are assuming ♯Jker(Gτ ) < ∞, Claim 1 implies
that for any connected component A of ∂B, we cannot have that A ⊂ D. Thus it follows that there
exists a point z∞ ∈ Jker(Gτ ) such that D = {z∞}. Therefore B is a Siegel disk for g and z∞ is the
center of B, i.e. z∞ ∈ B and g(z∞) = z∞. Let 0 < ϵ < 1

2 min{d(a, b) | a, b ∈ Jker(Gτ ), a ̸= b}. Here,
if ♯Jker(Gτ ) = 1, then we set min{d(a, b) | a, b ∈ Jker(Gτ ), a ̸= b} = 1. For each j ∈ N, let Cj be the

connected component of Ĉ\(B∩Lj) such that z∞ ∈ Cj . Let e0 := max{∥Dhz∥s | h ∈ supp τ, z ∈ Ĉ}.
We may assume that for each j, maxa∈Cj

d(z∞, a) <
1
2e

−1
0 ϵ. Since z∞ ∈ Jker(Gτ ) ⊂ J(Gτ ), it

follows that for each j there exists an element hj ∈ Gτ such that

max
a∈Cj

d(hj(z∞), hj(a)) ≥
1

2
e−1
0 ϵ. (22)
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Wemay assume that fixing the generator system supp τ ofGτ , the word length of hj is the minimum
among the word lengths of elements of Gτ satisfying the same property as that of hj . Then, by
(22) and the minimality of the word length of hj , it follows that

max
a∈Cj

d(hj(z∞), hj(a)) < ϵ, for each j. (23)

Let aj ∈ Cj be a point such that d(hj(z∞), hj(aj)) = maxa∈Cj d(hj(z∞), hj(a)). Then aj ∈ ∂Cj ⊂
Lj for each j. Hence, setting uj = hj(aj), we have

uj ∈ Lj for each j. (24)

By (22) and (23), we have
1

2
e−1
0 ϵ ≤ d(hj(z∞), uj) < ϵ. (25)

Since hj(z∞) ∈ Jker(Gτ ) and by the way of the choice of ϵ, (25) implies that {uj}∞j=1 cannot accu-
mulate in any point of Jker(Gτ ). Combining this with (24) and Claim 1, we obtain a contradiction.

Hence, ♯Min(Gτ , Ĉ) <∞.
Thus we have proved our proposition.

The following is an important and interesting object in random dynamics.

Definition 3.64. Let A be a subset of Ĉ. Let τ ∈ M1(Rat). For each z ∈ Ĉ, we set TA,τ (z) :=
τ̃({γ = (γ1, γ2, . . .) ∈ Xτ | d(γn,1(z), A) → 0 as n→ ∞}). This is the probability of tending to

A regarding the random orbits starting with the initial value z ∈ Ĉ. For any a ∈ Ĉ, we
set Ta,τ := T{a},τ .

We now prove the following theorem regarding the systems with finite kernel Julia sets.

Theorem 3.65. Let τ ∈ M1,c(Rat) with ♯J(Gτ ) ≥ 3. Suppose that ♯Jker(Gτ ) < ∞ and for each

z ∈ F (Gτ ), we have Gτ (z) ∩ (
∪

L∈Min(Gτ ,Ĉ),L ̸⊂Jker(Gτ )
L) ̸= ∅. Then we have the following.

(i) ♯Min(Gτ , Ĉ) <∞. Moreover, for each L ∈ Min(Gτ , Ĉ), we have

C(L) = Uτ,L ⊕ {φ ∈ C(L) |Mn
τ (φ) → 0 as n→ ∞}

in the Banach space C(L) endowed with the supremum norm and dimC Uτ,L <∞. Moreover,

for each L ∈ Min(Gτ , Ĉ), let rL = dimC(Uτ,L). Then ♯Min(GrL
τ , L) = rL. Also, there exist

L1, . . . , LrL ∈ Min(GrL
τ , L) such that {Lj | j = 1, . . . , rL} = Min(GrL

τ , L), L = ∪rL
j=1Lj and

h(Li) ⊂ Li+1 for each h ∈ supp τ , where LrL+1 := L1.

(ii) For each L ∈ Min(Gτ , Ĉ), for each j = 1, . . . , rL, there exists a unique element ωL,j ∈
M1(Lj) such that (MrL

τ )∗(ωL,j) = ωL,j . Also, for each j = 1, . . . , rL, we have MnrL
τ (φ) →

(
∫
φ dωL,j) ·1Lj in the Banach space C(Lj) endowed with the supremum norm as n→ ∞ for

each φ ∈ C(Lj), suppωL,j = Lj and M∗
τ (ωL,j) = ωL,j+1 in M1(L) where ωL,rL+1 = ωL,1.

Moreover, Uτ,L,∗ = {a ∈ C | arL = 1} and for each a ∈ Uτ,L,∗, we have dimC{φ ∈ C(L) |
Mτφ = aφ} = 1.

(iii) Let l :=
∏

L∈Min(Gτ ,Ĉ) rL. For each L ∈ Min(Gτ , Ĉ), for each j = 1, . . . , rL and for each

y ∈ Ĉ, let α(Lj , y) = τ̃({γ ∈ (supp τ)N | d(γnl,1(y), Lj) → 0 as n → ∞.}). Then for each

y ∈ Ĉ and for each φ ∈ C(Ĉ), we have

Mnl
τ (φ)(y) →

∑
L∈Min(Gτ ,Ĉ)

rL∑
j=1

α(Lj , y)

∫
φ dωL,j as n→ ∞ (pointwise convergence), (26)
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i.e. we have

(M∗
τ )

nl(δy) →
∑

L∈Min(Gτ ,Ĉ)

rL∑
j=1

α(Lj , y)ωL,j as n→ ∞ in M1(Ĉ) (27)

with respect to the weak convergence topology. Also,

(M∗
τ )

l(
∑

L∈Min(Gτ ,Ĉ)
∑rL

j=1 α(Lj , y)ωL,j) =
∑

L∈Min(Gτ ,Ĉ)
∑rL

j=1 α(Lj , y)ωL,j .

(iv) For each z ∈ Ĉ there exists a Borel subset Az of (supp τ)N with τ̃(Az) = 1 such that for

each γ = (γ1, γ2, . . .) ∈ Az, there exists an element L = L(z, γ) ∈ Min(Gτ , Ĉ) satisfying that
d(γn,1(z), L) → 0 as n→ 0.

(v) There exists a Borel subset A of RatN with τ̃(A) = 1 such that for each L ∈ Min(Gτ , Ĉ) with
L ̸⊂ Jker(Gτ ), for each point z ∈ ΩL := ∪U∈Con(F (Gτ )):U∩L̸=∅U and for each γ ∈ A, there

exists a δ = δ(z, γ) > 0 such that diam(γn,1(B(z, δ))) → 0 and d(γn,1(z), L) → 0 as n→ ∞.

In particular, for each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) and for each j = 1, . . . , rL, if
y ∈ ΩL,j := ∪U∈Con(F (Gτ )):U∩Lj ̸=∅U , then α(Lj , y) = 1, and if y ∈ ΩL′,i with (L′, i) ̸= (L, j)

then α(Lj , y) = 0.

(vi) Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Then the functions TL,τ : Ĉ → [0, 1] and α(Lj , ·) :
Ĉ → [0, 1] are locally constant on F (Gτ ).

(vii) Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Then for each y ∈ F 0
pt(τ), we have

limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y).

Proof. Let L :=
∪

L∈Min(Gτ ,Ĉ),L ̸⊂Jker(Gτ )
L. Then, by the assumption of our theorem, we have

L ̸= ∅. Moreover, we have L =
∪

L∈Min(Gτ ,Ĉ),L∩F (Gτ ) ̸=∅ L. Let

V :=
∪

{U ∈ Con(F (Gτ )) | ∃L ∈ Min(Gτ , Ĉ) with L ∩ U ̸= ∅}.

Then Gτ (V ) ⊂ V. Moreover, by the assumptions of our theorem, we obtain ∩g∈Gτ
g−1(Ĉ \ V ) =

Jker(Gτ ). Therefore, the statements (i)–(v) of our theorem follow from Lemma 3.23, Proposi-
tion 3.63 and Lemma 3.15.

We now prove statement (vi). Let L ∈ Min(Gτ , Ĉ) and j = 1, . . . , rL. If L ̸⊂ Jker(Gτ ), then
by Lemma 3.60 (III) and its proof, the functions TL,τ and α(Lj , ·) are locally constant on F (Gτ ).
If L ⊂ Jker(Gτ ), then for any U ∈ Con(F (Gτ )), for any x, y ∈ U and for any γ ∈ Xτ with
d(γn,1(x), L) → 0 (n → ∞), we have that any limit function of {γn,1}∞n=1 is constant on U.
Hence d(γn,1(y), L) → 0 as n → ∞. This argument implies that TL,τ is constant on U for any
U ∈ Con(F (Gτ )). Therefore TL,τ is locally constant on F (Gτ ). By the same method as above, we
can show that α(Lj , ·) is locally constant on F (Gτ ).

We now prove (vii). Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Since ♯Min(Gτ , Ĉ) < ∞, there

exists an element φL ∈ C(Ĉ) such that φL|L = 1 and φL|L′ = 0 for any L′ ∈ Min(Gτ , Ĉ) with

L′ ̸= L. By statement (iv), we have TL,τ (x) = limn→Mn
τ (φL)(x) for any x ∈ Ĉ. Thus for any

y ∈ F 0
pt(τ), we have limz∈Ĉ,z→y TL,τ (z) = TL,τ (y). Similarly, we can show that for any y ∈ F 0

pt(τ),

limz∈Ĉ,z→y α(Lj , z) = α(Lj , y).
Thus we have proved our theorem.

We now prove the following theorem, which is a generalization of [38, Theorem 3.15].
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Theorem 3.66. Let τ ∈ M1,c(Rat). Suppose that ♯Jker(Gτ ) < ∞, ♯J(Gτ ) ≥ 3 and that for each

L ∈ Min(Gτ , Jker(Gτ )), χ(τ, L) < 0. Then we have F 0
pt(τ) = Ĉ, Fmeas(τ) = M1(Ĉ), Leb2(Jγ) = 0

for τ̃ -a.e.γ ∈ (Rat)N, and all statements in [38, Theorem 3.15 (1)–(3),(4a),(5)(6),(8)–(16), (19)(20)]

hold for τ. Moreover, for each z ∈ Ĉ, there exists a Borel subset Az of Xτ with τ̃(Az) = 1 satisfying
that for each γ = (γ1, γ2, . . .) ∈ Az and for each m ∈ N ∪ {0}, we have

lim
n→∞

∥D(γn+m,1+m)γm,1(z)∥s = 0.

Also, if, in addition to the assumptions of our theorem, each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ )
is attracting for τ , then there exist a constant cτ < 0 and a constant ρτ ∈ (0, 1) such that for each

z ∈ Ĉ, there exists a Borel subset Az of Xτ with τ̃(Az) = 1 such that for each γ ∈ Az and for each
m ∈ N ∪ {0}, we have the following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and a minimal
set L = L(τ, z, γ) of τ which is either (i) “attracting for τ”, or (ii) “finite and included in
Jker(Gτ ) with χ(τ, L) < 0”, such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

Proof. We modify the proof of Theorem 3.36. By the assumption of our theorem, the set Ω
in the proof of Theorem 3.36 is equal to Ĉ. By Theorem 3.36, we see that for each z ∈ Ĉ,
τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0 and F 0

pt(τ) = Ĉ. Therefore by [38, Lemma 4.2(6)], Fmeas(τ) = M1(Ĉ).
Let δ1 > 0 be a small number. Let ϵ > 0 be an arbitrarily small number. Then by the

argument in the proof of Lemma 3.13, there exist a δ2 > 0 with δ2 < δ1 and a Borel subset Aϵ

of Xτ with τ̃(Aϵ) ≥ 1 − ϵ such that for each L ∈ Min(Gτ , Jker(Gτ )), for each z ∈ L, and for each
γ = (γ1, γ2 . . .) ∈ Aϵ, we have diam(γn,1(B(z, δ2))) ≤ δ1. For this δ2, by the argument in the proof
of Lemma 3.13 again, there exist a δ3 > 0 and a Borel subset Bϵ of Xτ with τ̃(Bϵ) ≥ 1 − ϵ such
that for each L ∈ Min(Gτ , Jker(Gτ )), for each z ∈ L, and for each γ = (γ1, γ2 . . .) ∈ Bϵ, we have
diam(γn,1(B(z, δ3))) ≤ δ2.

Let I1 := {L ∈ Min(Gτ , Ĉ) | L ⊂ Jker(Gτ )} and I2 := {L ∈ Min(Gτ , Ĉ) | L ∩ F (Gτ ) ̸= ∅}.
Note that I1∪I2 = Min(Gτ , Ĉ). For each L ∈ I2, let WL := ∪U∈Con(F (Gτ )),U∩L̸=∅U. Then for each

z ∈ Ĉ, there exists an element gz ∈ Gτ such that gz(z) ∈ B(∪L∈I1L, δ3) ∪ ∪L∈I2WL. Let δz > 0

be a number such that gz(B(z, δz)) ⊂ B(∪L∈I1L, δ3) ∪ ∪L∈I2WL. Since Ĉ is compact, there exist

finitely many points z1, . . . , zp ∈ Ĉ such that Ĉ = ∪p
j=1B(zj , δzj ). Note that Gτ (WL) ⊂ WL for

each L ∈ I2. Thus if gz(z) ∈ WL for some L ∈ I2, then for each g ∈ Gτ , we have ggz(z) ∈ WL.
Moreover, for each L ∈ I1, for each z ∈ L, for each γ ∈ Bϵ and for each n ∈ N, we have
γn,1(B(z, δ3)) ⊂ B(∪L∈I1L, δ2). Hence, considering αj ◦ gzj for some αj ∈ Gτ for each j, we have
the following claim.
Claim 1. There exist an l ∈ N and p elements hz1 , . . . , hzp ∈ Gτ such that each hzj is a composition

of l elements of supp τ and such that for each j = 1, . . . , p, we have hzj (B(z, δzj )) ⊂ B(∪L∈I1L, δ2)∪
∪L∈I2WL.

For each j = 1, . . . , p, let (γj1, . . . , γ
j
l ) ∈ (supp τ)l be an element such that hzj = γjl ◦ · · · ◦ γj1.

For each j = 1, . . . , p, let Vj be a neighborhood of (γj1, . . . , γ
j
l ) ∈ (supp τ)l such that for each

(α1, . . . , αl) ∈ Vj , we have αl · · ·α1(B(zj , δzj )) ⊂ B(∪L∈I1L, δ2) ∪ ∪L∈I2WL. Let Ω1, . . . ,Ωt be the

measurable partition of Ĉ such that each Ωi is a finite intersection of elements of {B(zj , δzj )}
p
j=1.
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For each i = 1, . . . , t, let φ(i) ∈ {1, . . . , p} be an element such that Ωi ⊂ B(zφ(i), δzφ(i)
). For each

z ∈ Ĉ, let i(z) ∈ {1, . . . , t} be the unique element such that z ∈ Ωi(z). Let j(z) = φ(i(z)) ∈
{1, . . . , p}. For each n ∈ N and each z ∈ Ĉ, let Cn,z be the set of elements γ = (γ1, γ2, . . .) ∈ Xτ

satisfying the following.

• (γ1, . . . , γl) ̸∈ Vj(z), (γl+1, . . . , γ2l) ̸∈ Vj(γl,1(z)), . . . , (γ(n−2)l+1, . . . , γ(n−1)l) ̸∈ Vj(γ(n−2)l,1(z)),
and (γ(n−1)l+1, . . . , γnl) ∈ Vj(γ(n−1)l,1(z)).

Similarly, let Dn,z := {γ ∈ Cn,z | (γnl+1, γnl+2, . . .) ̸∈ Aϵ}. Moreover, let Ez be the set of elements
γ = (γ1, γ2, . . .) ∈ Xτ satisfying that for each n ∈ N, (γ(n−1)l+1, . . . , γnl) ̸∈ Vj(γ(n−1)l,1(z)). Then for

each z ∈ Ĉ we have

{γ ∈ Xτ | γn,1(z) ̸∈ B(∪L∈I1L, δ1) ∪ ∪L∈I2WL for infinitely many n ∈ N} ⊂ ∪∞
n=1Dn,z ∪ Ez.

It is easy to see that τ̃(Ez) = 0. Moreover,

τ̃(∪∞
n=1Dn,z) =

∑∞
n=1 τ̃(Dn,z) =

∑∞
n=1 τ̃(Cn,z) · τ̃(Xτ \Aϵ) = τ̃(∪∞

n=1Cn,z) · τ̃(Xτ \Aϵ) ≤ ϵ.

Hence

τ̃({γ ∈ Xτ | γn,1(z) ̸∈ B(∪L∈I1L, δ1) ∪ ∪L∈I2WL for infinitely many n ∈ N}) ≤ ϵ. (28)

Since ϵ, δ1 are arbitrary, combining (28) and Lemma 3.60 implies that for each z ∈ Ĉ, there exists
a Borel subset Qz of Xτ with τ̃(Qz) = 1 such that for each γ ∈ Qz, we have

d(γn,1(z),∪L∈Min(Gτ ,Ĉ)L) → 0 as n→ ∞. (29)

By the result Fmeas(τ) = M1(Ĉ), (29), Lemma 3.22 and its proof, Lemma 3.29 and its proof,
Theorem 3.36, Lemma 3.60, the proof of [38, Theorem 3.15] and [38, Theorem 3.14], the statement
of our theorem holds.

Remark 3.67. Under the assumptions of Theorem 3.66, suppose that Jker(Gτ ) ̸= ∅. Then τ is
not mean stable. Also, τ does not satisfy the assumptions of [38, Theorem 3.15], although most of
the statements of [38, Theorem 3.15] hold for τ. Note that we have many examples τ ∈ M1,c(Rat)
with Jker(Gτ ) ̸= ∅ satisfying the assumptions of Theorem 3.66. See Section 5, Example 5.4.

We now give the definition of nice sets and strongly nice sets of Rat.

Definition 3.68. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m.

• We say that Y is nice (with respect to holomorphic families {Wj}mj=1 of rational maps) if for
each z ∈ Smin({Wj}mj=1) (see Definition 3.47) and for each j = 1, . . . ,m, either (a) the map
λ 7→ D(fj,λ)z is non-constant on Λj or (b) D(fj,λ)z = 0 for all λ ∈ Λj .

• We say that a finite sequence {zi}ni=1 of points of Ĉ is a peripheral cycle for (Y, {Wj}mj=1)
if there exists a Γ ∈ Cpt(Y) such that both of the following (a)(b) hold.

(a) {zi | i = 1, . . . , n} ⊂ (∪m
j=1S1(Wj)) \ ∪L∈Min(⟨Γ⟩,Ĉ),L⊂∪m

j=1S1(Wj)
L.

(b) There exists a finite sequence {γi}ni=1 of elements of Γ such that for each i = 1, . . . , n,
there exists a number ji ∈ {1, . . . , n} satisfying that for each i = 1, . . . , n, we have
γi ∈ {fji,λ | λ ∈ Λji}, zi ∈ S1(Wji) and γi(zi) = zi+1 where zn+1 := z1.

• We say that Y is strongly nice with respect to {Wj}mj=1 if Y is nice with respect to {Wj}mj=1

and there exists no peripheral cycle for (Y, {Wj}mj=1).
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Definition 3.69. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m. Let Γ ∈ Cpt(Y) such

that Γ∩{fj,λ | λ ∈ Λj} ̸= ∅ for each j = 1, . . . ,m. Let L ∈ Min(⟨Γ⟩, Ĉ) with L ̸= Ĉ. Let g ∈ Γ and
j ∈ {1, . . . ,m}. We say that g is a strict bifurcation element for (Γ, L) with corresponding
suffix j if one of the following statements (a)(b) holds.

(a) g ∈ {fj,λ | λ ∈ Λj} and there exists a point z ∈ (L ∩ J(⟨Γ⟩)) \ S1(Wj) such that g(z) ∈
L ∩ J(⟨Γ⟩).

(b) g ∈ {fj,λ | λ ∈ Λj} and there exist an open subset U of Ĉ and finitely many elements
γ1, . . . , γn−1 ∈ Γ such that g ◦ γn−1 · · · γ1(U) ⊂ U , U is a subset of a Siegel disk or a
Hermann ring of g ◦ γn−1 ◦ · · · ◦ γ1, and (γn−1 ◦ · · · ◦ γ1(U) ∩ L) \ S1(Wj) ̸= ∅.

Lemma 3.70. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m. Suppose there exists
no peripheral cycle for (Y, {Wj}mj=1). Let Γ ∈ Cpt(Y) such that Γ ∩ {fj,λ | λ ∈ Λj} ̸= ∅ for each

j = 1, . . . ,m. Let L ∈ Min(⟨Γ⟩, Ĉ) with L ̸= Ĉ. Suppose that Jker(⟨Γ⟩) ⊂ ∩m
j=1S(Wj) and ♯L = ∞.

Suppose also that L is not attracting for Γ. Then there exists an element (g, j) ∈ Γ × {1, . . . ,m}
such that g is a strict bifurcation element for (Γ, L) with corresponding suffix j. Moreover, if
(h, i) ∈ Γ× {1, . . . ,m} and h is a strict bifurcation element for (Γ, L) with corresponding suffix i,
then h ∈ ∂(Γ ∩ {fi,λ | λ ∈ Λi}) with respect to the topology in {fi,λ | λ ∈ Λi}. Here, we endow
{fi,λ | λ ∈ Λi} with the relative topology from Rat.

Proof. Let G = ⟨Γ⟩. [39, Lemma 3.8] implies that we have one of the following two situations
(I)(II).

(I) There exist an element (g, j) ∈ Γ × {1, . . . ,m} with g ∈ Γ ∩ {fj,λ | λ ∈ Λj} and a point
z0 ∈ L ∩ J(G) such that g(z0) ∈ L ∩ J(G).

(II) There exist an open subset U of Ĉ with U ∩L ̸= ∅ and finitely many elements γ1, . . . , γr ∈ Γ
such that γr◦· · · γ1(U) ⊂ U and U is a subset of a Siegel disk or a Hermann ring of γr◦· · ·◦γ1.

Suppose we have case (II). Since ♯L = ∞, by using [38, Remark 3.9] and [39, Remark 2.24] we
obtain that ♯(U ∩ L) = ∞. Let j ∈ {1, . . . ,m} with γ1 ∈ {fj,λ | λ ∈ Λj}. Since ♯S1(Wj) < ∞
(Lemma 3.38), it follows that γ1 is a strict bifurcation element with corresponding suffix j.

Suppose we have case (I). Then there exist a sequence {γi}∞i=1 in Γ with γi ∈ {fji,λ | λ ∈ Λji},
ji ∈ {1, . . . ,m} and a point z0 ∈ L ∩ J(G) such that γi · · · γ1(z0) ∈ L ∩ J(G) for each i. We now
consider the following two cases (a)(b).

(a) There exists an i ∈ N such that γi · · · γ1(z0) ̸∈ S1(Wji+1).

(b) For each i ∈ N, γi · · · γ1(z0) ∈ S1(Wji+1
).

Suppose we have case (a). Then γi+1 is a strict bifurcation element with corresponding suffix ji+1.
Suppose we have case (b). Since ♯L = ∞ and ♯∪m

j=1 S1(Wj) <∞ (Lemma 3.38), we have that
L ̸⊂ ∪m

j=1S1(Wj). Then for each i ∈ N, we have

γi · · · γ1(z0) ∈ (∪m
j=1S1(Wj)) \ ∪K∈Min(G,Ĉ),K⊂∪m

j=1S1(Wj)
K.

Since we are assuming case (b) and since ♯ ∪m
j=1 S1(Wj) < ∞, there exist two elements i, j ∈ N

with j > i such that γj · · · γi · · · γ1(z0) = γi · · · γ1(z0). This contradicts to the assumption that
there exists no peripheral cycle for (Y, {Wj}mj=1).

We now suppose that (h, i) ∈ Γ × {1, . . . ,m} is a strict bifurcation element for (Γ, L) with
corresponding suffix i. Supoose that h ∈ int(Γ ∩ {fi,λ | λ ∈ Λi}) with respect to the topology in

{fi,λ | λ ∈ Λi}. Then for each z ∈ Ĉ \ S1(Wi), we have that int(⟨Γ⟩(z)) ̸= ∅. Hence it is easy to
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see that int(L)∩J(G) ̸= ∅. It implies that L = Ĉ. However, this contradicts the assumption of our
lemma. Hence h ∈ ∂(Γ ∩ {fi,λ | λ ∈ Λi}).

Thus we have proved our lemma.

Lemma 3.71. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ}λ∈Λj , j = 1, . . . ,m. Suppose that there exists no
peripheral cycle for (Y, {Wj}mj=1). Let ρ ∈ M1,c(Y, {Wj}mj=1) and suppose that the interior of
supp ρ ∩ {fj,λ | λ ∈ Λj} is not empty with respect to the topology in {fj,λ | λ ∈ Λj} (which is
endowed with the relative topology from Rat) for each j = 1, . . . ,m. Suppose also that F (Gρ) ̸= ∅.
Then we have the following.

(i) Jker(Gρ) ⊂ ∩m
j=1S(Wj), ♯Jker(Gρ) <∞ and ♯Min(Gρ) <∞.

(ii) Let L ∈ Min(Gρ, Ĉ) with L ̸⊂ ∩m
j=1S(Wj). Suppose that L is not attracting for ρ. Then there

exists an element (g, j) ∈ supp ρ × {1, . . . ,m} such that g is a strict bifurcation element for
(supp ρ, L) with corresponding suffix j. Moreover, if (h, i) ∈ supp ρ× {1, . . . ,m} such that h
is a strict bifurcation element for (supp ρ, L) with corresponding suffix i, then h belongs to
the boundary of supp ρ ∩ {fi,λ | λ ∈ Λi}, where the boundary of supp ρ ∩ {fi,λ | λ ∈ Λi} is
taken with respect to the topology in {fi,λ | λ ∈ Λi}.

(iii) Suppose that there exists an element L0 ∈ Min(Gρ, Ĉ) which is attracting for ρ. Then there
exists an open neighborhood V of ρ in (M1,c(Y, {Wj}mj=1),O) such that for each ρ1 ∈ V
satisfying that supp ρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(supp ρ1 ∩ {fj,λ | λ ∈ Λj}) with respect to the
topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, we have the following (a)(b)(c)(d).

(a) ♯Min(Gρ1 , Ĉ) =
♯({L′ ∈ Min(Gρ, Ĉ) | L′ ⊂ ∩m

j=1S(Wj)})
+♯{L′ ∈ Min(Gρ, Ĉ) | L′ ̸⊂ ∩m

j=1S(Wj) and L
′ is attracting for ρ}.

(b) For each L ∈ Min(Gρ1 , Ĉ) there exists a unique L′ ∈ Min(Gρ, Ĉ) with L′ ⊂ L such that
either “L′ ⊂ ∩m

j=1S(Wj)” or “L′ ̸⊂ ∩m
j=1S(Wj) and L

′ is attracting for ρ”.

(c) In item (b), if L′ ⊂ ∩m
j=1S(Wj), then L = L′. If L′ ̸⊂ ∩m

j=1S(Wj) and L′ is attracting
for ρ, then L is attracting for ρ1.

(d) Each L ∈ Min(Gρ1 , Ĉ) with L ̸⊂ ∩m
j=1S(Wj) is attracting for ρ1.

(iv) Suppose that each element L0 ∈ Min(Gρ, Ĉ) is not attracting for ρ. Let ρ1 ∈ M1,c(Y, {Wj}mj=1)
be an element such that supp ρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(supp ρ1 ∩ {fj,λ | λ ∈ Λj}) with respect
to the topology in {fj.λ | λ ∈ Λj} for each j = 1, . . . ,m. Then we have the following.

(a) If there exists an element L ∈ Min(Gρ, Ĉ) with L ⊂ ∩m
j=1S(Wj), then Min(Gρ1 , Ĉ) =

{L ∈ Min(Gρ, Ĉ) | L ⊂ ∩m
j=1S(Wj)}.

(b) If there exists no L ∈ Min(Gρ, Ĉ) with L ⊂ ∩m
j=1S(Wj), then Min(Gρ1

, Ĉ) = Ĉ and

J(Gρ1) = Ĉ.

Proof. By Lemma 3.45, we obtain that Jker(Gρ) ⊂ ∩m
j=1S(Wj). Thus by Lemma 3.38, ♯Jker(Gρ) <

∞. From Proposition 3.63, it follows that ♯Min(Gρ, Ĉ) <∞. Thus statement (i) holds.
To prove statement (ii), since L ̸⊂ ∩m

j=1S(Wj) and since int(Γρ ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ with
respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, we obtain that ♯L = ∞.
Moreover, since int(supp ρ ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ for each j and since J(Gρ) is perfect (see [13])
and J(Gρ) \ ∪m

j=1S1(Wj) ̸= ∅, we have int(J(Gρ)) ̸= ∅. Combining this with the assumption

F (Gρ) ̸= ∅, we obtain that Ĉ cannot be a minimal set for (Gρ, Ĉ). Thus statement (ii) follows from
Lemma 3.70.

37



To prove statement (iii), let V be a small open neighborhood V of ρ in (M1,c(Y, {Wj}mj=1),O)
and let ρ1 ∈ V such that supp ρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(supp ρ1 ∩ {fj,λ | λ ∈ Λj}). Taking V small

enough, we have that for each ρ′ ∈ V , F (Gρ′) ̸= ∅. By Zorn’s lemma, for each L ∈ Min(Gρ1 , Ĉ)
there exists an element L′ ∈ Min(Gρ, Ĉ) with L′ ⊂ L. If L′ ̸⊂ ∩m

j=1S(Wj) and L
′ is not attracting

for ρ, then statement (ii) (for ρ and ρ1) implies a contradiction. Hence either L′ ⊂ ∩m
j=1S(Wj)

or L′ is attracting for ρ. If L′ ⊂ ∩m
j=1S(Wj), then Lemma 3.46 implies that L′ = L. Suppose

L′ ̸⊂ ∩m
j=1S(Wj) and L′ is attracting for ρ. Then taking V so small, [39, Remark 3.6, Lemma

5.2] implies that L is attacting for ρ1 and there is no L′′ ∈ Min(Gρ, Ĉ) with L′′ ̸= L′ such

that L′′ ⊂ L. Also, by Lemma 3.46 again, for any K ∈ Min(Gρ, Ĉ) with K ⊂ ∩m
j=1S(Wj), we

have K ∈ Min(Gρ1
, Ĉ). Moreover, by [39, Lemma 5.2] again, for any K ∈ Min(Gρ, Ĉ) with

K ̸⊂ ∩m
j=1S(Wj) which is attracting for ρ, there exists a unique element K̃ ∈ Min(Gρ1

, Ĉ) close to

K, and this K̃ is attracting for ρ1. From these arguments, statement (iii) follows.

We now prove statement (iv). Suppose that each L0 ∈ Min(Gρ, Ĉ) is not attracting for ρ. Let
ρ1 ∈ M1,c(Y, {Wj}mj=1) be an element such that supp ρ∩{fj,λ | λ ∈ Λj} ⊂ int(supp ρ1 ∩{fj,λ | λ ∈
Λj}) for each j = 1, . . . ,m. Let L ∈ Min(Gρ1 , Ĉ). Suppose that L ̸= Ĉ and L ̸⊂ ∩m

j=1S(Wj). Then

∅ ̸= int(L), ♯(Ĉ \ int(L)) ≥ 3 and Gρ1
(int(L)) ⊂ int(L). Hence ∅ ̸= int(L) ⊂ F (Gρ1

). Also, L is not
attracting for ρ1 (otherwise by Zorn’s lemma there exists an element L0 ∈ Min(Gρ, L) which is
attracting for ρ). By applying statement (ii) for ρ and ρ1, we obtain a contradiction. Thus either

L = Ĉ or L ⊂ ∩m
j=1S(Wj). If L = Ĉ, then since int(J(Gρ1)) ̸= ∅ (see the argument in the proof of

(ii)), we obtain that F (Gρ1) = ∅. Hence statements (a) and (b) in (iv) hold.
Thus we have proved our lemma.

Definition 3.72. Let Γ ∈ Cpt(Rat).We say that Γ isweakly mean stable if there exist a positive

integer n and two non-empty open subsets V1,Γ, V2,Γ of Ĉ with V1,Γ ⊂ V2,Γ and ♯(Ĉ \ V2,Γ) ≥ 3
such that the following three conditions hold.

(a) For each (γ1, . . . , γn) ∈ Γn, γn ◦ · · · ◦ γ1(V2,Γ) ⊂ V1,Γ.

(b) Let DΓ := ∩g∈⟨Γ⟩g
−1(Ĉ \ V2,Γ). Then ♯DΓ <∞.

(c) For each L ∈ Min(⟨Γ⟩, DΓ) there exist an element z ∈ L and an element gz ∈ ⟨Γ⟩ such that
z is a repelling fixed point of gz.

Moreover, we say that τ ∈ M1,c(Rat) is weakly mean stable if supp τ is weakly mean stable. If
τ ∈ M1,c(Rat) is weakly mean stable, then we set Vi,τ = Vi,supp τ and Dτ = Dsupp τ .

Remark 3.73. If Γ ∈ Cpt(Rat) is mean stable and ♯J(⟨Γ⟩) ≥ 3, then Γ is weakly mean stable.
Moreover, if Γ ∈ Cpt(Rat) is weakly mean stable and DΓ = ∅, then Γ is mean stable.

Lemma 3.74. Let A := {Γ ∈ Cpt(Rat) | Γ is weakly mean stable}. Then A is open in Cpt(Rat).
In particular, the set A′ := {τ ∈ M1,c(Rat) | τ is weakly mean stable} is open in (M1,c(Rat),O).

Proof. Let Γ ∈ A. For this mean stable Γ, let V1,Γ, V2,Γ, n as in Definition 3.72. Let V ′
1,Γ be an

open subset of Ĉ such that V1,Γ ⊂ V ′
1,Γ ⊂ V ′

1,Γ ⊂ V2,Γ. Then, since the topology in Rat is the
compact-open topology, there exists a neighborhood U of Γ in Cpt(Rat) such that for each Λ ∈ U
and for each (γ1, . . . , γn) ∈ Λn, we have γn ◦ · · · ◦ γ1(V2,Γ) ⊂ V ′

1,Γ.
If DΓ = ∅ (i.e., Γ is mean stable), then by [39, Lemma 5.7], there exists an open neighborhood

B of Γ in Cpt(Rat) such that for each Λ ∈ B, Λ is mean stable and weakly mean stable. Thus, we
may assume that DΓ ̸= ∅.

For each L ∈ Min(⟨Γ⟩, DΓ), let zL ∈ L and gL ∈ ⟨Γ⟩ such that zL is a repelling fixed point
of gL. Let ϵ > 0 be a small number. By considering linearizing coordinate for gL at zL and the
fundamental region for gL near zL, it is easy to see that for each L ∈ Min(⟨Γ⟩, DΓ) there exist
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small simply connected open neighborhoods HL,Γ,1,HL,Γ,2 of zL with HL,Γ,2 ⊂ HL,Γ,1 such that
for each z ∈ B(zL, ϵ) \ {zL} there exists an element n ∈ N such that gnL(z) ∈ HL,Γ,1 \HL,Γ,2.

Shrinking U if necessary, we may assume that for each Λ ∈ U and for each L ∈ Min(⟨Γ⟩, DΓ)
there exist zL,Λ ∈ B(zL,

ϵ
2 ) and gL,Λ ∈ ⟨Λ⟩ such that zL,Λ is a repelling fixed point of gL,Λ and such

that gL,Λ → gL and zL,Λ → zL as Λ → Γ. Since the linearizing coordinate for a repelling fixed point
is continuous on Rat, if U is small enough, then for each Λ ∈ U , for each L ∈ Min(⟨Γ⟩, DΓ) there
exist two small simply connected open neighborhoods HL,Λ,1,HL,Λ,2 of zL,Λ with HL,Λ,2 ⊂ HL,Λ,1

such that the following hold.

1. For each z ∈ B(zL,Λ, ϵ)\{zL,Λ} there exists an element n ∈ N with gnL,Λ(z) ∈ HL,Λ,1 \HL,Λ,2.

2. There exist two small numbers ϵ1, ϵ2 > 0 with ϵ1 < ϵ2 <
1
3 min{d(a, b) | a, b ∈ DΓ, a ̸= b} (if

♯DΓ = 1 then we set min{d(a, b) | a, b ∈ DΓ, a ̸= b} = 1) such that for each Λ ∈ U and for
each L ∈ Min(⟨Γ⟩, DΓ),

B(zL, ϵ1) ⊂ HL,Λ,2, HL,Λ,1 ⊂ B(zL, ϵ2). (30)

For each w ∈ DΓ, let Lw ∈ Min(⟨Γ⟩, DΓ) be an element such that ⟨Γ⟩(w) ∩ Lw ̸= ∅. Moreover, let
hw ∈ ⟨Γ⟩ such that hw(w) = zLw . Taking U small enough, there exists a δ > 0 with

δ < ϵ1, δ <
1

3
min{d(a, b) | a, b ∈ DΓ, a ̸= b}. (31)

such that for each Λ ∈ U and for each w ∈ DΓ, there exists an element hw,Λ ∈ ⟨Λ⟩ close to hw
such that

hw,Λ(B(w, δ)) ⊂ B(zLw
,
ϵ

2
) ⊂ B(zLw,Λ, ϵ). (32)

Let Kδ = Ĉ \ B(DΓ, δ). Then for each z ∈ Kδ there exists an element αz ∈ ⟨Γ⟩ such that
αz(z) ∈ V2,Γ. Since Kδ is compact, there exist a finite set {z1, . . . , zq} in Kδ, a number ϵ0 > 0 and
elements β1, . . . , βq ∈ ⟨Γ⟩ such that

Kδ ⊂ ∪q
j=1B(zj , ϵ0) (33)

and βj(B(zj , ϵ0)) ⊂ V2,Γ for all j = 1, . . . , q. Hence shrinking U if necessary, we have that for each
Λ ∈ U , there exist elements β1,Λ, . . . , βq,Λ ∈ ⟨Λ⟩ such that

βj,Λ(B(zj , ϵ0)) ⊂ V2,Γ, for all j = 1, . . . , q. (34)

We now let Λ ∈ U and let z0 ∈ ∩g∈⟨Λ⟩g
−1(Ĉ\V2,Γ). Then by (33) and (34), we have z0 ̸∈ Kδ. Thus

z0 ∈ B(DΓ, δ). Moreover, by (30) and (31), we have HL,Λ,2 \HL,Λ,1 ⊂ Kδ for all L ∈ Min(⟨Γ⟩, DΓ)
and for all Λ ∈ U . Combining this with (32) (33) (34), we obtain that taking an element w ∈ DΓ

with d(z0, w) < δ, we have hw,Λ(z0) = zLw,Λ for all Λ ∈ U . It follows that∩
g∈⟨Λ⟩

g−1(Ĉ \ V2,Γ) ⊂
∪

L∈Min(⟨Γ⟩,DΓ),w∈DΓ

h−1
w,Λ(zL,Λ) for all Λ ∈ U . (35)

Since the right hand side of the above is a finite set, we obtain that ♯DΛ < ∞, where DΛ :=
∩g∈⟨Λ⟩g

−1(Ĉ \ V2,Γ). Moreover, by (35), we have that for each K ∈ Min(⟨Λ⟩, DΛ) there exist an
element z ∈ K and an element ζz ∈ ⟨Λ⟩ such that z is a repelling fixed point of ζz. Thus Λ is
weakly mean stable. Hence we have proved our lemma.

Lemma 3.75. Let Γ ∈ Cpt(Rat) be weakly mean stable. Let DΓ be as in Definition 3.72. Then
DΓ = Jker(⟨Γ⟩), ♯(Jker(⟨Γ⟩)) <∞, and for each z ∈ F (⟨Γ⟩), we have

⟨Γ⟩(z) ∩

 ∪
L∈Min(⟨Γ⟩,Ĉ),L ̸⊂Jker(⟨Γ⟩)

L

 ̸= ∅.

In particular, if τ ∈ M1,c(Rat) is weakly mean stable and ♯J(Gτ ) ≥ 3, then statements (i)-(vii) in
Theorem 3.65 hold for τ .
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Proof. By definition of DΓ, we have ⟨Γ⟩(DΓ) ⊂ DΓ. Also, by condition (c) in Definition 3.72, we
have DΓ ⊂ J(⟨Γ⟩). Thus DΓ ⊂ Jker(⟨Γ⟩). Let V2,Γ be as in Definition 3.72. Then V2,Γ ⊂ F (⟨Γ⟩).
Since ⟨Γ⟩(Jker(⟨Γ⟩)) ⊂ Jker(⟨Γ⟩) ⊂ J(⟨Γ⟩) ⊂ Ĉ \ V2,Γ, we obtain Jker(⟨Γ⟩) ⊂ DΓ. Hence we have
DΓ = Jker(⟨Γ⟩). By definition of weakly mean stable elements again, we have ♯DΓ < ∞. Thus
♯Jker(⟨Γ⟩) < ∞. Let V2,Γ be as in Definition 3.72 for Γ. Let z ∈ F (⟨Γ⟩). Since z ̸∈ Jker(⟨Γ⟩) and

DΓ = Jker(⟨Γ⟩), it follows that ⟨Γ⟩(z) ∩ V2,Γ ̸= ∅. Thus ⟨Γ⟩(z) ∩ (
∪

L∈Min(⟨Γ⟩,Ĉ),L̸⊂Jker(⟨Γ⟩) L) ̸= ∅.
If τ ∈ M1,c(Rat) is weakly mean stable and ♯J(Gτ ) ≥ 3, then combining the above argument and
Theorem 3.65 implies that statements (i)–(vii) in Theorem 3.65 hold for τ.

Lemma 3.76. Let Γ ∈ Cpt(Rat). Let G = ⟨Γ⟩. Let L ∈ Min(G, Ĉ) with ♯L < ∞. Then we have
the following.

(i) Suppose that for each z ∈ L and for each g ∈ G with g(z) = z, we have ∥Dgz∥s > 1. Then
there exist a constant C1 > 0 and a constant α > 1 such that for each γ ∈ ΓN, for each n ∈ N
and for each z ∈ L, we have ∥D(γn,1)z∥s ≥ C1α

n.

(ii) Suppose that for each z ∈ L and for each g ∈ G with g(z) = z, we have ∥Dgz∥s < 1. Then
there exist a constant C2 > 0 and a constant β < 1 such that for each γ ∈ ΓN, for each n ∈ N
and for each z ∈ L, we have ∥D(γn,1)z∥s ≤ C2β

n.

Proof. We first prove statement (i). We show the following claim.
Claim 1. Under the assumptions of our lemma and statement (i), let k ∈ N with 1 ≤ k ≤ ♯L.
Then there exist a constant Ak > 0 and a constant αk > 1 such that for any subset H ⊂ L with
♯H = k, for any n ∈ N, for any z ∈ H and for any γ ∈ ΓN, if γj,1(z) ∈ H for each j = 1, . . . , n,
then ∥D(γn,1)z∥s ≥ Akα

n
k .

To prove this claim, we use the induction on k. Apparently, the statement of the conclusion of
the claim holds for k = 1. Suppose that the statement of the conclusion of the claim holds for k,
where 1 ≤ k < ♯L. Let u ∈ N with u ≥ ♯L+ 1 such that for each u′ ∈ N with u′ ≥ u, we have

(min
w∈L

∥Dgw∥s)Akα
u′

k ≥ 2. (36)

For this u, let

B := min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr, ρr ◦ · · · ◦ ρ1(w) = w} > 1. (37)

Also, let v ∈ N be a large number such that

(min
w∈L

∥Dgw∥s)Akα
uv
k · (min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr}) > 2. (38)

Let p ∈ N be a large number such that

Bp ·min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr} > 2. (39)

Let n ∈ N with n > puv. Let H ⊂ L with ♯H = k+1. Let γ ∈ ΓN, z ∈ H and suppose that γj,1(z) ∈
H for each j = 1, . . . , n. Let j1, . . . , jm ∈ N with 1 ≤ j1 < j2 < · · · < jm ≤ n such that γji,1(z) = z
for each i = 1, . . . ,m and γl,1(z) ̸= z for each l ∈ {1, . . . , n} \ {ji | i = 1, . . . ,m}. Also, let j0 := 0
and jm+1 = n. (If there is no j ∈ N such that γj,1(z) = z, then we set j0 = 0,m = 0, j1 = n.) We
now want to show that ∥D(γn,1)z∥s ≥ 2. In order to do that, we consider the following three cases
1,2,3.

Case 1. jm+1 − jm > u. In this case, by the definition of {ji}, assumptions of our lemma and
(36), we obtain that ∥D(γn,1)z∥s ≥ 2.

Case 2. jm+1 − jm ≤ u and there exists an element q ∈ N ∪ {0} with 0 ≤ q ≤ m − 1 such
that jq+1 − jq > uv. In this case, by the definition of {ji}, assumptions of our lemma and (38), we
obtain that ∥D(γn,1)z∥s ≥ 2.
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Case 3. jm+1 − jm ≤ u and for each i ∈ N ∪ {0} with 0 ≤ i ≤ m − 1, ji+1 − ji ≤ uv. In this
case, we have puv < n =

∑m
i=0(ji+1 − ji) ≤ (m + 1)uv. Hence m ≥ p. Combining this with the

definition of {ji} and (39), we obtain that

∥D(γn,1)z∥s ≥ Bm ·min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | r ≤ u, (ρ1, . . . , ρr) ∈ Γr} ≥ 2.

From these arguments, the induction step for k+1 is complete. Thus we have proved Claim 1. By
Claim 1, statement (i) of our lemma holds.

By the similar method to the above, we can show that statement (ii) of our lemma holds.
Thus we have proved our lemma.

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.77. Let Y be a mild subset of Rat+ and suppose that Y is strongly nice with respect
to some holomorphic families {Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c(Y, {Wj}mj=1) | τ is weakly mean stable}

is open and dense in (M1,c(Y, {Wj}mj=1),O). Moreover, there exists the largest open and dense
subset A of (M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, all of the following statements (i)–(v)
hold.

(i) τ is weakly mean stable.

(ii) Let Dτ be as in Definition 3.72 for τ. Then ♯Jker(Gτ ) < ∞, Dτ = Jker(Gτ ) ⊂ ∩m
j=1S(Wj)

and ♯Min(Gτ , Ĉ) <∞.

(iii) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for τ.

(iv) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ (∪L∈Min(Gτ ,Ĉ),L ̸⊂Jker(Gτ )
L) ̸= ∅.

(v) All statements (i)–(vii) of Theorem 3.65 hold for τ.

Proof. Let τ ∈ M1,c(Y, {Wj}mj=1) be an element. There exists an element τ0 ∈ M1,c(Y, {Wj}mj=1)
with ♯supp τ0 <∞ arbitrarily close to τ. Since Y is nice with respect to {Wj}mj=1, we may assume
that for each z ∈ Smin({Wj}mj=1) and for each j ∈ {1, . . . ,m}, either

• Dhz ̸= 0 for all h ∈ supp τ0 ∩ {fj,λ | λ ∈ Λj}, or

• D(fj,λ)z = 0 for all λ ∈ Λj .

Let Wj = {fj,λ}λ∈Λj
for each j = 1, . . . ,m. By enlarging the support of τ0 a little bit, we obtain an

element τ1 ∈ M1,c(Y, {Wj}mj=1) arbitrarily close to τ such that int(supp τ1 ∩ {fj,λ | λ ∈ Λj}) ̸= ∅
with respect to the topology in {fj,λ | λ ∈ Λj} (which is endowed with the relative topology from
Rat) for each j = 1, . . . ,m. By enlarging the support of τ1 a little bit again, Lemma 3.71 implies
that, we can obtain an element τ2 ∈ M1,c(Y, {Wj}mj=1) arbitrarily close to τ such that int(supp τ2∩
{fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, such

that Jker(Gτ2) ⊂ ∩m
j=1S(Wj), such that ♯Jker(Gτ2) < ∞, such that ♯Min(Gτ2 , Ĉ) < ∞, and such

that each L ∈ Min(Gτ2 , Ĉ) with L ̸⊂ ∩m
j=1S(Wj) is attracting for τ2. We now prove the following

claim.
Claim 1. There exists an element τ3 ∈ (M1,c(Y, {Wj}mj=1) arbitrarily close to τ2 such that the
interior of supp τ3 ∩ {fj,λ | λ ∈ Λj} is not empty with respect to the topology in {fj,λ | λ ∈ Λj}
for each j = 1, . . . ,m, and such that for each L ∈ Min(Gτ3 , Ĉ) with L ⊂ ∩m

j=1S(Wj), exactly one
of the following (I)-(IV) holds.

(I) For each z ∈ L and for each g ∈ Gτ3 with g(z) = z, we have ∥Dgz∥s > 1.
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(II) For each z ∈ L and for each g ∈ Gτ3 with g(z) = z, we have ∥Dgz∥s < 1.

(III) There exist a point z1 ∈ L and elements g1, g2, g3 ∈ Gτ3 such that g1(z1) = z1, ∥D(g1)z1∥s >
1, g2(z1) = z1, 0 < ∥D(g2)z1∥ < 1, g3(z1) = z1, and z1 is the center of a Siegel disk of g3.
Also, there exist some elements α1, . . . , αl ∈ supp τ3 with αk ∈ int(supp τ3∩{fjk,λ | λ ∈ Λjk})
with respect to the topology in {fjk,λ | λ ∈ Λjk}, k = 1, . . . , l, such that g3 = α1 ◦ · · · ◦ αl.

(IV) There exist a point z1 ∈ L and a j ∈ {1, . . . ,m} such that for each λ ∈ Λj , we have
D(fj,λ)z1 = 0. Moreover, there exist a point z2 ∈ L and an element g ∈ Gτ3 such that
g(z2) = z2 and ∥Dgz2∥s > 1.

To prove this claim, we first remark that regarding the minimal set L ∈ Min(Gτ2 , Ĉ) with L ⊂
∩m
j=1S(Wj) of type (I), by Lemmas 3.46 and 3.76, if we perturb τ2 a little bit to τ ′3, then L ∈

Min(Gτ ′
3
, Ĉ) with L ⊂ ∩m

j=1S(Wj) and L is of type (I) for τ ′3. By Lemmas 3.46 and 3.76 again,

the similar thing holds for minimal sets L ∈ Min(Gτ2 , Ĉ) with L ⊂ ∩m
j=1S(Wj) of type (II). Let

τ3 ∈ M1,c(Y, {Wj}mj=1) be an element such that τ3 is close enough to τ2 and such that supp τ2 ⊂
int(supp τ3∩{fj,λ | λ ∈ Λj}) with respect to the topology in {fj,λ | λ ∈ Λj}), for each j = 1, . . . ,m.
Regarding the element τ3, suppose that we do not have (I) or (II). Then there exist a point
z1 ∈ L, an element g1 ∈ Gτ3 , a point z2 ∈ L, and an element h2 ∈ Gτ3 such that g1(z1) = z1,
∥D(g1)z1∥s ≥ 1, h2(z2) = z2, and ∥D(h2)z2∥s ≤ 1. Since Y is nice with respect to {Wj}mj=1, by
enlarging the support of τ3 a little bit, we may assume that ∥D(g1)z1∥s > 1 and ∥D(h2)z2∥s < 1.
(For, if g1 = γn ◦ · · · ◦ γ1 where γk ∈ supp τ3 ∩ {fjk,λ | λ ∈ Λjk}, k = 1, . . . , n, we may assume that
γn ∈ int(supp τ3 ∩ {fjn,λ | λ ∈ Λjn}). Since Y is nice with respect to {Wj}mj=1, perturbing γn a
little bit if necessary, we may assume that ∥D(g1)z1∥ > 1. Similar argument is valid for h2.) Let
α, β ∈ supp τ3 such that α(z2) = z1 and β(z1) = z2. Take a large n ∈ N so that ∥D(αhn2β)z1∥s < 1.
Let g2 = αhn2β. Suppose we do not have (IV). Then we may assume that 0 < ∥D(g2)z1∥s. In order
to take an element g3 as in (III), let a = ∥D(g1)z1∥s > 1 and b = ∥D(g2)z1∥s ∈ (0, 1). Let

Ω := {m log a+ n log b | (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}}.

We now prove the following subclaim which is needed in the proof of Claim 1.
Subclaim (∗). 0 ∈ Ω with respect to the topology in R.

To prove this subclaim, let Ω+ = Ω∩{x ∈ R | x ≥ 0} and Ω− := {x ∈ R | x ≤ 0}. Suppose that
0 ̸∈ Ω. Then inf Ω+ > 0 and supΩ− < 0. Suppose that inf Ω+ > − supΩ−. Then for each ϵ > 0
with ϵ < max{inf Ω+ + supΩ−,− supΩ−}, there exist an element c1 ∈ Ω+ with c1 < inf Ω+ + ϵ
and an element d1 ∈ Ω− with d1 > supΩ− − ϵ. Then c1 + d1 ≥ inf Ω+ + supΩ− − ϵ > 0. Hence
c1 + d1 ∈ Ω+. However, c1 + d1 ≤ inf Ω+ + supΩ− + ϵ < inf Ω+. This is a contradiction. Thus
we must have that inf Ω+ ≤ − supΩ−. Similarly, we must have that inf Ω+ ≥ − supΩ−. Hence
inf Ω+ = − supΩ−. This implies 0 ∈ Ω. However, this is a contradiction. Thus we have proved
subclaim (∗).

Going back to the proof of Claim 1, for each i = 1, 2, we write gi = γi1 ◦ · · · ◦ γipi
where

γik ∈ supp τ3 ∩ {fji,k,λ | λ ∈ Λji,k}. By enlarging the support of τ3 a little bit, we may assume
that γik ∈ int(supp τ3 ∩ {fji,k,λ | λ ∈ Λji,k}) with respect to the topology in {fji,k,λ | λ ∈ Λji,k}
for all i = 1, 2, k = 1, . . . , pi. Then there exist an ϵ > 0 and a neighborhood Vk,i of γik in
int(supp τ3 ∩ {fjk,i,λ | λ ∈ Λjk,i

}) such that (log a − ϵ, log a + ϵ) ⊂ {log ∥D(γ̃11 · · · γ̃1p1
)z1∥s | γ̃1k ∈

Vk,1, k = 1, . . . , p1} and (log b − ϵ, log b + ϵ) ⊂ {log ∥D(γ̃21 · · · γ̃2p2
)z1∥s | γ̃2k ∈ Vk,2, k = 1, . . . , p2}.

We set

Ω̃ := {m log ∥D(γ̃11 · · · γ̃1p1
)z1∥s + n log ∥D(γ̃21 · · · γ̃2p2

)z1∥s
| (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}, γ̃1k ∈ Vk,1, γ̃

2
k ∈ Vk,2,∀k}.

Then for each c ∈ Ω, we have (c− ϵ, c+ ϵ) ⊂ Ω̃. By Subclaim (∗), it follows that 0 ∈ Ω̃. Therefore
there exist an element (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}, p1-elements γ̃1k ∈ Vk,1, k = 1, . . . , p1, and
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p2-elements γ̃2k ∈ Vk,2, k = 1, . . . , p2 such that setting h3 = (γ̃11 · · · γ̃1p1
)m(γ̃21 · · · γ̃2p2

)n, we have

∥D(h3)z1∥s = 1. Perturbing γ̃ik a little bit, we obtain an element g3 which is close to h3 such that

g′3(z1) is a Brjuno number (we may assume z1 ∈ C by conjugating Gτ3 by an element of Aut(Ĉ)).
Thus g3 has a Siegel disk whose center is z1 ([26]). Thus we have proved Claim 1.

By Lemma 3.76, we have the following two claims.
Claim 2 There exists a k ∈ N such that for each L ∈ Min(Gτ3 , Smin({Wj}mj=1)) of type (I), for each

z ∈ L and for each (γ1, . . . , γk) ∈ (supp τ3)
k, we have ∥D(γk ◦ · · · ◦ γ1)z∥s > 2.

Claim 3. There exists a k ∈ N such that for each L ∈ Min(Gτ3 , Smin({W}mj=1)) of type (II), for

each z ∈ L and for each (γ1, . . . , γk) ∈ (supp τ3)
k, we have ∥D(γk ◦ · · · ◦ γ1)z∥s < 1

2 . Moreover,

there exists a neighborhood V of L with ♯(Ĉ \ V ) ≥ 3 such that for each (γ1, . . . , γk) ∈ (supp τ3)
k,

we have γk ◦ · · · ◦ γ1(V ) ⊂ V. In particular, L is attracting for τ3 and L ⊂ F (Gτ3).
Throughout the rest of the proof, we fix an element k ∈ N which satisfies the statements in

Claims 2,3.
We now prove the following claim.

Claim 4. Let L ∈ Min(Gτ3 , Smin({Wj}mj=1)) be of type (III). Then L ⊂ int(J(Gτ3)). In particular,

for each z ∈ F (Gτ3), we have Gτ3(z) ∩ L = ∅.
To prove Claim 4, let z1, g1, g2, g3 be as in (III). Since z1 is a repelling fixed point of g1, we

have z1 ∈ J(Gτ3). Since J(Gτ3) is perfect (see [13]), there exists a point w ∈ J(Gτ3) ∩ (B \ {z1}),
where B denotes the Siegel disk of g3 whose center is z1. Therefore there exists a g3-invariant
analytic Jordan curve ζ in J(Gτ3) ∩ B with w ∈ ζ. If K is a compact subset in Ĉ \ S1(Wj), A is
a subset of {fj,λ | λ ∈ Λj} with int(A) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}, and
h0 ∈ int(A), then there exists an ϵ > 0 such that for each z ∈ K, B(h0(z), ϵ) ⊂ {h(z) | h ∈ A}.
From this fact and that ♯(S1(Wj)) < ∞ for each j, it follows that ζ ⊂ int(J(Gτ3)). Similarly, for
each w′ ∈ B ∩ J(Gτ3), if we take the g3-invariant analytic Jordan curve ζ ′ in B with w′ ∈ ζ ′, then
ζ ′ ⊂ int(J(Gτ3)). From this argument, we obtain that z1 ∈ int(J(Gτ3)). Therefore L ⊂ int(J(Gτ3)).
Thus we have proved Claim 4.

We now prove the following claim.
Claim 5. Let L ∈ Min(Gτ3 , Smin({Wj}mj=1)) be of type (IV). Then L ⊂ int(J(Gτ3)). In particular,

for each z ∈ F (Gτ3), Gτ3(z) ∩ L = ∅.
To prove Claim 5, let j ∈ {1, . . . ,m}, z1, z2 ∈ L and g ∈ Gτ3 be as in (IV). Since z2 is a repelling

fixed point of g, we have z2 ∈ J(Gτ3). Moreover, let λ ∈ Λj with fj,λ ∈ supp τ3 and let α, β ∈ Gτ3

such that α(z2) = z1, β(fj,λ(z1)) = z2. Then β ◦ fj,λ ◦ α(z2) = z2 and D(β ◦ fj,λ ◦ α)z2 = 0. By
[14, Corollary 4.1], we obtain that z2 ∈ int(J(⟨g, β ◦ fj,λ ◦ α⟩)) ⊂ int(J(Gτ3)). Moreover, for each
z ∈ L, there exists an element γ ∈ Gτ3 such that γ(z) = z2. Thus L ⊂ int(J(Gτ3)). Hence we have
proved Claim 5.

Let I := {L ∈ Min(Gτ3 , Ĉ) | L ⊂ ∩m
j=1S(Wj), L is of type (I)}. Let

Cτ3 := {w ∈ Ĉ \ ∪L∈IL | ∃(γ1, . . . , γk) ∈ (supp τ3)
k s.t. γk · · · γ1(w) ∈ ∪L∈IL}.

Note that Cτ3 ⊂ J(Gτ3). Moreover, by Claim 2,

Cτ3 ∩ ∪L∈Min(Gτ3 ,Ĉ)
L = ∅ and Cτ3 is compact. (40)

By Lemma 3.71, we may assume that

each L ∈ Min(Gτ3 , Ĉ) with L ∩ F (Gτ3) ̸= ∅ is attracting for τ3. (41)

We now prove the following claim.
Claim 6. Let z ∈ F (Gτ3). If Gτ3(z) ∩ (∪L∈Min(Gτ3

,Ĉ),L∩F (Gτ3
)̸=∅L) = ∅, then

Gτ3(z) ∩ (∪L∈I,L⊂J(Gτ3 )
L) ̸= ∅ and Gτ3(z) ∩ Cτ3 ̸= ∅.

To prove Claim 6, let z ∈ F (Gτ3) and suppose Gτ3(z) ∩ (∪L∈Min(Gτ3 ,Ĉ),L∩F (Gτ3 ) ̸=∅L) = ∅. Since

Gτ3(z)∩∪L∈Min(Gτ3 ,Ĉ)
L ̸= ∅, Claims 3,4,5 imply that Gτ3(z)∩(∪L∈I,L⊂J(Gτ3 )

L) ̸= ∅. Let δ1 > 0 be
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a number such that for each (γ1, . . . , γk) ∈ (supp τ3)
k, for each L ∈ I and for each x ∈ L, we have

γk · · · γ1|B(x,δ1) is injective and we can take well-defined inverse branch ζ : B(γk · · · γ1(x), δ1) → Ĉ
of γk · · · γ1 such that ζ(γk · · · γ1(x)) = x. We may assume

δ1 < (1/2) ·min{d(a, b) | L ∈ I, a, b ∈ L, a ̸= b}

(if ♯L = 1 for each I then we set min{d(a, b) | L ∈ I, a, b ∈ L, a ̸= b} = 1). Let δ2 ∈ (0, δ1)
be a number such that for each L ∈ I, for each x ∈ L and for each y ∈ B(x, δ2), we have
d(γk · · · γ1(y), γk · · · , γ1(x)) < δ1. Let ϵ ∈ (0, δ1) be any small number with ϵ < d(z,∪L∈IL).
Then there exist an element γ = (γ1, γ2, . . .) ∈ Xτ3 an element n ∈ N, and an element L ∈ I
such that γnk,1(z) ∈ B(L, ϵ). We may assume that n is the minimum one. Suppose γ(n−1)k,1(z) ∈
∪L∈IB(L, δ2). Then there exist an element L0 ∈ I and an element z0 ∈ L0 such that γ(n−1)k,1(z) ∈
B(z0, δ2). It implies that d(γnk,1(z), γnk · · · γ(n−1)k+1(z0)) < δ1. Let ξ : B(γnk · · · γ(n−1)k+1(z0), δ1) →
Ĉ be the well-defined inverse branch of γnk · · · γ(n−1)k+1 such that ξ(γnk · · · γ(n−1)k+1(z0)) = z0.
By Claim 2, taking δ1 small enough, we obtain that

ξ(B(γnk · · · γ(n−1)k+1(z0), ϵ)) ⊂ B(z0,
3

4
ϵ) ⊂ B(z0, δ1).

Since γnk · · · γ(n−1)k+1|B(z0,δ1) is injective, it follows that

γ(n−1)k,1(z) ∈ ξ(B(γnk · · · γ(n−1)k+1(z0), ϵ)) ⊂ B(z0, ϵ).

However, this contradicts the minimality of n. Therefore we should have that γ(n−1)k,1(z) ̸∈
∪L∈IB(L, δ2). Since the above argument is valid for arbitrarily small ϵ > 0, we obtain that
Gτ3(z) ∩ Cτ3 ̸= ∅. Thus we have proved Claim 6.

Let p ∈ N with p >
∑m

j=1 ♯S1(Wj) + 1 and let H := {z ∈ F (Gτ3) | Gτ3(z) ∩Cτ3 ̸= ∅}. For each
z ∈ H and for each n ∈ N, there exist an element (wz,n,0, . . . , wz,n,p) ∈ (Gτ3(z))

p+1 and an element
(γz,n,1, . . . , γz,n,p) ∈ (supp τ3)

p such that γz,n,i+1(wz,n,i) = wz,n,i+1 for each i = 0, . . . , p − 1 and
such that d(wz,n,p, Cτ3) <

1
n . We may assume that for each i = 0, . . . , p, there exists an element

wz,∞,i ∈ Gτ3(z) such that wz,n,i → wz,∞,i as n → ∞. Moreover, we may assume that for each
i = 1, . . . , p, there exists an element γz,∞,i ∈ supp τ3 such that γz,n,i → γz,∞,i as n→ ∞. Then we
have that γz,∞,i+1(wz,∞,i) = wz,∞,i+1 for each i = 0, . . . , p − 1. Since wz,∞,p ∈ Cτ3 ⊂ J(Gτ3), we
obtain that wz,∞,i ∈ J(Gτ3) for each i = 0, . . . , p. For each i = 1, . . . , p, let jz,i ∈ {1, . . . ,m} be an
element such that γz,∞,i ∈ supp τ3 ∩ {fjz,i,λ | λ ∈ Λjz,i}. We now prove the following claim.
Claim 7. There exists a number ϵ > 0 such that for each z ∈ H, there exists an element i ∈ N with
1 ≤ i ≤ p such that d(wz,∞,i−1, S1(Wjz,i)) > ϵ.

To prove Claim 7, suppose that the statement of Claim 7 does not hold. Then for each r ∈ N
there exists a zr ∈ H such that for each i ∈ N with 1 ≤ i ≤ p, we have d(wzr,∞,i−1, S1(Wjzr,i

)) < 1
r .

We may assume that for each i = 1, . . . , p, there exist an element ai−1 ∈ Cτ3 , an element ji ∈
{1, . . . ,m}, and an element γi ∈ supp τ3∩{fji,λ | λ ∈ Λji} such that jzr,i = ji for each r, such that
wzr,∞,i−1 → ai−1 as r → ∞, and such that γzr,∞,i → γi as r → ∞. Also we may assume that there
exists an element ap ∈ Cτ3 such that wzr,∞,p → ap as r → ∞. Then we have that ai−1 ∈ S1(Wji)
and γi(ai−1) = ai for each i = 1, . . . , p and thus ai−1 ̸∈ ∪L∈Min(Gτ3

,Ĉ)L for each i = 1, . . . , p (by

(40) and the fact ap ∈ Cτ3). However, this contradicts to the assumption that there exists no
peripheral cycle for (Y, {Wj}mj=1). Thus we have proved Claim 7.

Since wz,∞,i ∈ J(Gτ3) for each z ∈ H and i = 1, . . . , p, Claim 7 implies that if τ4 ∈
M1,c(Y, {Wj}mj=1) is an element such that supp τ3 ∩{fj,λ | λ ∈ Λj} ⊂ int(supp τ4 ∩{fj,λ | λ ∈ Λj})
with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, then for each z ∈ H there
exists an element gz ∈ supp τ4 such that

Gτ3(gz(z)) ∩ ∪
L∈Min(Gτ3 ,Ĉ), L is attracting for τ3

L ̸= ∅.
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Combining this with Lemma 3.71, Claim 6 and (41), we easily see that if we assume further that

τ4 is close enough to τ3, then for each L ∈ Min(Gτ4 , Ĉ) with L ̸⊂ Jker(Gτ4), we have that L is
attracting for τ4 and

for each z ∈ F (Gτ4), we have that Gτ4(z) ∩ ∪
L∈Min(Gτ4 ,Ĉ), L is attracting for τ4

L ̸= ∅. (42)

Moreover, Lemma 3.71 implies that there exist two non-empty open neighborhoods V1,τ4 , V2,τ4 of

the union of attracting minimal sets for (Gτ4 , Ĉ) and an element n ∈ N such that V1,τ4 ⊂ V2,τ4 ,

♯(Ĉ \ V2,τ4) ≥ 3 and for each (γ1, . . . , γn) ∈ (supp τ4)
n, we have γn ◦ · · · ◦ γ1(V2,τ4) ⊂ V1,τ4 . By (42)

and Lemma 3.71 (i), we have

Dτ4 :=
∩

g∈Gτ4

g−1(Ĉ \ V2,τ4) = Jker(Gτ4) ⊂ ∩m
j=1S(Wj). (43)

Furthermore, for each L ∈ Min(Gτ4 , Ĉ) with L ⊂ ∩m
j=1S1(Wj), L satisfies exactly one of (I)–(IV)

in Claim 1. Therefore τ4 is weakly mean stable. By (43), Lemma 3.46, Lemma 3.74 and its proof,
and Lemma 3.75, we see that there exists an neighborhood V of τ4 in (M1,c(Y, {Wj}mj=1),O) such
that for each τ5 ∈ V , we have that statements (i)(iii)(iv)(v) in our theorem hold for τ5 and that

♯Jker(Gτ5) < ∞, Dτ = Jker(Gτ5) and ♯Min(Gτ5 , Ĉ) < ∞. We now prove that there exists an open
neighborhood V of τ4 such that for each τ5 ∈ V , Dτ5 ⊂ ∩m

j=1S(Wj). We use the argument in the
proof of Lemma 3.74 with Γ = supp τ4. By (43), in the proof of Lemma 3.74, if V is small enough,
then for each τ5 ∈ V , for each L ∈ Min(Gτ4 , Dτ4), we can take zL,supp τ5 so that zL,supp τ5 = zL ∈
L ⊂ Dτ4 ⊂ ∩m

j=1S(Wj). Also, if we take hw ∈ Gτ4 appropriately for each w ∈ Dτ4 , then there exist a
neighborhood V of τ4 such that for each τ5 ∈ V and for each w ∈ Dτ4 , we can take hw,supp τ5 ∈ Gτ5

(in the proof of Lemma 3.74) so that hw,supp τ5(w) = zLw,supp τ5 = zL and the order of hw,supp τ5

at w is equal to a constant aw ∈ N which does not depend on the choice of τ5 ∈ V. From this, in
the argument just before (35), for each τ5 ∈ V , any point z0 ∈ ∩g∈Gτ5

g−1(Ĉ \ V2,supp τ4) must be
equal to some w ∈ L ⊂ Dτ4 ⊂ ∩m

j=1S(Wj). Hence Dτ5 ⊂ ∩m
j=1S(Wj) for each τ5 ∈ V .

Thus we have proved Theorem 3.77.

Definition 3.78. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. We set

M1,c,mild(Y, {Wj}mj=1) := {τ ∈ M1,c(Y, {Wj}mj=1) | ∃L ∈ Min(Gτ , Ĉ) which is attracting for τ}.

Also, we denote by M1,c,JF (Y, {Wj}mj=1) the set of elements τ ∈ M1,c(Y, {Wj}mj=1) satisfying that

J(Gτ ) = Ĉ and either Min(Gτ , Ĉ) = {Ĉ} or ∪L∈Min(Gτ ,Ĉ)L ⊂ ∩m
j=1S(Wj).

Remark 3.79. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then it is easy to see that M1,c,mild(Y, {Wj}mj=1) is an open subset of
(M1,c(Y, {Wj}mj=1),O).

We now prove a theorem in which we do not assume that Y is mild with {Wj}mj=1.

Theorem 3.80. Let Y be a strongly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c,mild(Y, {Wj}mj=1) | τ is weakly mean stable}

is open and dense in (M1,c,mild(Y, {Wj}mj=1),O). Moreover, there exists the largest open and dense
subset A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A, all statements (i)–(v) in Theo-
rem 3.77 hold. Furthermore, we have

A ∪M1,c,JF (Y, {Wj}mj=1) = M1,c(Y, {Wj}mj=1)

with respect to the topology O.
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Proof. By using the argument in the proof of Theorem 3.77, we obtain that the set of weakly
mean stable elements τ ∈ M1,c,mild is open and dense in (M1,c,mild(Y, {Wj}mj=1),O), and there
exists the largest open and dense subset A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A,
all statements (i)–(v) in Theorem 3.77 hold. To prove the last statement of the theorem, let

τ ∈ M1,c(Y, {Wj}mj=1) and suppose that there exists no element in Min(Gτ , Ĉ) which is attracting
for τ. We want to find an element in M1,c,JF (Y, {Wj}mj=1) which is arbitrarily close to τ , by using
the arguments in the proof of Theorem 3.77 with some modifications. We take τ1 close to τ as in
the proof of Theorem 3.77. We may assume that there exists no element in Min(Gτ1 , Ĉ) which is
attracting for τ1. We now consider the following two cases.
Case 1. F (Gτ1) = ∅. Case 2. F (Gτ1) ̸= ∅.
Suppose we have Case 1. Let L ∈ Min(Gτ1 , Ĉ) and suppose L ̸= Ĉ and L ̸⊂ ∩m

j=1S(Wj). Then

∅ ̸= int(L), ♯(Ĉ \ (int(L))) ≥ 3 and Gτ1(int(L)) ⊂ int(L). Hence by Montel’s theorem, we obtain
∅ ̸= int(L) ⊂ F (Gτ1). However, this is a contradiction. Thus τ1 ∈ M1,c,JF (Y, {Wj}mj=1).

Suppose that we have Case 2. Let Wj = {fj,λ}λ∈Λj
for each j. Let τ2 ∈ M1,c(Y, {Wj}mj=1)

such that supp τ1 ∩ {fj,λ | λ ∈ Λj} ⊂ int(supp τ2 ∩ {fj,λ | λ ∈ Λj}) with respect to the topology
in {fj,λ | λ ∈ Λj} which is endowed with the relative topology from Rat for each j = 1, . . . ,m,

and such that τ2 is close to τ1. Then by Lemma 3.71 (iv), we have that either Min(Gτ2 , Ĉ) =

{Ĉ} or ∪L∈Min(Gτ2 ,Ĉ)
L ⊂ ∩m

j=1S(Wj), and if Min(Gτ2 , Ĉ) = {Ĉ} then J(Gτ2) = Ĉ. Thus we

may assume that ∪L∈Min(Gτ2
,Ĉ)L ⊂ ∩m

j=1S(Wj). Under this condition, if F (Gτ2) = ∅, then τ2 ∈
M1,c,JF (Y, {Wj}mj=1). Thus we may assume F (Gτ2) ̸= ∅. By the argument in the proof of Claim 1 in
the proof of Theorem 3.77, there exists an element τ3 arbitrarily close to τ2 such that supp τ2∩{fj,λ |
λ ∈ Λj} ⊂ int(supp τ3 ∩ {fj,λ | λ ∈ Λj}) for each j = 1, . . . ,m, and such that the statement in
Claim 1 in the proof of Theorem 3.77 holds for τ3. By Lemmas 3.46 and 3.71, we have

∪L∈Min(Gτ3 ,Ĉ)
L ⊂ ∩m

j=1S(Wj). (44)

Also, since supp τ2 ⊂ supp τ3, there exists no element in Min(Gτ3 , Ĉ) which is attracting for τ3. As
before, we may assume that F (Gτ3) ̸= ∅. There exists a k ∈ N for which the statement of Claim 2
in the proof of Theorem 3.77 holds. We fix such an element. It is easy to see that statements in
Claims 4,5 hold for τ3 even under our assumptions. Let I, Cτ3 be as in the proof of Theorem 3.77.
Then the statement of Claim 6 in the proof of Theorem 3.77 holds for τ3. More precisely, by (44)
we have that

if z ∈ F (Gτ3), then Gτ3(z) ∩ (∪L∈IL) ̸= ∅ and Gτ3(z) ∩ Cτ3 ̸= ∅. (45)

As in the proof of Theorem 3.77, let p >
∑m

j=1 ♯S(Wj) + 1 and let

H := {z ∈ F (Gτ3) | Gτ3(z) ∩ Cτ3 ̸= ∅}. (46)

Then we have that

the statement of Claim 7 in the proof of Theorem 3.77 holds for our τ3. (47)

Let τ4 be an element close to τ3 such that supp τ3 ∩{fj,λ | λ ∈ Λj} ⊂ int(supp τ4 ∩{fj,λ | λ ∈ Λj})
with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m. Then by (44) and Lemmas 3.46
and 3.71, we have that

∪L∈Min(Gτ4
,Ĉ)L ⊂ ∩m

j=1S(Wj). (48)

Moreover, by (47), we see that for each z ∈ H there exists an element gz ∈ supp τ4 such
that Gτ3(gz(z)) ∩ int(J(Gτ3)) ̸= ∅. In particular, H ⊂ J(Gτ4). Combining this with (45) and

(46), it follows that F (Gτ3) ⊂ J(Gτ4). Hence J(Gτ4) = Ĉ. Therefore we obtain that τ4 ∈
M1,c,JF (Y, {Wj}mj=1). Thus we have proved our theorem.
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We now prove the following theorem on the systems generated by weakly mean stable elements.

Theorem 3.81. Let τ ∈ M1,c(Rat) be weakly mean stable. Suppose ♯J(Gτ ) ≥ 3. Suppose
that for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(L, τ) ̸= 0. Suppose also that for each L ∈
Min(Gτ , Jker(Gτ )), if χ(L, τ) > 0 then for each z ∈ L and for each g ∈ supp τ , we have Dgz ̸= 0.
Then all of the following hold.

(i) ♯Jker(Gτ ) <∞.

(ii) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for τ.

(iii) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ ((∪L∈Min(Gτ ,Ĉ),L ̸⊂Jker(Gτ )
L) ̸= ∅.

(iv) All statements (i) –(vii) in Theorem 3.65 hold for τ.

(v) Let H+,τ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and let Ωτ be the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+,τL}) = 0. Then we have Ωτ = F 0

pt(τ),

♯(Ĉ \ Ωτ ) ≤ ℵ0 and for each z ∈ Ωτ , τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ Xτ ,

we have Leb2(Jγ) = 0. Moreover, ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ \ Ωτ and ♯J0

pt(τ) ≤ ℵ0.

(vi) Let Ωτ be as in (v). Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and there exist a constant cτ < 0 and a constant
ρτ ∈ (0, 1) such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1
satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we have the
following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an

element L = L(τ, z, γ) ∈ Min(Gτ , Ĉ) which is either (i) “attracting for τ”, or (ii) “finite
and included in Jker(Gτ ) with χ(τ, L) < 0”, such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

(vii) For τ̃ -a.e. γ ∈ Xτ , for Leb2-a.e. z ∈ Ĉ, there exists an element L = L(τ, γ, z) ∈ Min(Gτ , Ĉ)
which is either (i) “attracting for τ”, or (ii) “finite and included in Jker(Gτ ) with χ(τ, L) <
0”, such that d(γn,1(z), L) → ∞ as n → ∞. Also, for τ̃ -a.e. γ ∈ Xτ , for each z ∈ Fγ , there

exists an element L = L(τ, γ, z) ∈ Min(Gτ , Ĉ) which is either (i) “attracting for τ”, or (ii)
“finite and included in Jker(Gτ ) with χ(τ, L) < 0”, such that d(γn,1(z), L) → ∞ as n→ ∞.

(viii) Let Ωτ be as in (v). Then we have Ωτ = F 0
pt(τ), ♯(Ĉ \ F 0

pt(τ)) ≤ ℵ0 and for each L ∈
Min(Gτ , Ĉ), for each j = 1, . . . , rL, where rL = dimC Uτ,L, and for each y ∈ F 0

pt(τ), we have
that limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y), where α(Lj , ·) is the

function coming from Theorem 3.65 (iii).

(ix) Let H+,τ and Ωτ be as in (v). Let y ∈ J0
pt(τ) = Ĉ\Ωτ . Then there exist an element L ∈ H+,τ

and j ∈ {1, . . . , rL} such that all of the following hold.

(a) TL,τ (z) does not tend to TL,τ (y) as z → y.

(b) α(Lj , z) does not tend to α(Lj , y) as z → y. Here, for the notation Lj, see Theorem 3.65
(i).
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(c) Let φL ∈ C(Ĉ) be any element such that φL|L = 1 and φL|L′ = 0 for any L′ ∈
Min(Gτ , Ĉ) with L′ ̸= L. Then the convergence in (26) in Theorem 3.65 for φ = φL is
not uniform in any neighborhood of y.

(d) There exists a Borel subset Eτ,y of Xτ with τ̃(Eτ,y) = TL,τ (y) > 0 such that for each
γ ∈ Eτ,y, there exists an element m ∈ N such that γm,1(y) ∈ L and
limn→∞

1
n log ∥D(γn+m,1+m)γm,1(y)∥s = χ(τ, L) > 0.

Proof. By Lemma 3.75, statements (i)–(iv) hold. By Theorem 3.36, we have ♯(Ĉ\Ωτ ) ≤ ℵ0 and for
each z ∈ Ωτ , τ̃({γ ∈ (supp τ)N | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Jγ) = 0.

Moreover, J0
pt(τ) ⊂ Ĉ \ Ωτ and ♯J0

pt(τ) ≤ ℵ0. In order to prove Ωτ = F 0
pt(τ), let y ∈ Ĉ \ Ωτ . Then

by Lemma 3.35,
τ̃({γ ∈ Xτ | d(γn,1(y),∪L∈H+,τL) → 0 as n→ ∞}) > 0. (49)

Since ♯(Ĉ \Ωτ ) ≤ ℵ0, there exists a sequence {xm}∞m=1 in Ωτ such that xm → y as m→ ∞. Then
by Lemma 3.35 again, we have τ̃({γ ∈ Xτ | d(γn,1(zm),∪L∈H+,τL) → 0 as n → ∞}) = 0 for each
m ∈ N. Combining this with (iv) and Theorem 3.65 (iv), we obtain that

τ̃({γ ∈ Xτ | d(γn,1(zm),∪L∈Min(Gτ ,Ĉ)\H+,τ
L) → 0 as n→ ∞}) = 1 for each m ∈ N. (50)

By (49) and (50), it follows that y ∈ J0
pt(τ). Hence Ωτ = F 0

pt(τ). Also, by the definition of Ωτ ,

we have ∪L∈H+,τ
L ⊂ Ĉ \ Ωτ . Thus statement (v) holds. Moreover, by using the above argument,

we can show that there exist an element L ∈ H+,τ and an element j ∈ {1, . . . , rL} such that (a)
and (b) in (ix) hold. By statement (a) in (ix) and the fact ♯Min(Gτ ) < ∞, statement (c) in (ix)
holds. Statement (d) in (ix) follows from the definition of Ωτ , Lemma 3.35 and Birkhoff’s ergodic
theorem. Hence statement (ix) holds.

We now prove statement (vi). By Theorem 3.65 (iv) and Lemma 3.35, it follows that for
each z ∈ Ωτ , there exists a Borel subset Dτ,z of Xτ with τ̃(Dτ,z) = 1 satisfying that for each
γ = (γ1, γ2, . . .) ∈ Dτ,z, we have

d

γn,1(z), ∪
L∈Min(Gτ ,Ĉ),L is attracting

L ∪
∪

L∈Min(Gτ ,Jker(Gτ )) and χ(L,τ)<0

L

 → 0 as n→ ∞.

(51)
There exist a constant λτ ∈ (0, 1) and a constant Cτ > 0 such that for each γ = (γ1, γ2 . . . , ) ∈
Xτ , for each z ∈ ∪L∈Min(Gτ ,Ĉ),L is attracting L and for each n ∈ N, we have ∥D(γn,1)z∥s ≤
Cτλ

n
τ . Let cτ := max{log λτ ,maxL∈Min(Gτ ,Jker(Gτ )),χ(L,τ)<0 χ(L, τ)} < 0 (if there exists no L ∈

Min(Gτ , Jker(Gτ )) with χ(L, τ) < 0, then we set cτ = log λτ ). Then for each z ∈ Ωτ , there exists a
Borel subset Cτ,z of Dτ,z with τ̃(Cτ,z) = 1 such that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each
m ∈ N ∪ {0}, we have

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

Also, by (51) and Lemma 3.29 and its proof, there exists an element ρτ ∈ (0, 1) such that we can
arrange Cτ,z so that for any γ ∈ Cτ,z and for any m ∈ N ∪ {0}, statement (vi)(b) holds. Hence
statement (vi) holds for τ.

By statements (vi) and (v), statement (vii) holds.
By (iv)(v) and Theorem 3.65 (vii), statement (viii) holds. Thus we have proved our theorem.

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.82. Let Y be a mild subset of Rat+ and suppose that Y is non-exceptional and strongly
nice with respect to some holomorphic families {Wj}mj=1 of rational maps. Then there exists the
largest open and dense subset A of (M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, all of the
following hold.
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(i) τ is weakly mean stable.

(ii) For each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(L, τ) ̸= 0. Moreover, for each

L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), if χ(L, τ) > 0, then for each z ∈ L and for each

g ∈ supp τ , we have Dgz ̸= 0.

(iii) ♯Jker(Gτ ) <∞ and Jker(Gτ ) ⊂ ∩m
j=1S(Wj).

(iv) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for τ.

(v) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ ((∪L∈Min(Gτ ,Ĉ),L ̸⊂Jker(Gτ )
L) ̸= ∅.

(vi) All statements (i) –(vii) in Theorem 3.65 hold for τ.

(vii) Let H+,τ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and let Ωτ be the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+,τ

L}) = 0. Then we have Ωτ = F 0
pt(τ),

♯(Ĉ \ Ωτ ) ≤ ℵ0 and for each z ∈ Ωτ , τ̃({γ ∈ (supp τ)N | z ∈ Jγ}) = 0. Moreover, for τ̃ -

a.e.γ ∈ Xτ , we have Leb2(Jγ) = 0. Moreover, ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ\Ωτ and ♯J0

pt(τ) ≤ ℵ0.

(viii) Let Ωτ be as in (vii). Then ♯(Ĉ \Ωτ ) ≤ ℵ0 and there exist a constant cτ < 0 and a constant
ρτ ∈ (0, 1) such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1
satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we have the
following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an

element L = L(τ, z, γ) ∈ Min(Gτ , Ĉ) which is either (i) “attracting for τ”, or (ii) “finite
and included in Jker(Gτ ) with χ(τ, L) < 0”, such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

(ix) For τ̃ -a.e. γ ∈ Xτ , for Leb2-a.e. z ∈ Ĉ, there exists an element L = L(τ, γ, z) ∈ Min(Gτ , Ĉ)
which is either (i) “attracting for τ”, or (ii) “finite and included in Jker(Gτ ) with χ(τ, L) <
0”, such that d(γn,1(z), L) → ∞ as n → ∞. Also, for τ̃ -a.e. γ ∈ Xτ , for each z ∈ Fγ , there

exists an element L = L(τ, γ, z) ∈ Min(Gτ , Ĉ) which is either (i) “attracting for τ”, or (ii)
“finite and included in Jker(Gτ ) with χ(τ, L) < 0”, such that d(γn,1(z), L) → ∞ as n→ ∞.

(x) Let Ωτ be as in (vii). Then we have Ωτ = F 0
pt(τ), ♯(Ĉ \ F 0

pt(τ)) ≤ ℵ0 and for each L ∈
Min(Gτ , Ĉ), for each j = 1, . . . , rL, where rL = dimC Uτ,L, and for each y ∈ F 0

pt(τ), we have
that limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y), where α(Lj , ·) is the

function coming from Theorem 3.65 (iii).

(xi) Let H+,τ and Ωτ be as in (vii). Let y ∈ J0
pt(τ) = Ĉ \ Ωτ . Then there exist an element

L ∈ H+,τ and an element j ∈ {1, . . . , rL} such that all of the following hold.

(a) TL,τ (z) does not tend to TL,τ (y) as z → y.

(b) α(Lj , z) does not tend to α(Lj , y) as z → y. Here, for the notation Lj, see Theorem 3.65
(i).
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(c) Let φL ∈ C(Ĉ) be any element such that φL|L = 1 and φL|L′ = 0 for any L′ ∈
Min(Gτ , Ĉ) with L′ ̸= L. Then the convergence in (26) in Theorem 3.65 for φ = φL is
not uniform in any neighborhood of y.

(d) There exists a Borel subset Eτ,y of Xτ with τ̃(Eτ,y) = TL,τ (y) > 0 such that for each
γ ∈ Eτ,y, there exists an element m ∈ N such that γm,1(y) ∈ L and
limn→∞

1
n log ∥D(γn+m,1+m)γm,1(y)∥s = χ(τ, L) > 0.

Proof. By Theorem 3.77 and Lemma 3.56, there exists an open and dense subset A of the space
(M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, statements (i), (ii) and (iii) hold. By Theo-
rem 3.81, for each τ ∈ A, statements (iv)–(xi) hold. Thus we have proved our theorem.

We now prove a theorem in which we do not assume that Y is mild with {Wj}mj=1.

Theorem 3.83. Let Y be a non-exceptional and strongly nice subset of Rat+ with respect to some
holomorphic families {Wj}mj=1 of rational maps. Then there exists the largest open and dense subset
A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A, all statements (i)–(xi) in Theorem 3.82
hold. Furthermore, we have

A ∪M1,c,JF (Y, {Wj}mj=1) = M1,c(Y, {Wj}mj=1)

with respect to the topology O.

Proof. By the arguments in the proof of Theorem 3.82 and Theorem 3.80, it is easy to see that
the statements of our theorem hold.

We now give corollaries of Theorems 3.77 and 3.82.

Corollary 3.84. Let Y be a mild subset of Rat+ and suppose that Y is strongly nice with respect
to some holomorphic families {Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c(Y, {Wj}mj=1) | τ is weakly mean stable and ♯supp τ <∞}

is dense in (M1,c(Y, {Wj}mj=1),O). Moreover, there exists a dense subset A of (M1,c(Y, {Wj}mj=1),O)
such that for each τ ∈ A, we have ♯supp τ < ∞ and all statements (i)–(v) of Theorem 3.77 hold
for τ.

Corollary 3.85. Let Y be a mild supset of Rat+ and suppose that Y is non-exceptional and
strongly nice with respect to some holomorphic families {Wj}mj=1 of rational maps. Let A be the

largest open and dense subset of (M1,c(Y, {Wj}mj=1),O) given in Theorem 3.82. Let Af := {τ ∈
A | ♯supp τ <∞}. Then Af is a dense subset of A and is a dense subset of (M1,c(Y, {Wj}mj=1),O)

such that for each τ ∈ Af , we have that ♯supp τ <∞ and all statements (i)–(xi) in Theorem 3.82

hold for τ. Also, let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Ĉ) s.t. χ(τ, L) > 0} and let Af
+ := A+ ∩ Af .

Then A+ is an open subset of A (hence an open subset of (M1,c(Y, {Wj}mj=1),O)) and Af
+ is a

dense subset of A+. Moreover, for each τ ∈ Af
+, we have J0

pt(τ) = J(Gτ ) which is a perfect set.

Proof. It is easy to show that Af is dense in A. Thus Af is dense in (M1,c(Y, {Wj}mj=1),O). Also,
by statement (ii) in Theorem 3.82, it is easy to show that A+ is open in A. In order to prove the

last statement, suppose τ ∈ Af
+. Since ∪L∈H+,τ

L ⊂ J0
pt, where H+,τ := {L ∈ Min(Gτ , Jker(Gτ )) |

χ(τ, L) > 0} (see Theorem 3.82), we have J0
pt ̸= ∅. Moreover, since supp τ ⊂ Rat+, we have J0

pt ⊂
J(Gτ ) ⊂ Ĉ \ E(Gτ ) (recall that E(Gτ ) denotes the exceptional set of Gτ ). Hence G−1

τ (J0
pt(τ)) ⊃

J(Gτ ) (see [13, Lemma 3.2]). Also, by the definition of Ωτ , since supp τ is finite, we have Ĉ \Ω =

(Gτ ∪{Id})−1(∪L∈H+.τ
L) and G−1

τ (Ĉ\Ωτ ) ⊂ Ĉ\Ωτ . Furthermore, by Theorem 3.82 (vii), we have

J0
pt(τ) = Ĉ \Ωτ . It follows that G

−1
τ (J0

pt(τ)) ⊂ J0
pt(τ) ⊂ J(Gτ ). Therefore J0

pt(τ) = G−1
τ (J0

pt(τ)) =
J(Gτ ). Finally, by [13, Lemma 3.1], J(Gτ ) is perfect.
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4 Random relaxed Newton’s method

In this section we apply Theorems 3.77, 3.82 and the other results in the previous sections to random
relaxed Newton’s methods in which we find roots of given any polynomial g with deg(g) ≥ 2.

Definition 4.1. Let g ∈ P. Let Λ := {λ ∈ C | |λ − 1| < 1} and let Ng,λ(z) = z − λ g(z)
g′(z) for each

λ ∈ Λ. Let Wg = {Ng,λ}λ∈Λ. (Note that this is a holomorphic family of rational maps over Λ.)
Let Yg := {Ng,λ ∈ Rat | λ ∈ Λ}. Then Yg is called the random relaxed Newton’s method set for g
and Wg is called the random relaxed Newton’s method family for g. Also, (Yg,Wg) is called
the random relaxed Newton’s method scheme for g. Moreover, for each τ ∈ M1,c(Y), the

random dynamical system on Ĉ generated by τ is called a random relaxed Newton’s method
(or random relaxed Newton’s method system) for g. Also, let Qg := {z0 ∈ C | g(z0) = 0}.

We need the following lemma to investigate random relaxed Newton’s methods and other
examples to which we can apply Theorems 3.77 and 3.82. The proof is easy and it is left to the
reader.

Lemma 4.2. Let Y be a nice subset of Rat with respect to a holomorphic family W = {fλ}λ∈Λ

of rational maps. Then Y is strongly nice with respect to W. Moreover, if, in addition to the
assumption of our lemma, Y satisfies that for each Γ ∈ Cpt({fλ | λ ∈ Λ}) and for each L ∈
Min(⟨Γ⟩, S(W)), we have ♯L = 1, then Y is non-exceptional and strongly nice with respect to W.

We now show that we can apply Theorem 3.82 to random relaxed Newton’s methods.

Lemma 4.3. Let g ∈ P and let (Yg,Wg) be the random relaxed Newton’s method scheme for
g. Then Yg is a mild subset of Rat and Yg is non-exceptional and strongly nice with respect to
Wg. Also, for each x ∈ Qg and λ ∈ Λ, we have that Ng,λ(x) = x and N ′

g,λ(x) = 1 − λ
mx

,
where mx denotes the order of g at the zero x, and |N ′

g,λ(x)| < 1. Moreover, for each λ ∈ Λ, we

have Ng,λ(∞) = ∞, the multiplier of Ng,λ at ∞ is equal to (1 − λ
deg(g) )

−1, and ∥D(Ng,λ)∞∥s =

|1 − λ
deg(g) |

−1 > 1. Moreover, we have S(Wg) = Qg ⨿ {∞} ⨿ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}.
Moreover, for each Γ ∈ Cpt(Yg), we have Min(⟨Γ⟩, S(Wg)) = {{x} | x ∈ Qg} ∪ {{∞}}.

Proof. It is easy to see that S(Wg) = Qg ⨿ {∞} ⨿ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0} and for each
Γ ∈ Cpt(Yg), we have Min(⟨Γ⟩, S(Wg)) = {{x} | x ∈ Qg} ∪ {{∞}}.

It is easy to see that Ng,λ(x) = x and N ′
g,λ(x) = 1 − λ

mx
for each x ∈ Qg and λ ∈ Λ. Since

{1 − λ
mx

| λ ∈ Λ} = {z ∈ C | |z − (1 − 1
mx

)| < 1
mx

}, we have |N ′
g,λ(x)| < 1 for all x ∈ Qg, λ ∈ Λ.

Similarly, it is easy to see that for each λ ∈ Λ, we have Ng,λ(∞) = ∞, the multiplier of Ng,λ at ∞
is equal to (1− λ

deg(g) )
−1, and ∥D(Ng,λ)∞∥s = |1− λ

deg(g) |
−1 > 1. From the above arguments, we

obtain that Yg is a mild subset of Rat and Yg is non-exceptional and nice with respect to Wg. By
Lemma 4.2, it follows that Yg is strongly nice with respect to Wg.

We now prove the following theorem on random relaxed Newton’s methods.

Theorem 4.4. Let g ∈ P. Let (Yg,Wg) be the random relaxed Newton’s method scheme for g.
Then we have the following.

(i) There exists the largest open and dense subset A of (M1,c(Yg,Wg),O) such that for each
τ ∈ A, all statements (i)–(xi) in Theorem 3.82 hold.

(ii) Let τ ∈ A. Let Ωτ be the set defined in Theorem 3.82. Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and

Ωτ = {y ∈ C | τ̃({γ = (γ1, γ2, . . .) ∈ Xτ | ∃n ∈ N s.t. γn,1(y) = ∞}) = 0}.

Moreover, there exists a constant ρτ ∈ (0, 1) such that for each z ∈ F 0
pt(τ) = Ωτ , there exists

a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1 satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z,
there exists a constant ζ = ζ(τ, z, γ) > 0 such that

d(γn,1(z), Qg ∪L∈Min(Gτ ,Ĉ),L is attracting for τ,L∩Qg=∅ L) ≤ ζρnτ for all n ∈ N.
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(iii) For each τ ∈ A, we have ∞ ∈ J0
pt(τ) = Ĉ \ Ωτ and

Jker(Gτ ) = {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0} ∪ {∞}.

In particular, ∅ ̸= J0
pt(τ) and Jker(Gτ ) ̸= ∅ for each τ ∈ A. Moreover, if we set Af :=

{τ ∈ A | ♯supp τ < ∞}, then Af is dense in (M1,c(Yg,Wg),O). Also, if, in addition to the
assumptions of our theorem, g/g′ is not a polynomial of degree one, then for each τ ∈ Af ,

we have J0
pt(τ) = J(Gτ ) which is perfect.

(iv) Let Aconv := {τ ∈ A | Min(Gτ , Ĉ) = {{x} | x ∈ Qg} ∪ {∞}}}. Then Aconv is open in A.

(v) Let τ ∈ Aconv. Then we have ♯(Ĉ \ Ωτ ) ≤ ℵ0 and maxx∈Qg e
χ(τ,{x}) < 1. Moreover, for each

α ∈ (maxx∈Qg e
χ(τ,{x}), 1) and for each z ∈ F 0

pt(τ) = Ωτ , there exists a Borel subset Cτ,z,α

of Xτ with τ̃(Cτ,z,α) = 1 satisfying that for each γ = (γ1, γ2, . . . , ) ∈ Cτ,z,α, there exist an
element x = x(τ, z, α, γ) ∈ Qg and a constant ξ = ξ(τ, z, α, γ) > 0 such that

d(γn,1(z), x) ≤ ξαn for all n ∈ N. (52)

Also, for τ̃ -a.e. γ = (γ1, γ2, . . . , ) ∈ Xτ , we have Leb2(Jγ) = 0 and for each z ∈ Fγ , there
exists an element x = x(τ, γ, z) ∈ Qg such that

d(γn,1(z), x) → 0 as n→ ∞. (53)

Moreover, for each x ∈ Qg and for each z ∈ Ωτ , we have

lim
w∈Ĉ,w→z

Tx,τ (w) = Tx,τ (z). (54)

Furthermore, we have

τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(z) = ∞}) +
∑
x∈Qg

Tx,τ (z) = 1 for all z ∈ Ĉ, (55)

and we have∑
x∈Qg

Tx,τ (z) > 0 for all z ∈ Ĉ \ Jker(Gτ ) = C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}. (56)

In particular, for any subset B of C with ♯B ≥ deg(g), there exists an element z ∈ B such
that

∑
x∈Qg

Tx,τ (z) > 0.

(vi) Let τ ∈ M1,c(Yg,Wg) and suppose that int(supp τ) ⊃ {Ng,λ ∈ Yg | λ ∈ C, |λ − 1| ≤ 1
2} with

respect to the topology in Yg. Then τ ∈ Aconv. In particular, the statements regarding (52),
(53), (54), (55) and (56) hold for τ.

(vii) Let τ ∈ M1,c(Yg,Wg) and suppose that int(supp τ) ⊃ {Ng,λ ∈ Yg | λ ∈ C, |λ − 1| ≤ 1
2} with

respect to the topology in Yg and τ is absolutely continuous with respect to the 2-dimensional
Lebesgue measure on Yg

∼= Λ (e.g., let τ be the normalized 2-dimensional Lebesgue measure
on the set {Ng,λ ∈ Yg | λ ∈ C, |λ − 1| ≤ r} where 1

2 < r < 1, under the identification
Yg

∼= Λ). Then τ ∈ Aconv and the statements regarding (52), (53), (54), (55) and (56) hold
for τ. Moreover, we have

Ωτ = C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}. (57)

In particular, we have ♯(Ĉ \ Ωτ ) ≤ deg(g)− 1, and for any subset B of C with ♯B ≥ deg(g),
there exists an element z ∈ B such that∑

x∈Qg

Tx,τ (z) = 1. (58)
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Furthermore, for each φ ∈ C(Ĉ) and for each z ∈ Ωτ , we have

Mn
τ (φ)(z) →

∑
x∈Qg

Tx,τ (z)φ(x) as n→ ∞ (59)

and this convergence is uniform on any compact subset of Ωτ .

Proof. When g/g′ is a polynomial of degree one (i.e., g(z) is of the form a(z − c)m), then it is
easy to see that statements (i)-(vii) hold. Thus we may assume that g/g′ is not a polynomial. By
Lemma 4.3, Lemma 3.74 and its proof, Theorem 3.82, the proof of Lemma 3.29 and Corollary 3.85,
statements (i)–(v) hold.

We now prove (vi). Let Θ := {L ∈ Min(⟨Ng,1⟩, Ĉ) | L ⊂ C \ Qg, L is attracting for δNg,1
}.

Then each L is an attracting periodic cycle of Ng,1. Let L ∈ Θ. If the period pL of (Ng,1, L) is
equal to 1, then there exists an element x ∈ Qg with L = {x}. However, this is a contradiction.
Hence, we have pL ≥ 2. In particular, two different points of L never belong to the same connected
component of F (Ng,1).

We now let τ ∈ M1,c(Yg,Wg) and suppose int(supp τ) ⊃ Γ0 with respect to the topology in
Yg, where Γ0 := {Ng,λ ∈ Yg | λ ∈ C, |λ − 1| ≤ 1

2}. Let Γ ∈ Cpt(Yg) be an element such that
int(Γ) ⊃ Γ0, int(supp τ) ⊃ Γ, and Γ is close enough to Γ0 with respect to the Hausdorff metric. We
now use the arguments in the proof of Theorem 3.82 and we modify them a little. By Lemma 4.3,
we have the following claim.
Claim 1. Let h ∈ Γ and x ∈ Qg. Then we have h(x) = x and ∥Dhx∥s < 1. Also, h(∞) = ∞ and
∥Dh∞∥s > 1.

We now prove the following claim.
Claim 2. Let L ∈ Min(⟨Γ0⟩, Ĉ) and suppose L ⊂ C \Qg. Then L is not attracting for Γ0.

To prove this claim, suppose that there exists an element L ∈ Min(⟨Γ0⟩, Ĉ) with L ⊂ C \ Qg

which is attracting for Γ0. Then there exists an element L0 ∈ Θ with L0 ⊂ L. We have that the
period of (Ng,1, L0) is not 1. Let B := max{|Ng,1(x)−x| | x ∈ L0} > 0. Let x0 ∈ L0 be an element
such that |Ng,1(x0)− x0| = B. Then we have

{Ng,λ(x0) | λ ∈ C, |λ−1| ≤ 1

2
} = {x0−λ

g(x0)

g′(x0)
| λ ∈ C, |λ−1| ≤ 1

2
} = {z ∈ C | |z−Ng,1(x0)| ≤

1

2
B}.

(60)
Let Ng,0 = Id. By (60) and the fact |Ng,1(x0)−N2

g,1(x0)| ≤ B, we obtain that

{Ng,λ(Ng,1(x0)) | λ ∈ [0, 1]}

= {Ng,λ(Ng,1(x0)) | λ ∈ [0,
1

2
]} ∪ {Ng,λ(Ng,1(x0)) | λ ∈ [

1

2
, 1]}

⊂ {z ∈ C | |z −Ng,1(x0)| ≤
1

2
|Ng,1(x0)−N2

g,1(x0)|} ∪ {Ng,λ(Ng,1(x0)) | λ ∈ C, |λ− 1| ≤ 1

2
}

⊂ {Ng,λ(x0) | |λ ∈ C, |λ− 1| ≤ 1

2
} ∪ {Ng,λ(Ng,1(x0)) | λ ∈ C, |λ− 1| ≤ 1

2
} ⊂ L.

Moreover, since two different points Ng,1(x0) and N
2
g,1(x0) in L0 cannot belong to the same con-

nected component of F (Ng,1), we have that {Ng,λ(Ng,1(x0)) | λ ∈ [0, 1]}∩J(Ng,1) ̸= ∅. From these
arguments, it follows that L ∩ J(⟨Γ0⟩) ̸= ∅. However, this contradicts the assumption that L is
attracting for Γ0. Thus we have proved Claim 2.

We now prove the following claim.
Claim 3. We have Min(⟨Γ⟩, Ĉ) = {{x} | x ∈ Qg} ∪ {{∞}}.

This claim is proved by combining Claims 1, 2, Lemma 3.71 and Zorn’s lemma.
By using Claim 3, Lemma 4.3 and the arguments in the part from Claims 6, 7 and the last in

the proof of Theorem 3.77, we obtain that τ is weakly mean stable, τ satisfies the assumptions of
Theorem 3.81, and there is no L ∈ Min(Gτ , Ĉ) with L ⊂ C \Qg. By Theorem 3.81, it follows that
τ ∈ Aconv. Thus we have proved statement (vi) in our theorem.
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Statement (vii) follows from statements (i), (ii), (iv), (v), (vi) and Theorem 3.65. (Note that
if τ is absolutely continuous with respect to the 2-dimensional Lebesgue measure on Yg

∼= Λ, then
the formula for Ωτ in (ii) gives us (57).)

Thus we have proved our theorem.

Remark 4.5. Let g be a non-constant polynomial. We say that g is normalized if the set
{z0 ∈ C | g(z0) = 0} is contained in D := {z ∈ C | |z| < 1}. Note that if g ∈ P is normalized,
then g′ is also a normalized polynomial (see [1, page 29]). Thus, for a normalized polynomial
g ∈ P, for a random relaxed Newton’s method scheme (Yg,Wg) for g, if τ ∈ M1,c(Yg,Wg) is
an element such that int(supp τ) ⊃ {Ng,λ ∈ Yg | λ ∈ C | |λ − 1| ≤ 1

2} with respect to the
topology in Yg and τ is absolutely continuous with respect to the 2-dimensional Lebesgue measure
on Yg

∼= {λ ∈ C | |λ − 1| < 1}, then for any z0 ∈ C \ D, for τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ (Rat)N,
{γn,1(z0)}∞n=1 converges to a root of g as n→ ∞.

5 Examples

In this section, we give some examples to which we can apply our main theorems.

Example 5.1. Let Y be a weakly nice subset of P with respect to some holomorphic families
{Wj}mj=1 of polynomial maps. Suppose that S(Wj) = {∞} for each j = 1, . . . ,m. Then Y is
nice with respect to {Wj}mj=1 and (Y, {Wj}mj=1) satisfies the assumptions of Lemma 3.53. Thus
by Lemma 3.53, the set A := {τ ∈ M1,c(Y, {Wj}mj=1) | τ is mean stable} is open and dense in
M1,c(Y, {Wj}mj=1) with respect to the topology O. In particular, all statements (i)–(xi) of Theo-

rem 3.82 hold for any τ ∈ A and the set Ωτ in Theorem 3.82 is equal to Ĉ.

We give some examples of Y which are mild, non-exceptional and strongly nice and satisfies
the assumptions in Theorem 3.82.

Example 5.2. For each q ∈ N with q ≥ 2, let Pq := {f ∈ P | deg(f) = q}. Let (q1, . . . , qm) ∈ Nm

with q1 < q2 < · · · < qm and let Wj = {f}f∈Pqj
, j = 1, . . . ,m and let Y = ∪m

j=1Pqj . In this case,

S(Wj) = {∞}. Thus by Example 5.1, the set A := {τ ∈ M1,c(Y, {Wj}mj=1) | τ is mean stable} is
open and dense inM1,c(Y, {Wj}mj=1) with respect to the topologyO and the set Ωτ in Theorem 3.82

is equal to Ĉ.

Example 5.3. Let q ∈ N with q ≥ 2 and let W = {zq + c}c∈C. Let Y = {zq + c | c ∈ C}. In this
case, S(W) = {∞}. Thus by Example 5.1, the set A := {τ ∈ M1,c(Y,W) | τ is mean stable} is
open and dense in M1,c(Y,W) with respect to the topology O and the set Ωτ in Theorem 3.82 is

equal to Ĉ.

We now give an important example of Y to which we can apply Theorems 3.77 and 3.82 but
in which Ωτ ̸= Ĉ for any τ in an open subset of A, where A is the set in Theorems 3.77 and 3.82.

Example 5.4. Let W = {λz(1 − z)}λ∈C\{0} and let Y = {λz(1 − z) ∈ P2 | λ ∈ C \ {0}}. In
this case, S(W) = {0, 1,∞} and S(W) \ {∞} = {0, 1} ̸= ∅. It is easy to see that Y is a mild
subset of P and Y is non-exceptional and strongly nice with respect to holomorphic family W.
Thus the statements of Theorems 3.77, 3.82 hold. Let A be the largest open and dense subset of
(M1,c(Y,W),O) such that for each τ ∈ A, all statements (i)-(v) of Theorem 3.77 and all statements
(i)–(ix) of Theorem 3.82 hold. Since each element of Y is a quadratic polynomial, for each τ ∈ A,
exactly one of the followings holds.

• Type (I). Min(Gτ , Ĉ) = {{0}, {∞}}.

• Type (II). Min(Gτ , Ĉ) = {{0}, {∞}, Lτ}, where Lτ is an attracting minimal set with Lτ ̸=
{0}, {∞}.
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If τ ∈ A is of type (I), then Theorem 3.77 (v) and Theorem 3.65 imply that

Mn
τ (φ)(y) → T0,τ (y)φ(0) + T∞,τ (y)φ(∞) as n→ ∞, for each y ∈ Ĉ, φ ∈ C(Ĉ) (61)

i.e., (M∗
τ )

n(δy) → T0,τ (y)δ0 + T∞,τ (y)δ∞ as n → ∞. If τ ∈ A is of type (II), then Theorem 3.77
(v) and Theorem 3.65 imply that

Mnrτ
τ (φ)(y) → T0,τ (y)φ(0) + T∞,τ (y)φ(∞) +

rτ∑
j=1

α((Lτ )j , y)

∫
φ dωLτ ,j as n→ ∞ (62)

for each y ∈ Ĉ and for each φ ∈ C(Ĉ), where rτ = dimC(Uτ,Lτ
) (the period of (τ, Lτ ), see

Lemma 3.60 and Definition 3.61), and {(Lτ )j}rτj=1, {ωLτ ,j}
rτ
j=1 are elements coming from Theo-

rem 3.65.
Note that there exists an element τ ∈ A of type (I). For example, let g0(z) = λ0z(1 − z) ∈ Y

where 0 < |λ0| < 1 and let τ0 = δg0 . Then any element τ ∈ A which is close enough to τ0 is of type
(I). Also, there exists an element τ ∈ A of type (II). For example, let g1 ∈ Y be an element which
has an attracting periodic cycle with period p ≥ 2. Let τ1 = δg1 . Then any element τ ∈ A which
is close enough to τ1 is of type (II) with rτ = p.

We now classify elements τ ∈ A of type (I) into the following three types.

• Type (Ia). 0 ∈ F (Gτ ) and {0} ∈ Min(Gτ , Ĉ) is attracting for τ.

• Type (Ib). 0 ∈ Jker(Gτ ) and χ(τ, {0}) < 0.

• Type (Ic). 0 ∈ Jker(Gτ ) and χ(τ, {0}) > 0.

We first remark that for each type (∗) above, there exists an element τ ∈ A of type (∗). In
fact, for the above τ0, any element τ ∈ A which is close enough to τ0 is of type (Ia). Also, let
g3(z) =

1
2z(1 − z) ∈ Y, g4(z) = 6z(1 − z) ∈ Y and let τ2 := p1δg3 + p2δg4 , where (p1, p2) ∈ (0, 1)2

with p1 + p2 = 1, p1 log
1
2 + p2 log 6 < 0. Then any element τ ∈ A which is close enough to

τ3 is of type (Ib). Moreover, let τ3 := q1δg3 + q2δg4 , where (q1, q2) ∈ (0, 1)2 with q1 + q2 = 1,
q1 log

1
2 + q2 log 6 > 0. Then any element τ ∈ A which is close enough to τ3 is of type (Ic). Hence

for each type (∗), there exists an element τ ∈ A of type (∗).
For each type (∗)=(Ia), (Ib), (Ic), (II), we set A∗ the set of element τ ∈ A of type (∗). We

show the following claim.
Claim 1. For each (∗)=(Ia), (Ib), (Ic), (II), the set A∗ is a non-empty open subset of A. Also,
A = ⨿∗A∗, where ⨿ denotes the disjoint union.

To show this claim, we first remark that we have already shown that each A∗ is non-empty and
A = ∪∗A∗. By [39, Lemma 5.2], the sets AIa,AII are open in A. Also, since χ(τ, {0}) is continuous
with respect to τ ∈ A, we see that AIc is open in A. Finally, since each τ ∈ A is weakly mean
stable, for each τ ∈ AIb, there exists an element g ∈ supp τ with |g′(0)| > 1. From this, we obtain
that AIb is open in A. Thus we have proved Claim 1.

We now show the following claim.
Claim 2. For each τ ∈ AII and for each g ∈ supp τ , we have |g′(0)| > 1. In particular, 0 ∈ Jker(Gτ )
and χ(τ, {0}) > 0.

To show this claim, let τ ∈ AII and g ∈ supp τ. Then g has an attracting periodic cycle in Lτ ,
which does not meet 0. Thus |g′(0)| > 1. Hence we have proved Claim 2.

For each τ ∈ A, we have that τ is weakly mean stable. We now show the following claim.
Claim 3. Each element τ ∈ AIa is mean stable. However, each element τ ∈ AIb ∪ AIc ∪ AII is
weakly mean stable but not mean stable.

To show this claim, let τ ∈ AIa. Since each minimal set is attracting, τ is mean stable. We now
let τ ∈ AIb ∪ AIc ∪ AII . Then 0 ∈ Jker(Gτ ). Thus τ is not mean stable. Hence we have proved
Claim 3.
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For each τ ∈ AIa, the convergence in (61) is uniform on y ∈ Ĉ since τ is mean stable.
Let U := {τ ∈ A | χ(τ, {0}) > 0} = AIc ∪ AII . Then U is a non-empty open subset of A. We

now prove the following claim.
Claim 4. For each τ ∈ U , the set Ωτ (with ♯(Ĉ \ Ωτ ) ≤ ℵ0) in Theorem 3.82 is not equal to Ĉ. In

particular, ∅ ̸= J0
pt(τ) = Ĉ \ Ωτ .

To prove this claim, let τ ∈ U . Then χ(τ, {0}) > 0. By the definition of Ωτ , we obtain that

0 ∈ Ĉ \Ωτ . Also, by Theorem 3.82 (vii), we have J0
pt(τ) = Ĉ \Ωτ . Hence we have proved Claim 4.

We now prove the following claim. Note that the set {τ ∈ U | ♯supp τ <∞} is dense in U .
Claim 5. Let τ ∈ U with ♯supp τ < ∞. Then we have J0

pt(τ) = J(Gτ ) and this is a perfect set.

Also, there exists an element L ∈ Min(Gτ , Ĉ) such that letting φL ∈ C(Ĉ) be any element such

that φL|L = 1 and φL|L′ = 0 for any L′ ∈ Min(Gτ , Ĉ) with L′ ̸= L, the convergence in (26) in

Theorem 3.65 for φ = φL is not uniform in any open subset V of Ĉ with V ∩ J(Gτ ) ̸= ∅.
This claim follows from Claim 4, Corollary 3.85 and Theorem 3.82. We have proved Claim 5.
We now prove the following claim.

Claim 6. For each τ ∈ AIa, the functions T0,τ , T∞,τ are continuous on Ĉ and there exists a neigh-
borhood V of 0 such that T0,τ |V ≡ 1 and T∞,τ |V ≡ 0. Also, for each τ ∈ AIb, the functions T0,τ
and T∞,τ are continuous on Ĉ and T0.τ (0) = 1, T∞,τ (0) = 0, but for any neighborhood V of 0, we
have T0,τ |V ̸≡ 1 and T∞,τ |V ̸≡ 0.

To prove this claim, let τ ∈ AIa∪AIb. Then by Theorem 3.66 (or Theorem 3.82), the functions
T0,τ , T∞ are continuous. If τ ∈ AIa, then 0 ∈ F (Gτ ) and since the functions T0,τ and T∞,τ are
locally constant on F (Gτ ) (see [38, Theorem 3.15] or Theorems 3.77 and 3.65 (vi)), there exists a
neighborhood V of 0 such that T0,τ |V ≡ 1 and T∞,τ |V ≡ 0. We now suppose τ ∈ AIb. Let F∞(Gτ )
be the connected component of F (Gτ ) with ∞ ∈ F∞(Gτ ). Then T∞,τ |F∞(Gτ ) ≡ 1. Let V be any
neighborhood of 0. Since 0 ∈ J(Gτ ), there exist an element z ∈ V and an element g ∈ Gτ such
that g(z) ∈ F∞(Gτ ). Let (γ1 . . . , γn) ∈ (supp τ)n be an element such that g = γn ◦ · · · ◦ γ1. Then
there exists a neighborhood Λ of (γ1, . . . , γn) in (supp τ)n such that for each (α1, . . . , αn) ∈ Λ,
αn ◦ · · · ◦α1(z) ∈ F∞(Gτ ). It implies that T∞,τ (z) ≥ (⊗n

j=1τ)(Λ) > 0. Therefore T∞,τ |V ̸≡ 0. Since
T0,τ + T∞,τ = 1, it follows that T0,τ |V ̸≡ 1. Thus we have proved Claim 6.

We now prove the following claim.
Claim 7. Let τ ∈ AIc. Then for each z ∈ Ωτ , where Ωτ is the subset of Ĉ defined in Theorem 3.82,
we have T∞,τ (z) = 1. Also, ♯(Ĉ \ Ωτ ) ≤ ℵ0.

To prove this claim, by Theorem 3.82, we have ♯(Ĉ \ Ωτ ) ≤ ℵ0. Also, by the definition of Ωτ ,

the result T0,τ + T∞ = 1 on Ĉ and Lemma 3.35, we see that T∞,τ (y) = 1 for each y ∈ Ωτ . Thus
we have proved Claim 7.

We now prove the following claim.
Claim 8. Let τ ∈ A. Then τ ∈ AIc if and only if for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Kγ) = 0, where
Kγ denotes the filled-in Julia set of γ, i.e., Kγ := {z ∈ C | {γn,1(z)}∞n=1 is bounded in C}.

To prove this claim, let τ ∈ AIc. Then by Claim 7 and the Fubini theorem, for τ̃ -a.e.γ ∈ Xτ ,
we have Leb2(Kγ) = 0. We now suppose that τ ∈ A and for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Kγ) = 0.

Then by the Fubini theorem, we obtain that for Leb2-a.e. z ∈ Ĉ, we have T∞,τ (z) = 1. Therefore
by Claim 6, τ ̸∈ AIa ∪ AIb ∪ AII . Hence by Claim 1, we obtain τ ∈ AIc. Thus we have proved
Claim 8.

We also give some further examples to which we can apply Theorems 3.77 and 3.82.

Example 5.5. Let Q = {x1, . . . , xn} be any non-empty finite subset of C, where x1, . . . , xn are
mutually distinct points. Let f(z) = a

∏n
j=1(z − xj) ∈ P, where a ∈ C \ {0}. Then we have

{z0 ∈ C | f(z0) = 0} = Q and if z0 ∈ C, f(z0) = 0, then f ′(z0) ̸= 0. Let W = {z + λf(z)}λ∈C\{0}
and let Y = {z + λf(z) ∈ P | λ ∈ C \ {0}}. In this case, S(W) = Q ∪ {∞} and S(W) ∩ C =
{z0 ∈ C | f(z0) = 0} = Q ̸= ∅. By Lemma 4.2, we obtain that Y is a mild subset of P, the set
Y is strongly nice and non-exceptional with respect to holomorphic family W and (Y,W) satisfies
the assumptions of Theorems 3.77, 3.82. Thus there exists the largest open and dense subset A of
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(M1,c(Y,W),O) such that for each τ ∈ A, all statements (i)–(xi) in Theorem 3.82 hold for τ. In
particular, each τ ∈ A is weakly mean stable. Let fλ(z) = z + λf(z). Then we have

f ′λ(z) = 1 + λf ′(z). (63)

Let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Q) s.t. χ(τ, L) > 0}. Also, let A+,all := {τ ∈ A | for all L ∈
Min(Gτ , Q) we have χ(τ, L) > 0}. Moreover, let Af := {τ ∈ A | ♯supp τ < ∞}, Af

+ := A+ ∩ Af ,

and Af
+.all := A+,all ∩ Af .

We now show the following claim.
Claim 1. The sets A+ and A+,all are non-empty open subsets of A (and thus they are non-empty

open subsets of (M1,c(Y,W),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all.Moreover,

for each τ ∈ A+, we have ∅ ̸= ∪L∈H+,τ
L ⊂ J0

pt(τ) = Ĉ\Ωτ , where Ωτ and H+,τ are the sets defined

in Theorem 3.82, and for each τ ∈ A+,all, we have Q ⊂ J0
pt(τ). Furthermore, for each τ ∈ Af

+, we

have J0
pt(τ) = J(Gτ ) which is a perfect set.

To prove this claim, it is easy to see that A+ and A+.all are open in A. By (63) and the fact
f ′(x) ̸= 0 for each x ∈ Q, if |λ0| is large enough, then letting τ0 := δfλ0

, we have χ(τ0, {x}) > 0
for each x ∈ Q. Therefore for each τ ∈ A which is close enough to τ0 and for each x ∈ Q, we
have χ(τ, {x}) > 0. Thus A+ ⊃ A+,all ̸= ∅. The rest statements follow from Theorem 3.82 and
Corollary 3.85. Thus we have proved Claim 1.

Let A−,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have χ(τ, L) < 0}. We now prove the
following claim.
Claim 2. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.

To prove this claim, it is easy to see A−,all ∩ A+,all = ∅ and A−,all is open in A. For each
x ∈ Q, combining (63), the fact f ′(x) ̸= 0 and the method above, we see that there exists an
element λx ∈ C \ {0} such that f ′λx

(x) = 0. Let τ1 =
∑

x∈Q
1
nδfλx

. Then χ(τ1, {x}) = −∞ for each
x ∈ Q. Hence for each τ ∈ A which is close enough to τ1, we have χ(τ, {x}) < 0 for all x ∈ Q.
Thus A−,all ̸= ∅. Hence we have proved Claim 2.

We now prove the following claim.
Claim 3. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

This claim follows from Theorem 3.82, the fact τ is weakly mean stable and Theorem 3.66.

Example 5.6. Let n ∈ N with n ≥ 2 and let w = e2πi/n ∈ C. For each i = 1, . . . , n, let
Wi = {wi(z + λ(zn − 1))}λ∈C\{0}. Let i1, . . . , im ∈ {1, . . . , n} with i1 < i2 · · · < im. Let Y =
∪m
j=1{wij (z + λj(z

n − 1)) ∈ P | λj ∈ C \ {0}}. For each j = 1, . . . ,m, let Λj := C \ {0} and let

fj,λj
(z) = wij (z+λj(z

n−1)) for each z ∈ Ĉ, λj ∈ Λj . Let Wj = {fj,λj
}λj∈Λj

for each j = 1, . . . ,m.
We show the following claim.
Claim 1. Y is a mild subset of P and Y is strongly nice and non-exceptional with respect to
holomorphic families {Wj}mj=1 of polynomial maps and (Y, {Wj}mj=1) satisfies the assumptions of
Theorem 3.82.

To prove this claim, we first note that S(Wj) = {wk | k = 1, . . . , n}∪{∞} for each j = 1, . . . ,m.
Hence we have ∩m

j=1S(Wj) ∩ C = {wk | k = 1, . . . , n} ̸= ∅. For each wk ∈ ∩m
j=1S(Wj) and

for each j = 1, . . . ,m and for each λj ∈ C \ {0}, we have fj,λj (w
k) = wk+ij ∈ ∩m

j=1S(Wj).
Thus for each τ ∈ M1,c(Y, {Wj}mj=1), we have Gτ (∩m

j=1S(Wj) ∩ C) ⊂ ∩m
j=1S(Wj) ∩ C. Let Q :=

∩m
j=1S(Wj) ∩ C = {wk | k = 1, . . . ,m}. For each j = 1, . . . ,m, let αj : Q→ Q be the map defined

by αj(z) = wij · z, z ∈ Q. Then for each j = 1, . . . ,m and for each λj ∈ Λj , we have fj,λj
|Q = αj .

Since the semigroup {αn
j | n ∈ N} is a cyclic group generated by αj , there exists an element nj ∈ N

such that α−1
j = α

nj

j . Therefore we obtain that Q is equal to the union of minimal sets of the
semigroup generated by {α1, . . . , αm}. Thus Q = ∪L∈Min(Gτ ,Q)L for each τ ∈ M1,c(Y, {Wj}mj=1).
Hence there is no peripheral cycle for (Y, {Wj}). Moreover, for each z ∈ Q, for each j = 1, . . . ,m
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and for each λj ∈ Λj , we have

f ′j,λj
(z) = wij (1 + λjnz

n−1). (64)

Hence Y is strongly nice with respect to holomorphic families {Wj}mj=1 of polynomial maps. More-
over, by (64), it is easy to see that Y is non-exceptional with respect to {Wj}mj=1. Thus we have
proved Claim 1.

Let A be the open and dense subset of (M1,c(Y, {Wj}mj=1),O) given in Theorem 3.82. Then
for each τ ∈ A, all statements (i)–(xi) in Theorem 3.82 hold. In particular, any τ ∈ A is weakly
mean stable. Let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Q) s.t. χ(τ, L) > 0}. Also, let

A+,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have χ(τ, L) > 0}.

Moreover, let Af := {τ ∈ A | ♯supp τ <∞}, Af
+ := A+ ∩ Af , and Af

+.all := A+,all ∩ Af .
We now show the following claim.

Claim 2. The sets A+ and A+,all are non-empty open subsets of A (and thus they are non-empty

open subsets of (M1,c(Y, {Wj}mj=1),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all.

Moreover, for each τ ∈ A+, we have ∅ ̸= ∪L∈H+,τ
L ⊂ J0

pt(τ) = Ĉ \Ωτ , where Ωτ and H+,τ are the
sets defined in Theorem 3.82, and for each τ ∈ A+,all, we have Q ⊂ J0

pt(τ). Furthermore, for each

τ ∈ Af
+, we have J0

pt(τ) = J(Gτ ) which is a perfect set.
To prove this claim, by (64), we obtain that A+ and A+,all are non-empty. It is easy to see that

A+ and A+,all are open in A. The rest statements follow from Theorem 3.82 and Corollary 3.85.
Let A−,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have. χ(τ, L) < 0}. We now prove the

following claims.
Claim 3. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.
Claim 4. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

These claims 3,4 can be shown by (64) and the method in Example 5.5.

Example 5.7. Let x1, . . . , xu ∈ C be mutually distinct points with u ≥ 2. Let a ∈ C \ {0}
and let g(z) = a

∏u
j=1(z − xj). Let Q = {x1, . . . , xu}. Let P1, . . . , Pm be mutually distinct non-

constant polynomials and suppose that Pj(Q) ⊂ Q for each j = 1, . . . .m. Also, suppose that
Q = ∪L∈Min(⟨P1,...,Pm⟩,Q)L. Note that we have the following claim.
Claim 1. For any finite subset Q of C, we can take such elements P1, . . . , Pm.

To prove this claim, we remark that for any map φ : Q→ Q, there exists a polynomial P such
that P |Q = φ on Q. This fact can be shown by using van der Monde determinant argument. Thus
the statement of Claim 1 holds.

For each j = 1, . . . ,m, let Λj := C \ {0} and for each λj ∈ Λj , let fj,λj (z) = Pj(z + λjg(z)).
Let Wj = {fj,λj}λj∈Λj and let Y = ∪m

j=1{fj,λj | λj ∈ Λj}. Then Y is a weakly nice subset of P
with respect to holomorphic families {Wj}mj=1 of polynomials. We now prove the following claim.
Claim 2. We have S(Wj) = Q∪ {∞} for each j = 1, . . . ,m. Moreover, Y is a mild subset of P and
Y is non-exceptional and strongly nice with respect to holomorphic families {Wj}mj=1 of polynomial
maps. Hence, there exists the largest open and dense subset A of (M1,c(Y, {Wj}mj=1),O) such that
for each τ ∈ A, all statements (i)–(xi) in Theorem 3.82 hold. In particular, any τ ∈ A is weakly
mean stable.

We give the proof of this claim. Since Y ⊂ P, the set Y is mild. For each x ∈ Q, for each
j = 1, . . . ,m and for each λj ∈ Λj , we have fj,λj

(x) = Pj(x). Thus for each j = 1, . . . ,m, we have
S(Wj) = Q∪{∞}. Hence ∪m

j=1S(Wj) = Q∪{∞}. Also, by the property of {Pj}mj=1, we have that
for each τ ∈ M1,c(Y, {Wj}mj=1), we have Q = ∪L∈Min(Gτ ,Q)L. Hence there is no peripheral cycle
for (Y, {Wj}mj=1). Also, we have

f ′j,λj
(x) = P ′

j(x)(1 + λjg
′(x)) for all x ∈ Q, j = 1, . . . ,m, λj ∈ Λj . (65)
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Therefore Y is strongly nice with respect to {Wj}mj=1. By (65), it is easy to see that Y is non-
exceptional with respect to {Wj}mj=1. By Theorem 3.82, the statement of Claim 2 holds. Thus we
have proved Claim 2.

We define subsets A+,A+,all,Af , Af
+,A

f
+,all,A−,all of A in the same way as that of Exam-

ple 5.6. Then by (65) and the arguments in Examples 5.6 and 5.5, we obtain the following claims.
Claim 3. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.
Claim 4. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

Claim 5. Suppose that P ′
j(x) ̸= 0 for any j = 1, . . . ,m and for any x ∈ Q. Then the sets A+

and A+,all are non-empty open subsets of A (and thus they are non-empty open subsets of

(M1,c(Y, {Wj}mj=1),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all. Moreover, for

each τ ∈ A+, we have ∅ ̸= ∪L∈H+,τ
L ⊂ J0

pt(τ) = Ĉ \ Ωτ , where Ωτ and H+,τ are the sets defined

in Theorem 3.82, and for each τ ∈ A+,all, we have Q ⊂ J0
pt(τ). Furthermore, for each τ ∈ Af

+, we

have J0
pt(τ) = J(Gτ ) which is a perfect set.

Remark 5.8. As in Example 5.7, we can embed many finite irreducible Markov chains into C
as weak attractors (i.e. minimal sets with negative Lyapunov exponents) of one random complex
polynomial dynamical system generated by τ ∈ M1,c(P) which is weakly mean stable and satisfies

all statements in Theorem 3.66 (e.g. Fmeas(τ) = M1(Ĉ)).

6 List of notations

In this section we give the list of notations of this paper.

• B(A, r), D(C, r), int(A),Con(A). Notation in section 2.

• CM(Y ),OCM(Y ), C(Y ) for metric spaces Y . Definition 2.1

• rational semigroup, polynomial semigroup, Rat, κ, Rat+, P. Definition 2.3.

• Ratm. Pm. Remark 2.4.

• F (G), J(G), ⟨g1, . . . , gm⟩, ⟨Γ⟩, G(A), G−1(A), G∗. Definition 2.5.

• E(G) (exceptional set of a rational semigroup G). Remark after Lemma 2.6.

• Jker(G) (kernel Julia set). Definition 2.7.

• γm,n, Fγ,0, Fγ , Jγ,0, Jγ , F
γ,0, F γ , Jγ,0, Jγ . Definition 3.1.

• M1(Y ),M1,c(Y ), supp τ, d0,B∗. Definition 3.4.

• Xτ , τ̃ , Gτ ,Mτ ,M
∗
τ , Fmeas(τ), Jmeas(τ), F

0
meas(τ), J

0
meas(τ). Definition 3.5.

• Φ : Y → M1(Y ). Definition 3.8.

• Fpt(τ), Jpt(τ), F
0
pt(τ), J

0
pt(τ). Definition 3.10.

• Cpt(Y ). Definition 3.16.

• Minimal set for (G,Y ), Min(G,Y ). Definition 3.17.

• period of irreducible finite Markov chain. Definition 3.20.

• Gr
τ . Definition 3.21.
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• Dφz, TzU, ∥Dφz∥s subsection 3.3.

• f : ΓN×Ĉ → ΓN×Ĉ (skew product associated with the generator system Γ), π : ΓN×Ĉ → ΓN,
πY : ΓN × Y → Y , fnγ , fγ,n, J̃(f), F̃ (f), Ĵ

γ,Γ, F̂ γ,Γ, Ĵγ,Γ, F̂γ,Γ, Dfz for skew product map f
at a point z = (γ, y). Definition 3.24.

• τ -invariant measure, τ -ergodic measure, χ(τ, ρ) (Lyapunov exponent of (τ, ρ)). Definition 3.26.

• ωL,j , ωL(canonical τ -ergodic measure on L), χ(τ, L) (Lyapunov exponent of (τ, L)). Defini-
tion 3.28.

• holomorphic family of rational maps, holomorphic family of polynomial maps, non-constant
holomorphic family of rational maps, Sn(W), S(W) (singular set of a holomorphic family W
of rational maps), singular point of holomorphic family W of rational maps. Definition 3.37.

• weakly nice subset of Rat, M1(Y, {Wj}mj=1), M1,c(Y, {Wj}mj=1), ∩m
j=1S(Wj) (singular set of

(Y, {Wj}mj=1). Definition 3.40.

• O (wH-topology in M1,c(Y) where Y is a closed subset of an open subset of Rat). Defini-
tion 3.41.

• Smin({Wj}mj=1). Definition 3.47.

• attracting minimal set. Definition 3.48.

• mild subset of Rat. Definition 3.49.

• mean stable. Definition 3.51.

• exceptional with respect to {Wj}mj=1, non-exceptional with respect to {Wj}mj=1. Defini-
tion 3.54.

• unitary eigenfunction, unitary eigenvalue, Uτ,L, Uτ,L,∗. Definition 3.58.

• limit function. Definition 3.59.

• rL, period of (τ, L). Definition 3.61.

• TA,τ (z) (the probability of tending to A regarding the random orbits starting with the initial

value z ∈ Ĉ), Ta,τ . Definition 3.64.

• nice subset of Rat, peripheral cycle, strongly nice subset of Rat. Definition 3.68.

• strict bifurcation element for (Γ, L) with corresponding suffix j. Definition 3.69.

• weakly mean stable. Definition 3.72.

• M1,c,mild(Y, {Wj}mj=1), M1,c,JF (Y, {Wj}mj=1). Definition 3.78.

• Ng,λ(z), Wg (random relaxed Newton’s method family for g), Yg, (Yg,Wg) (random re-
laxed Newton’s method scheme for g), random relaxed Newton’s method (or random relaxed
Newton’s method system) for g, Qg. Definition 4.1.

• normalized polynomial. Remark 4.5.
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