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Abstract

We investigate i.i.d. random complex dynamical systems generated by probability measures
on finite unions of the loci of holomorphic families of rational maps on the Riemann sphere
Ĉ. We show that under certain conditions on the families, for a generic system, (especially,
for a generic random polynomial dynamical system,) for all but countably many initial values
z ∈ Ĉ, for almost every sequence of maps γ = (γ1, γ2, . . .), the Lyapunov exponent of γ at z
is negative. Also, we show that for a generic system, for every initial value z ∈ Ĉ, the orbit of
the Dirac measure at z under the iteration of the dual map of the transition operator tends
to a periodic cycle of measures in the space of probability measures on Ĉ. Note that these
are new phenomena in random complex dynamics which cannot hold in deterministic complex
dynamical systems. We apply the above theory and results of random complex dynamical
systems to finding roots of any polynomial by random relaxed Newton’s methods and we show
that for any polynomial g, for any initial value z ∈ C which is not a root of g′, the random
orbit starting with z tends to a root of g almost surely, which is the virtue of the effect of
randomness.

1 Introduction and the main results

In this paper, we investigate the independent and identically-distributed (i.i.d.) random dynamics

of rational maps on the Riemann sphere Ĉ and the dynamics of rational semigroups (i.e., semigroups

of non-constant rational maps where the semigroup operation is functional composition) on Ĉ.
One motivation for research in (complex) dynamical systems is to describe some mathematical

models in various fields to study nature and science. Since nature and any other environments
have a lot of random terms, it is very natural and important not only to consider the dynamics
of iteration, but also to consider random dynamics. Another motivation for research in complex
dynamics is Newton’s method to find roots of a complex polynomial, which often is expressed as
the dynamics of a rational map g on Ĉ with deg(g) ≥ 2, where deg(g) denotes the degree of g. In
various fields, we have many mathematical models which are described by the dynamical systems
associated with polynomial or rational maps. For each model, it is natural and important to
consider a randomized model, since we always have some kind of noise or random terms. Regarding
random (complex) dynamics, many researchers in various fields (mathematics, physics, chemistry,
etc.) have found and investigated many kinds of new phenomena in random (complex) dynamics
which cannot hold in deterministic dynamics. These phenomena arise from the effect of randomness
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and they are called randomness-induced phenomena or noise-induced phenomena ([20]).
In fact, recently these topics are getting more and more attention in many fields.

The first study of random complex dynamics was given by J. E. Fornaess and N. Sibony ([10]).
For research on random complex dynamics of quadratic polynomials, see [3]–[7], [11]. For recent
research on random complex dynamics and the various randomness-induced phenomena, see the
author’s works [34]–[39].

In order to investigate random complex dynamics, it is very natural to study the dynamics of
associated rational semigroups. In fact, it is a very powerful tool to investigate random complex
dynamics, since random complex dynamics and the dynamics of rational semigroups are related
to each other very deeply. The first study of dynamics of rational semigroups was conducted
by A. Hinkkanen and G. J. Martin ([13]), who were interested in the role of the dynamics of
polynomial semigroups (i.e., semigroups of non-constant polynomial maps) while studying various
one-complex-dimensional moduli spaces for discrete groups, and by F. Ren’s group ([12]), who
studied such semigroups from the perspective of random dynamical systems. For recent work on
the dynamics of rational semigroups, see the author’s papers [30]–[39], and [28, 40, 41].

To introduce the main idea of this paper, we let G be a rational semigroup and denote by F (G)

the Fatou set of G, which is defined to be the maximal open subset of Ĉ where G is equicontinuous
with respect to the spherical distance on Ĉ. We call J(G) := Ĉ \ F (G) the Julia set of G. The
Julia set is backward invariant under each element h ∈ G, but might not be forward invariant.
This is a difficulty of the theory of rational semigroups. Nevertheless, we utilize this as follows.
The key to investigating random complex dynamics is to consider the following kernel Julia set
of G, which is defined by Jker(G) =

∩
g∈G g

−1(J(G)). This is the largest forward invariant subset
of J(G) under the action of G. Note that if G is a group or if G is a commutative semigroup, then
Jker(G) = J(G). However, for a general rational semigroup G generated by a family of rational
maps h with deg(h) ≥ 2, it may happen that ∅ = Jker(G) ̸= J(G).

Let Rat be the space of all non-constant rational maps on the Riemann sphere Ĉ, endowed with
the distance κ which is defined by κ(f, g) := supz∈Ĉ d(f(z), g(z)), where d denotes the spherical

distance on Ĉ. Let Rat+ be the space of all rational maps g with deg(g) ≥ 2. Let P be the space of
all polynomial maps g with deg(g) ≥ 2. Let τ be a Borel probability measure on Rat with compact

support. We consider the i.i.d. random dynamics on Ĉ such that at every step we choose a map
h ∈ Rat according to τ. Thus this determines a Markov process on the state space Ĉ such that for
each x ∈ Ĉ and each Borel measurable subset A of Ĉ, the transition probability p(x,A) from x
to A is defined as p(x,A) = τ({g ∈ Rat | g(x) ∈ A}). Let Gτ be the rational semigroup generated

by the support of τ , i.e., Gτ = {h1 ◦ · · · ◦ hn | n ∈ N, hj ∈ supp τ for all j}. Let C(Ĉ) be the space

of all complex-valued continuous functions on Ĉ endowed with the supremum norm ∥ · ∥∞. Let Mτ

be the operator on C(Ĉ) defined by Mτ (φ)(z) =
∫
φ(g(z))dτ(g). This Mτ is called the transition

operator of the Markov process induced by τ. For a metric space X, let M1(X) be the space
of all Borel probability measures on X endowed with the topology induced by weak convergence
(thus µn → µ in M1(X) if and only if

∫
φdµn →

∫
φdµ for each bounded continuous function

φ : X → R). Note that if X is a compact metric space, then M1(X) is compact and metrizable.
For each τ ∈ M1(X), we denote by supp τ the topological support of τ. Let M1,c(X) be the space

of all Borel probability measures τ on X such that supp τ is compact. Let M∗
τ : M1(Ĉ) → M1(Ĉ)

be the dual of Mτ . This M
∗
τ can be regarded as the “averaged map” on the extension M1(Ĉ) of Ĉ

(see Remark 3.9). We define the “pointwise Fatou set” F 0
pt(τ) of the dynamics of M∗

τ as the set of

all elements y ∈ Ĉ satisfying that {(M∗
τ )

n ◦Φ : Ĉ → M1(Ĉ)}n∈N is equicontinuous at the one point

y ∈ Ĉ, where Φ : Ĉ → M1(Ĉ) is the embedding map defined by Φ(y) = δy (see Definition 3.10).

Also, we set J0
pt(τ) := Ĉ \ F 0

pt(τ). Moreover, Jker(Gτ ) is called the kernel Julia set of τ.

For each sequence γ = (γ1, γ2, . . .) ∈ (Rat)N, and for each n,m ∈ N with n ≥ m, we set

γn,m = γn ◦ · · · ◦ γm and we denote by Fγ the set of points z ∈ Ĉ satisfying that there exists
an open neighborhood of z on which the sequence {γn,1}∞n=1 is equicontinuous with respect to
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the spherical distance on Ĉ. This Fγ is called the Fatou set of the sequence γ. Also, we set

Jγ := Ĉ \Fγ and this Jγ is called the Julia set of γ. Let τ̃ := ⊗∞
n=1τ ∈ M1((Rat)

N). For a metric
space X, we denote by Cpt(X) the space of all non-empty compact subsets of X endowed with
the Hausdorff metric. For a rational semigroup G, we say that a non-empty compact subset L of
Ĉ is a minimal set for (G, Ĉ) if L = ∪h∈G{h(z)}. Moreover, we denote by Min(G, Ĉ) the sets

of all minimal sets for (G, Ĉ). For any τ ∈ M1(Rat), for any L ∈ Min(Gτ , Ĉ) and for any z ∈ Ĉ,
we set TL,τ (z) = τ̃({γ = (γ1, γ2, . . .) ∈ (Rat)N | d(γn,1(z), L) → 0 as n → ∞}). If L = {x}, then
we set TL,τ = Tx,τ . For a τ ∈ M1(Rat), let Γτ := supp τ(⊂ Rat). Let τ ∈ M1,c(Rat). We say

that a minimal set L ∈ Min(Gτ , Ĉ) is attracting for τ if there exist two open subsets A,B of Ĉ
with ♯(Ĉ \ A) ≥ 3 and an n ∈ N such that B ⊂ A and such that for each (γ1, . . . , γn) ∈ Γn

τ , we
have γn ◦ · · · ◦ γ1(A) ⊂ B. In this case, we say that L is an attracting minimal set of τ. Let
Y be a subset of Rat endowed with the relative topology from Rat. We say that Y is mild if for
each τ ∈ M1,c(Y), there exists an attracting minimal set for τ. For example, any non-empty open
subset of P is a mild subset of Rat.

Let Y be a closed subset of an open subset of Rat, i.e., there exist an open subset V of Rat and
a closed subset C of Rat such that Y = V ∩ C. Let W = {fλ}λ∈Λ be a holomorphic family of
rational maps (see Definition 3.38) such that Λ is a connected complex manifold and λ 7→ fλ ∈
Rat is not constant. We say that Y is weakly nice with respect to W if Y = {fλ ∈ Rat | λ ∈ Λ}
(for more general definition, see 3.41). In this case, for each n ∈ N, we denote by Sn(W) the set

of points z ∈ Ĉ satisfying that (λ1, . . . , λn) ∈ Λn 7→ fλ1 ◦ · · · ◦ fλn(z) is constant on Λn. Also, we
set S(W) = ∩∞

n=1Sn(W). This S(W) is called the singular set of W. Note that ♯S1(W) <∞ and
♯S(W) < ∞. We say that Y is nice with respect to W if Y is weakly nice with respect to W and

for each τ ∈ M1,c(Y), for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W) and for each z ∈ L, either (a) the
map λ 7→ D(fλ)z is non-constant on Λ or (b) D(fλ)z = 0 for all λ ∈ Λ.

For any closed subset Y of an open subset of Rat, let O be the topology in M1,c(Y) such that
the sequence {τn}∞n=1 in M1,c(Y) tends to an element τ ∈ M1,c(Y) with respect to the topology O
if and only if (a) for each bounded continuous function φ : Y → C,

∫
φ dτn →

∫
φ dτn as n→ ∞,

and (b) Γτn → Γτ as n→ ∞ in Cpt(Y) with respect to the Hausdorff metric.
We now present the first main result of this paper.

Theorem 1.1 (For the detailed and more general version, see Theorems 3.76, 3.65). Let Y be a
mild subset of Rat+ and suppose that Y is nice with respect to a holomorphic family W of rational
maps. Then there exists an open and dense subset A of (M1,c(Y),O) such that for each τ ∈ A,
the following (I)–(III) hold.

(I) We have Jker(Gτ ) ⊂ S(W), ♯Jker(Gτ ) < ∞ and ♯Min(Gτ ) < ∞. Moreover, each L ∈
Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting for τ.

(II) There exist numbers l, r ∈ N, probability measures η1, . . . , ηr ∈ M1(Ĉ) and functions α1, . . . , αr :

Ĉ → [0, 1] such that for each y ∈ Ĉ and for each φ ∈ C(Ĉ), we have

Mnl
τ (φ)(y) →

r∑
i=1

αi(y)

∫
φdηi as n→ ∞ (pointwise convergence) , (1)

i.e., we have (M∗
τ )

nl(δy) →
∑r

i=1 αi(y)ηi as n → ∞ in M1(Ĉ) with respect to the weak
convergence topology. Also, we have (M∗

τ )
l(
∑r

i αi(y)ηi) =
∑r

i αi(y)ηi.Moreover, for each i =

1, . . . , r, supp ηi is included in an element L ∈ Min(Gτ , Ĉ) and ∪r
i=1supp ηi = ∪L∈Min(Gτ ,Ĉ)L.

Moreover, these functions α1, . . . , αr are locally constant on F (Gτ ). Furthermore, for each
i = 1, . . . , r and for each y ∈ F 0

pt(τ), we have limw∈Ĉ,w→y αi(w) = αi(y). Also, for each

L ∈ Min(Gτ , Ĉ) and for each y ∈ F 0
pt(τ), we have limw∈Ĉ,w→y TL,τ (w) = TL,τ (y).

(III) For each y ∈ Ĉ, there exists a Borel subset Bτ,y of (Rat+)
N with τ̃(Bτ,y) = 1 such that for

each γ = (γ1, γ2, . . . , ) ∈ Bτ,y, we have d(γn ◦ · · · ◦ γ1(y),∪L∈Min(Gτ ,Ĉ)L) → 0 as n→ ∞.

3



We remark that statements (I)–(III) in Theorem 1.1 cannot hold for deterministic iteration
dynamics of a single f ∈ Rat+, since the dynamics of f : J(f) → J(f), where J(f) denotes the
Julia set of f , is chaotic. Thus Theorem 1.1 deals with a randomness-induced phenomenon.

To present the second main theorem, for each τ ∈ M1,c(Rat) and for each L ∈ Min(Gτ , Ĉ) with
♯L <∞, we define the Lyapunov exponent of (τ, L) and denote it by χ(τ, L) (see Definition 3.29).
Also, if Y is a weakly nice subset of Rat with respect to a holomorphic family W of rational maps,
we say that Y is exceptional with respect to W if there exists a non-empty subset L of S(W)

such that for each τ ∈ M1,c(Y), we have L ∈ Min(Gτ , Ĉ) and χ(τ, L) = 0. We say that Y is non-
exceptional with respect to W if Y is not exceptional with respect to W (For the definition

in more general setting, see Definition 3.54). For any g ∈ Rat and z ∈ Ĉ, we denote by ∥Dgz∥s
the norm of the derivative of g at z with respect to the spherical metric. Also, Leb2 denotes the
2-dimensional Lebesgue measure on Ĉ and for any set B ⊂ Ĉ, we set diam(B) = supx,y∈B d(x, y).

We now present the second main theorem of this paper.

Theorem 1.2 (For the detailed and more general version, see Theorem 3.81). Let Y be a mild
subset of Rat+ and suppose that Y is nice and non-exceptional with respect to a holomorphic family
W = {fλ}λ∈Λ of rational maps. Then there exists an open and dense subset A of (M1,c(Y),O)
such that for each τ ∈ A, all of the following statements (I) and (II) hold.

(I) Let H+,τ = {L ∈ Min(Gτ , Ĉ) | L ⊂ Jker(Gτ ), χ(τ, L) > 0} and let Ωτ be the set of points

y ∈ Ĉ for which τ̃({γ ∈ (Rat+)
N | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+,τL}) = 0. Then we have

Ωτ = F 0
pt(τ), ♯(Ĉ \Ωτ ) ≤ ℵ0 and for each z ∈ Ωτ , τ̃({γ ∈ (Rat+)

N | z ∈ Jγ}) = 0. Moreover,

Leb2(Jγ) = 0 for τ̃ -a.e.γ ∈ (Rat+)
N. Also, ∪L∈H+,τL ⊂ J0

pt(τ) = Ĉ \ Ωτ and ♯J0
pt(τ) ≤ ℵ0.

(II) Let Ωτ be as in (I). Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and there exist a constant cτ < 0 and a constant
ρτ ∈ (0, 1) such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of (Rat+)

N with
τ̃(Cτ,z) = 1 satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we
have the following (a) and (b).
(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an
attracting minimal set L = L(τ, z, γ) of τ such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

Remark 1.3. In Theorems 3.76, 3.81, we show more generalized results in which we deal with
random dynamical systems of τ ∈ M1,c(Rat) such that supp τ is included in a finite union of loci
of holomorphic families {Wj}mj=1 of rational maps, and supp τ meets the locus of each Wj .

We remark that statements (I), (II) in Theorem 1.2 cannot hold for deterministic iteration
dynamics of a single f ∈ Rat+, since the dynamics of f : J(f) → J(f) is chaotic, and we have

Mañé’s result dimH({z ∈ Ĉ | lim infn→∞
1
n log ∥D(fn)z∥s > 0}) > 0, where dimH denotes the

Hausdorff dimension with respect to the spherical distance on Ĉ (see [21]). Thus Theorem 1.2 deals
with a randomness-induced phenomenon. As we see in Theorems 1.1, 1.2, under the assumptions of
Theorems 1.1, 1.2, regarding generic random complex dynamical systems (in particular,
regarding generic random polynomial dynamical systems), the chaoticity is much
weaker than that of deterministic complex dynamical systems. This arises from the effect
of randomness and Theorems 1.1, 1.2 deal with randomness-induced phenomena. Note that the
statements in Theorems 1.1, 1.2 are a kind of analogues of the conjecture of density
of hyperbolic maps ([23]) in deterministic complex dynamics.
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We remark that in [10] and [36, 37], regarding random complex dynamical systems, results
on disappearance of chaos were shown. In [10], it was assumed that S(W) = ∅ and the noise is
very small, which implies that the systems in the paper have empty kernel Julia sets Jker(Gτ ) of
corresponding rational semigroups. In [37], it was also assumed that S(W) = ∅ (for a holomorphic
family W of polynomials, it was assumed S(W)\{∞} = ∅) but the range of the noise could be big,
and it was shown that the generic systems have empty kernel Julia sets, which implies that the
chaoticity of the systems is much weaker than that of deterministic complex dynamical systems.
In this paper, it is important that in Theorems 1.1 and 1.2, the set A contains many τ
such that Jker(Gτ ) ̸= ∅. Once we have non-empty kernel Julia set, the analysis of the
system is much more difficult than the cases with empty kernel Julia sets, even if the
kernel Julia set is finite. We need a new framework and more technical arguments to study such
systems.

We apply the results and the methods in the above to finding roots of any polynomial by
random relaxed Newton’s method as we explained below. Let g ∈ P. Let Λ := {λ ∈ C | |λ−1| < 1}
and let fλ(z) = z − λ g(z)

g′(z) for each λ ∈ Λ. Let W = {fλ}λ∈Λ. Let Y := {fλ ∈ Rat | λ ∈ Λ}. Then
Y is called the random relaxed Newton’s method set for g and W is called the random
relaxed Newton’s method family for g. Also, (Y,W) is called the random relaxed Newton’s

method scheme for g. Moreover, for each τ ∈ M1,c(Y), the random dynamical system on Ĉ
generated by τ is called a random relaxed Newton’s method (or random relaxed Newton’s
method system) of (g, τ). Furthermore, let Qg := {z0 ∈ C | g(z0) = 0}.

We now present the third main theorem of this paper.

Theorem 1.4 (For the details, see Theorem 4.4). Let g ∈ P. Let (Y,W) be the random relaxed
Newton’s method scheme for g. Then Y is a mild subset of Rat+, the set Y is nice and non-
exceptional with respect to W and (Y,W) satisfies the assumptions of Theorems 1.1, 1.2. Moreover,
there exists an open and dense subset A of (M1,c(Y) such that all of the following hold.

(I) Let τ ∈ A. Then all statements (I)–(III) in Theorem 1.1 and statements (I)–(III) in Theo-

rem 1.2 hold for τ. Moreover, Min(Gτ , Ĉ) is equal to the union of {{x} | x ∈ Qg} ∪ {{∞}}
and {L ∈ Min(Gτ , Ĉ) | L ⊂ C\Qg, L is attracting for τ}. Also, for each x ∈ Qg, the minimal
set {x} is attracting for τ.

(II) Let τ ∈ A. Let Ωτ be the set defined in Theorem 1.2. Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and

Ωτ = {y ∈ C | τ̃({γ ∈ (Rat+)
N | ∃n ∈ N s.t. γn,1(y) = ∞}) = 0}.

(III) Let τ ∈ M1,c(Y) and suppose that int(Γτ ) ⊃ {fλ | λ ∈ C, |λ − 1| ≤ 1
2} with respect to the

topology in Y ∼= Λ := {λ ∈ C | |λ − 1| < 1} and τ is absolutely continuous with respect to
the 2-dimensional Lebesgue measure on Y ∼= Λ (e.g., let τ be the normalized 2-dimensional
Lebesgue measure on {fλ | λ ∈ C, |λ − 1| ≤ r} where 1

2 < r < 1, under the identification
Y ∼= Λ). Then τ ∈ A and all statements (I)–(III) in Theorem 1.1 and statements (I)–(III) in
Theorem 1.2 hold for τ. Moreover, we have

Ωτ = C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0} and ♯(C \ Ωτ ) ≤ deg(g)− 1.

Moreover, we have maxx∈Qg e
χ(τ,{x}) < 1. Moreover, for each α ∈ (maxx∈Qg e

χ(τ,{x}), 1), and
for each z ∈ F 0

pt(τ) = Ωτ , there exists a Borel subset Cτ,z,α of (Rat+)
N with τ̃(Cτ,z,α) = 1

satisfying that for each γ ∈ Cτ,z,α, there exist an element x = x(τ, z, α, γ) ∈ Qg and a
constant ξ = ξ(τ, z, α, γ) > 0 such that

d(γn,1(z), x) ≤ ξαn for all n ∈ N and γn,1(z) → x as n→ ∞. (2)

Also, for τ̃ -a.e. γ ∈ (Rat+)
N, we have Leb2(Jγ) = 0 and for each z ∈ Fγ , there exists an

element x = x(τ, γ, z) ∈ Qg such that

γn,1(z) → x as n→ ∞. (3)
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Moreover, for each x ∈ Qg and for each z ∈ Ωτ , we have limw∈Ĉ,w→z Tx,τ (w) = Tx,τ (z).

Moreover, for any subset B of C with ♯B ≥ deg(g), there exists an element z ∈ B such that∑
x∈Qg

Tx,τ (z) = 1. (4)

Furthermore, for each φ ∈ C(Ĉ) and for each z ∈ Ωτ , we haveM
n
τ (φ)(z) →

∑
x∈Qg

Tx,τ (z)φ(x)
as n→ ∞ and this convergence is uniform on any compact subsets of Ωτ .

Also, there exists an neighborhood U of τ in A such that for each η ∈ U , we have ♯(Ĉ\Ωη) ≤ ℵ0

and for each z ∈ Ωη, there exists a Borel subset Cη,z of (Rat+)
N with η̃(Cη,z) = 1 such that

for each γ ∈ Cη,z, there exists an element x = x(η, z, γ) ∈ Qg such that γn,1(z) → x as
n→ ∞.

We say that a non-constant polynomial g is normalized if {z0 ∈ C | g(z0) = 0} is included in
D := {z ∈ C | |z| < 1}. For a given polynomial g, sometimes it is not difficult for us to find an
element a ∈ R with a > 0 such that g(az) is a normalized polynomial of z. It is well-known that if
g ∈ P is a normalized polynomial, then so is g′ (see [1]). Thus, we obtain the following corollary.

Corollary 1.5. Let g ∈ P be a normalized polynomial. Let Λ = {λ ∈ C | |λ − 1| < 1}. Let
z0 ∈ C \ D. Let η ∈ M1,c(Λ) be an element such that int(supp η) ⊃ {λ ∈ C | |λ − 1| ≤ 1

2} and
η is absolutely continuous with respect to the 2-dimensional Lebesgue measure on Λ. Under the
identification Y ∼= Λ, we regard η as an element of M1,c(Y1). Then for η̃-a.e. γ ∈ (Rat+)

N,
γn,1(z0) tends to a root x = x(γ) of g. Moreover, if, in addition to the assumptions of our theorem,
we know the coefficients of g explicitly, then by the following algorithm in which we consider d-
random orbits of z0 under d-different random relaxed Newton’s methods, we can find all roots of g
almost surely with arbitrarily small errors.

(1) We first consider the random relaxed Newton’s method scheme (Y1,W1) for g1 = g. By
Theorem 1.4, for η̃-a.e. γ ∈ RatN, γn,1(z0) tends to a root x = x(γ) of g. Let x1 be one of
such x(γ) (with arbitrarily small error).

(2) Let g2(z) = g(z)/(z − x1). By using synthetic division, we regard g2 as a polynomial which
divides g1 (with arbitrarily small error). Note that g2 is also a normalized polynomial. We
consider the random relaxed Newton’s method scheme (Y2,W2) for g2. As in the first step
(replacing g1 by g2), we find a root x2 of g2, which is also a root of g (with arbitrarily small
error).

(3) Let g3(z) = g2(z)/(z − x2) and as in the above, we find a root x3 of g with arbitrarily small
error. Continue this method.

We remark that in Theorem 1.4 and Corollary 1.5, any system has non-empty kernel Julia set
of the corresponding rational semigroup (in fact, {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}∪{∞} is included
in the kernel Julia set), and in order to analyze such systems we need a new framework and much
more technical arguments than those of [36], [37]. See the second remark after Remark 1.3.

Remark 1.6. (I) Regarding the original Newton’s method, M. Hurley showed in [15] that for
any k ∈ N with k ≥ 3, there exists a polynomial g of deg(g) = k such that the Newton’s method
map Ng(z) = z − g(z)/g′(z) for g has 2k − 2 different attracting cycles. Thus this Ng has k − 2
attracting cycles which are not zeros of g. Since attracting cycles are stable under perturbations, it
follows that for any k ≥ 3, the set of elements g for which the Newton’s map has attracting cycles
which are not zeros of g is a non-empty open subset of Pk := {g ∈ P | deg(g) = k}.

(II) C. McMullen showed in [22] that for any k ∈ N, k ≥ 4 and for any l ∈ N, there exists no
rational map Ñ : Pk → Ratl := {f ∈ Rat | deg(f) = l} such that for any g in an open dense subset

of Pk, for any z in an open dense subset of Ĉ, Ñ(g)n(z) tends to a root of g as n→ ∞.
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(III) The essential assumptions on τ in Theorem 1.4 (III) and Corollary 1.5 of this
paper do not depend on g ∈ P. By (I)(II), it follows that the statements of Theorem 1.4
and Corollary 1.5 cannot hold in the deterministic relaxed Newton’s method and any
other deterministic complex analytic iterative schemes to find roots of polynomials.
Thus Theorem 1.4 and Corollary 1.5 deal with randomness-induced phenomena.

(IV) J. Hubbard, D. Schleicher and S. Sutherland showed in [16] that for each d ∈ N, there
exists a finite subset B of C with ♯B ≤ 1.1d(log d)2 such that for any normalized polynomial g
with deg(g) = d and for every root of g, at least one of the points in B converges to this root under
the iteration of the same Newton’s method map Ng for g.

Note that this is the first paper to investigate random relaxed Newton’s method systematically.
It is important that in Theorem 1.4 (III) and Corollary 1.5, the size of the noise is big which
enables the system to make the minimal set with period greater than 1 collapse. However, since
the size of the noise is big, it is not enough for us to consider the arguments which are similar to
those of deterministic dynamics of one map, thus we have to develop the theory of random complex
dynamical systems with noise or randomness of any size as in Theorems 1.1, 1.2.

As we see before, in Theorems 1.1 and 1.2, the chaoticity of random complex dynamical systems
is much weaker than that of deterministic dynamical systems. However, the random systems may
have still a kind of complexity or chaoticity. For example, when we consider the function TL,τ

of probability of tending to one L ∈ Min(Gτ , Ĉ), then under certain conditions, this function is

continuous on Ĉ and even more, this is α-Hölder continuous on Ĉ for some α ∈ (0, 1) but there

exists an element β ∈ (0, 1) such that TL,τ cannot β-Hölder continuous on Ĉ. This implies that
the system generated by τ does not act mildly (i.e., the transition operator Mτ of τ does not act

mildly) on the Banach space Cβ(Ĉ) of β-Hölder continuous functions on Ĉ endowed with β-Hölder

norm ∥ · ∥β (e.g., there exists a φ ∈ Cβ(Ĉ) such that ∥Mn
τ (φ)∥β → ∞ as n→ ∞). Thus regarding

the random (complex) dynamical systems, we have the gradations between chaos and order
(see [36, 37, 17, 18, 39]).

In Theorems 3.79 and 3.82, we show the results on random dynamical systems generated by
measures τ on Y without assuming Y is mild. We show that considering the mild part M1,c,mild(Y)
(the set of elements τ which has an attractor, see Definition 3.77), there exists an open and dense
subset A of M1,c,mild(Y) such that for each τ ∈ A, statements (I)–(III) in Theorem 1.1 and
statements (I)(II) in 1.2 hold. Also, denoting by M1,c,JF (Y) the set of elements τ ∈ M1,c(Y) for

which J(Gτ ) = Ĉ and either Min(Gτ , Ĉ) = {Ĉ} or ∪L∈Min(Gτ ,Ĉ)L ⊂ S(W), we show that the union

of A and M1,c,JF (Y) is dense in M1,c(Y) (Theorems 3.79 and 3.82).

Example 1.7. We give some examples of Y satisfying the assumptions in Theorem 1.2 or the
generalized version Theorem 3.81. For the details, see Section 5. In the following, A denotes the
open and dense subset of (M1,c(Y),O) or (M1,c(Y, {Wj}mj=1),O) (for the notation, see Defini-
tion 3.41) in Theorem 1.2 or Theorem 3.81. As mentioned before, if Jker(Gτ ) ̸= ∅, it is much
more difficult to show the statements on convergence of measures and negativity of
Lyapunov exponents in Theorems 1.1, 1.2, 3.76, 3.81 than the cases with Jker(Gτ ) = ∅.
(i) For each q ∈ N with q ≥ 2, let Pq := {f ∈ P | deg(f) = q}. Let (q1, . . . , qm) ∈ Nm with

q1 < q2 < · · · < qm and let Wj = {f}f∈Pqj
, j = 1, . . . ,m and let Y = ∪m

j=1Pqj . In this case,

S(Wj) \ {∞} = ∅ for each j and the set Ωτ in Theorem 3.81 is equal to Ĉ. (Note that this
result has been already obtained in [37].)

(ii) Let q ∈ N with q ≥ 2 and let W = {zq + c}c∈C. Let Y = {zq + c | c ∈ C}. In this case,

S(W)\{∞} = ∅ and the set Ωτ in Theorem 1.2 is equal to Ĉ. (Note that this result has been
already obtained in [37].)

(iii) Let W = {λz(1 − z)}λ∈C\{0} and let Y = {λz(1 − z) ∈ P2 | λ ∈ C \ {0}}. In this case,
S(W) = {0, 1} ∪ {∞} and S(W) \ {∞} ̸= ∅. There exists a non-empty open subset A′ of A
such that for each τ ∈ A′, we have F 0

pt(τ) = Ωτ ̸= Ĉ and Jker(Gτ ) ̸= ∅.
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(iv) Let f ∈ P such that if z0 ∈ C and f(z0) = 0, then f ′(z0) ̸= 0. Let W = {z + λf(z)}λ∈C\{0}
and let Y = {z + λf(z) ∈ P | λ ∈ C \ {0}}. In this case, S(W) = {z0 ∈ C | f(z0) = 0} ∪ {∞}
and S(W) \ {∞} ≠ ∅. Then there exists a non-empty open subset A′ of A such that for each

τ ∈ A′, we have F 0
pt(τ) = Ωτ ̸= Ĉ and Jker(Gτ ) ̸= ∅.

(v) Let n ∈ N with n ≥ 2 and let w = e2πi/n ∈ C. Let Wi = {wi(z + λ(zn − 1))}λ∈C\{0} for
each i = 1, . . . , n. Let i1, . . . , im ∈ {1, . . . , n} with i1 < i2 · · · < im. For these i1, . . . , im, let
Y = ∪m

j=1{wij (z+ λ(zn − 1)) ∈ P | λ ∈ C \ {0}}. Then there exists a non-empty open subset

A′ of A such that for each τ ∈ A′, we have F 0
pt(τ) = Ωτ ̸= Ĉ and Jker(Gτ ) ̸= ∅.

The strategy to prove Theorems 1.1, 1.2, 3.76, 3.81 is as follows. Let Y be a mild subset of Rat+
and suppose that Y is nice with respect to a holomorphic family W = {fλ}λ∈Λ of rational maps.
Let τ0 ∈ M1,c(Y). Then there exists an element τ which is arbitrarily close to τ0 and int(Γτ ) ̸= ∅.
We show that for such τ , we have Jker(Gτ ) ⊂ S(W) and hence ♯J(Gτ ) < ∞, by using Montel’s
theorem (Lemmas 3.44, 3.45). In Proposition 3.63, we develop a theory on the systems with
finite kernel Julia sets based on careful observations on limit functions on the Fatou sets by
using the hyperbolic metrics on the Fatou components (Lemma 3.60), and we obtain that

for each L ∈ Min(Gτ , Ĉ) with L∩F (Gτ ) ̸= ∅, the dynamics in Fatou components which meet L are

locally contracting and ♯Min(Gτ , Ĉ) <∞. Also, we develop a theory on bifurcation of minimal
sets under perturbation which was initiated by the author of this paper in [37] in Lemma 3.71,

and applying it and enlarging the support of τ a little bit, we obtain that any L ∈ Min(Gτ , Ĉ)
with L∩F (Gτ ) ̸= ∅ is attracting for τ. By the theory of finite Markov chains ([9]), we see that for

such τ and for each L ∈ Min(Gτ , Ĉ) with L ⊂ Jker(Gτ ), there exists a canonical invariant measure
on L (Lemmas 3.25, 3.26, Definition 3.29). It is very important and useful to show that for any

y ∈ Ĉ, letting Ey := {γ ∈ (Rat)N | y ∈ ∩∞
n=1γ

−1
n,1(J(Gτ ))},

for τ̃ -a.e. γ ∈ Ey, we have d(γn,1(y), Jker(Gτ )) → 0 as n→ ∞,

by using careful observations on random dynamical systems on general compact metric spaces
(Lemma 3.15).

We next observe the local dynamics of Gτ at each point of S(W). By enlarging the support of τ

a little bit, by some careful arguments, it turns out that we may assume that each L ∈ Min(Gτ , Ĉ)
with L ⊂ S(W) satisfies one of the following conditions (I)–(IV). (I) “Uniformly expanding”.
(II) “Attracting”. (III) “There exist a point z1 ∈ L and elements g1, g2, g3 ∈ Gτ such that
g1(z1) = z1, ∥D(g1)z1∥s > 1, g2(z1) = z1, ∥D(g2)z1∥s < 1, g3(z1) = z1, and g3 has a Siegel disk
with center z1”. (IV) “There exists a point z1 ∈ L such that for each λ ∈ Λ, we have D(fλ)z1 = 0.
Moreover, there exist a point z2 ∈ L and an element g ∈ Gτ such that g(z2) = z2 and ∥Dgz2∥s > 1”.
By using some results on rational semigroups from [13], it turns out that if L is of type (III) or
(IV), then L ⊂ int(J(Gτ )). In particular, for each z ∈ F (Gτ ), we have G(z) ∩ L = ∅. It turns out
that for each z ∈ F (Gτ ), if G(z) does not meet any attracting minimal set of τ , then G(z) meets a
minimal set L which is uniformly expanding. Thus G(z) meets a backward image of L under some
element of Gτ , which is included in a compact subset of J(Gτ )\S(W). By enlarging the support of
τ a little bit again, we obtain that for each z ∈ F (Gτ ), G(z) meets an attracting minimal set of τ.
From these arguments, we can show that this τ is weakly mean stable, i.e., there exist a positive
integer n and two non-empty open subsets V1,τ , V2,τ of Ĉ with V1,τ ⊂ V2,τ and ♯(Ĉ \ V2,τ ) ≥ 3
such that (a) for each (γ1, . . . , , γn) ∈ Γn

τ , we have γn · · · γ1(V2,τ ) ⊂ V1,τ , (b) we have ♯Dτ < ∞,

where Dτ := ∩g∈Gτ g
−1(Ĉ \ V2,τ ), and (c) for each L ∈ Min(Gτ , Ĉ) with L ⊂ Dτ , there exist an

element z ∈ L and an element gz ∈ Gτ such that z is a repelling fixed point of gz. From this fact,
we can prove the existence of an open and dense subset A in Theorems 1.1, 3.76. If we assume
further that Y is non-exceptional with respect to W, then we can show that there exists an open
and dense subset A′ of A such that for each τ ∈ A′, (1) for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W),

we have χ(τ, L) ̸= 0, and (2) for each L ∈ Min(Gτ , Ĉ) with L ⊂ S(W), if χ(τ, L) > 0, then for
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each z ∈ L and for each g ∈ Γτ , we have Dgz ̸= 0. Combining this fact and the observations
on the local behavior of the systems around the minimal sets with non-zero Lyapunov exponents
(Lemmas 3.30–3.36), we can prove that each element of τ ∈ A′ satisfies statements (I)–(III) in
Theorem 1.2.

By the above arguments, we obtain the following.

Corollary 1.8 (For more generalized result, see Theorem 3.76). Under the assumptions of Theo-
rem 1.1, the set of weakly mean stable elements τ ∈ (M1,c(Y),O) is open and dense in (M1,c(Y),O),

Note that weak mean stability is a new concept introduced by the author of this paper, and it
is crucial to consider the density of weakly mean stable elements to prove Theorems 1.1, 1.2, 3.76,
3.81. We emphasize that weakly mean stability implies many interesting properties (Lemma 3.73,
Theorem 3.80). We remark that in [36], the notion mean stability (i.e., every minimal set is
attracting) was introduced by the author of this paper and it was proved in [37] that the set
of mean stable elements of τ ∈ M1,c(P) is open and dense in M1,c(P). Mean stability implies
weak mean stability, but the converse is not true. In fact, there are many examples of mild
and nice sets Y for which there exists a non-empty open subset A′′ of A (where A is the set in
Theorems 1.1, 1.2) such that each τ ∈ A′′ is not mean stable (but is weakly mean stable).
For such examples, see Theorems 1.4, 4.4, Example 1.7 (iii)–(v) and Examples 5.4–5.7.

In Section 2, we give some fundamental notations and definitions, and present some basic facts
on rational semigroups. In Section 3, we develope the theory of random complex dynamical systems
and prove several theorems including Theorems 1.1, 1.2 and the detailed versions Theorems 3.76,
3.81 of them. In Section 4, we apply Theorems 1.1, 1.2, 3.76, 3.81 and the other results in Section 3
to random relaxed Newton’s methods in which we find roots of given polynomials, and we show
Theorem 1.4 and the detailed version Theorem 4.4. In Section 5, we give some examples to which
we can apply the main theorems.

2 Preliminaries

In this section, we give some fundamental notations and definitions.
Notation. Let (X, d) be a metric space, A a subset of X, and r > 0. We set B(A, r) :=
{z ∈ X | d(z,A) < r}.Moreover, for a subset C of C, we set D(C, r) := {z ∈ C | infa∈C |z−a| < r}.
Moreover, for any topological space Y and for any subset A of Y , we denote by int(A) the set of
all interior points of A. We denote by Con(A) the set of all connected components of A.

Definition 2.1. Let Y be a metric space. We set CM(Y ) := {f : Y → Y | f is continuous} en-
dowed with the compact-open topology. Also, we set OCM(Y ) := {f ∈ CM(Y ) | f is an open map}
endowed with the relative topology from CM(Y ). Moreover, we denote by C(Y ) the space of all
continuous functions φ : Y → C. When Y is compact, we endow C(Y ) with the supremum norm
∥ · ∥∞.

Remark 2.2. CM(Y ) and OCM(Y ), are semigroups with the semigroup operation being functional
composition. If Y is a compact metric space, then CM(Y ) is a complete separable metric space.

Definition 2.3. A rational semigroup is a semigroup generated by a family of non-constant
rational maps on Ĉ with the semigroup operation being functional composition([13, 12]). A poly-
nomial semigroup is a semigroup generated by a family of non-constant polynomial maps. We
set Rat : = {h : Ĉ → Ĉ | h is a non-constant rational map} endowed with the distance κ which is

defined by κ(f, g) := supz∈Ĉ d(f(z), g(z)), where d denotes the spherical distance on Ĉ. Moreover,
we set Rat+ := {h ∈ Rat | deg(h) ≥ 2} endowed with the relative topology from Rat. Also, we set

P := {g : Ĉ → Ĉ | g is a polynomial, deg(g) ≥ 2} endowed with the relative topology from Rat.

Remark 2.4. ([2, Theorem 2.8.2, Corollary 2.8.3]) Let Ratm := {g ∈ Rat | deg(g) = m} for each
m ∈ N and let Pm := {g ∈ P | deg(g) = m} for each m ∈ N with m ≥ 2. Then for each m, Ratm
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(resp. Pm) is a connected component of Rat (resp. P). Moreover, Ratm (resp. Pm) is open and
closed in Rat (resp. P) and is a finite dimensional complex manifold. Also, hn → h in P if and
only if deg(hn) = deg(h) for each large n and the coefficients of hn tend to the coefficients of h
appropriately as n→ ∞.

Definition 2.5. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). The
Fatou set of G is defined to be

F (G) := {z ∈ Y | ∃ neighborhood U of z s.t.{g|U : U → Ĉ}g∈G is equicontinuous on U}.

(For the definition of equicontinuity, see [2].) The Julia set of G is defined to be J(G) := Ĉ\F (G).
If G is generated by {gi}mi=1 (i.e., G = {gi1 ◦ · · · ◦ gin | n ∈ N, i1, . . . , in ∈ {1, . . . ,m}}) , then we
write G = ⟨g1, g2, . . . gm⟩. If G is generated by a subset Γ of CM(Y ) (i.e., G is equal to the set
{h1 ◦ · · · ◦ hn | n ∈ N, h1, . . . , hn ∈ Λ}), then we write G = ⟨Γ⟩. For a subset A of Y , we set
G(A) :=

∪
g∈G g(A) and G−1(A) :=

∪
g∈G g

−1(A). We set G∗ := G ∪ {Id}, where Id denotes the
identity map.

Lemma 2.6 ([13, 12]). Let Y be a compact metric space and let G be a subsemigroup of OCM(Y ).
Then, for each h ∈ G, h(F (G)) ⊂ F (G) and h−1(J(G)) ⊂ J(G). Note that the equality does not
hold in general.

Regarding the dynamics of rational semigroups G, we have the following. F (G) is G-forward

invariant and J(G) is G-backward invariant. Here, we say that a set A ⊂ Ĉ is G-backward
invariant, if g−1(A) ⊂ A for each g ∈ G, and we say that A is G-forward invariant, if g(A) ⊂ A,
for each g ∈ G. If ♯(J(G)) ≥ 3, then J(G) is a perfect set and ♯(E(G)) ≤ 2, where E(G) :=

{z ∈ Ĉ | ♯G−1(z) < ∞}. (E(G) is called exceptional set of G.) Moreover, if ♯J(G) ≥ 3 and if

z ∈ Ĉ \ E(G), then J(G) ⊂ G−1(z). In particular, if ♯J(G) ≥ 3 and z ∈ J(G) \ E(G), then

G−1(z) = J(G). Also, if ♯(J(G)) ≥ 3, then J(G) is the smallest closed subset of Ĉ containing
at least three points which is G-backward invariant. Furthermore, if ♯(J(G)) ≥ 3, then we have

J(G) = {z ∈ Ĉ | z is a repelling fixed point of some g ∈ G} = ∪g∈GJ(g). For the proofs of these
results, see [13] and [27]. We remark that [27] is a very nice introductory article of rational
semigroups.

The following is the key to investigating random complex dynamics.

Definition 2.7. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). We
set Jker(G) :=

∩
g∈G g

−1(J(G)). This is called the kernel Julia set of G.

Remark 2.8. Let Y be a compact metric space and let G be a subsemigroup of CM(Y ). (1)
Jker(G) is a compact subset of J(G). (2) For each h ∈ G, h(Jker(G)) ⊂ Jker(G). (3) If G is a
rational semigroup and if F (G) ̸= ∅, then int(Jker(G)) = ∅. (4) If G is generated by a single map or
if G is a group, then Jker(G) = J(G). However, for a general rational semigroup G, it may happen
that ∅ = Jker(G) ̸= J(G) (see [36]).

In the rest of this paper we sometimes need some results of random complex dynamical systems
from [36, 37].

3 Random complex dynamical systems

In this section, we develope the theory of random complex dynamical systems and prove several
theorems including Theorems 1.1, 1.2 and the detailed versions Theorems 3.76, 3.81 of them.
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3.1 Random dynamical systems on general compact metric spaces

In this subsection we show some results on random dynamical systems on general compact metric
spaces. It is sometimes important to investigate the dynamics of sequences of maps.

Definition 3.1. Let Y be a compact metric space. For each γ = (γ1, γ2, . . .) ∈ (CM(Y ))N and
each m,n ∈ N with m ≥ n, we set γm,n = γm ◦ · · · ◦ γn and we set γ0,1 = Id. Also, we set

Fγ,0 := {z ∈ Y | {γn,1}∞n=1 is equicontinuous at the one point z},
Fγ := {z ∈ Y | ∃ neighborhood U of z s.t. {γn,1}n∈N is equicontinuous on U},

Jγ,0 := Y \ Fγ,0 and Jγ := Y \ Fγ . The set Fγ is called the Fatou set of the sequence γ and
the set Jγ is called the Julia set of the sequence γ. Moreover, we set F γ,0 := {γ} × Fγ,0(⊂
(CM(Y ))N × Y ), F γ := {γ} × Fγ (⊂ (CM(Y ))N × Y ), Jγ,0 := {γ} × Jγ,0(⊂ (CM(Y ))N × Y ) and
Jγ := {γ} × Jγ (⊂ (CM(Y ))N × Y ).

Remark 3.2. Let γ ∈ (Rat)N. Then by Montel’s theorem, Jγ,0 = Jγ . Also, if γ ∈ (Rat+)
N, then

by [2, Theorem 2.8.2], Jγ ̸= ∅. Moreover, if Γ is a non-empty compact subset of Rat+ and γ ∈ ΓN,
then by [31], Jγ is a perfect set and Jγ has uncountably many points.

Lemma 3.3. Let Y be a compact metric space. Let Γ be a non-empty closed subset of an open
subset of CM(Y ). Then

∪
γ∈ΓN F γ,0,

∪
γ∈ΓN F γ ,

∪
γ∈ΓN Jγ,0 and

∪
γ∈ΓN Jγ are Borel measurable

subsets of ΓN × Y and∪
γ∈ΓN

F γ,0 = {(γ, y) ∈ ΓN × Y | lim
m→∞

sup
n≥1

diamγn,1(B(y,
1

m
)) = 0}, (5)

∪
γ∈ΓN

F γ =
∪
p∈N

{(γ, y) ∈ ΓN × Y | lim
m→∞

sup
n≥1

sup
y′∈B(y, 1p )

diamγn,1(B(y′,
1

m
)) = 0}. (6)

Proof. By the definition of F γ , we obtain (5) and (6). From (5) and (6), it follows that
∪

γ∈ΓN F γ,0

and
∪

γ∈ΓN F γ are Borel subsets of ΓN × Y. Thus
∪

γ∈ΓN Jγ,0 and
∪

γ∈ΓN Jγ are also Borel subsets

of ΓN × Y.

We now give some notations on random dynamics.

Definition 3.4. For a metric space Y , we denote by M1(Y ) the space of all Borel probability mea-
sures on Y endowed with the topology such that µn → µ in M1(Y ) if and only if for each bounded
continuous function φ : Y → C,

∫
φ dµn →

∫
φ dµ. Note that if Y is a compact metric space, then

M1(Y ) is a compact metric space with the metric d0(µ1, µ2) :=
∑∞

j=1
1
2j

|
∫
ϕjdµ1−

∫
ϕjdµ2|

1+|
∫
ϕjdµ1−

∫
ϕjdµ2| , where

{ϕj}j∈N is a dense subset of C(Y ). Furthermore, for each τ ∈ M1(Y ), the topological support supp τ
of τ is defined as supp τ := {z ∈ Y | ∀ neighborhood U of z, τ(U) > 0}. Note that supp τ is a closed
subset of Y. Furthermore, we set M1,c(Y ) := {τ ∈ M1(Y ) | supp τ is a compact subset of Y }.

For a complex Banach space B, we denote by B∗ the space of all continuous complex linear
functionals ρ : B → C, endowed with the weak∗ topology.

For any τ ∈ M1(CM(Y )), we will consider the i.i.d. random dynamics on Y such that at every
step we choose a map g ∈ CM(Y ) according to τ (thus this determines a time-discrete Markov
process with time-homogeneous transition probabilities on the state space Y such that for each
x ∈ Y and each Borel measurable subset A of Y , the transition probability p(x,A) from x to A is
defined as p(x,A) = τ({g ∈ CM(Y ) | g(x) ∈ A})).

Definition 3.5. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )).

1. We set Γτ := supp τ (thus Γτ is a closed subset of CM(Y )). Moreover, we set Xτ := (Γτ )
N

(= {γ = (γ1, γ2, . . .) | γj ∈ Γτ (∀j)}) endowed with the product topology. Furthermore,
we set τ̃ := ⊗∞

j=1τ. This is the unique Borel probability measure on Xτ such that for each
cylinder set A = A1 × · · · ×An ×Γτ ×Γτ × · · · in Xτ , τ̃(A) =

∏n
j=1 τ(Aj). We denote by Gτ

the subsemigroup of CM(Y ) generated by the subset Γτ of CM(Y ).
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2. Let Mτ be the operator on C(Y ) defined by Mτ (φ)(z) :=
∫
Γτ
φ(g(z)) dτ(g). Mτ is called

the transition operator of the Markov process induced by τ. Moreover, let M∗
τ : C(Y )∗ →

C(Y )∗ be the dual of Mτ , which is defined as M∗
τ (µ)(φ) = µ(Mτ (φ)) for each µ ∈ C(Y )∗

and each φ ∈ C(Y ). Remark: we have M∗
τ (M1(Y )) ⊂ M1(Y ) and for each µ ∈ M1(Y ) and

each open subset V of Y , we have M∗
τ (µ)(V ) =

∫
Γτ
µ(g−1(V )) dτ(g).

3. We denote by Fmeas(τ) the set of µ ∈ M1(Y ) satisfying that there exists a neighborhood B
of µ in M1(Y ) such that the sequence {(M∗

τ )
n|B : B → M1(Y )}n∈N is equicontinuous on B.

We set Jmeas(τ) := M1(Y ) \ Fmeas(τ).

4. We denote by F 0
meas(τ) the set of µ ∈ M1(Y ) satisfying that {(M∗

τ )
n : M1(Y ) → M1(Y )}n∈N

is equicontinuous at the one point µ. Note that Fmeas(τ) ⊂ F 0
meas(τ).

5. We set J0
meas(τ) := M1(Ĉ) \ F 0

meas(τ).

Remark 3.6. We have Fmeas(τ) ⊂ F 0
meas(τ) and J

0
meas(τ) ⊂ Jmeas(τ).

Remark 3.7. Let Γ be a closed subset of an open subset U of Rat. Then there exists a τ ∈ M1(U)
such that supp τ (in the sense of Definition 3.4) is equal to Γ. By using this fact, we sometimes
apply the results on random complex dynamics to the study of the dynamics of rational semigroups.

Definition 3.8. Let Y be a compact metric space. Let Φ : Y → M1(Y ) be the topological
embedding defined by: Φ(z) := δz, where δz denotes the Dirac measure at z. Using this topological
embedding Φ : Y → M1(Y ), we regard Y as a compact subset of M1(Y ).

Remark 3.9. If h ∈ Rat and τ = δh, then we have M∗
τ ◦Φ = Φ ◦ h on Ĉ. Moreover, for a general

τ ∈ M1(Rat), M
∗
τ (µ) =

∫
h∗(µ)dτ(h) for each µ ∈ M1(Ĉ). Therefore, for a general τ ∈ M1(Rat),

the map M∗
τ : M1(Ĉ) → M1(Ĉ) can be regarded as the “averaged map” on the extension M1(Ĉ)

of Ĉ.

Definition 3.10. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Regarding Y as a
compact subset of M1(Y ) as in Definition 3.8, we use the following notation.

1. We denote by Fpt(τ) the set of z ∈ Y satisfying that there exists a neighborhood B of z
in Y such that the sequence{(M∗

τ )
n|B : B → M1(Y )}n∈N is equicontinuous on B. We set

Jpt(τ) := Y \ Fpt(τ).

2. Similarly, we denote by F 0
pt(τ) the set of z ∈ Y such that the sequence {(M∗

τ )
n|Y : Y →

M1(Y )}n∈N is equicontinuous at the one point z ∈ Y. We set J0
pt(τ) := Y \ F 0

pt(τ).

Also, the set Jker(Gτ ) is called the kernel Julia set of τ.

Remark 3.11. We have Fpt(τ) ⊂ F 0
pt(τ) and J

0
pt(τ) ⊂ Jpt(τ)∩J0

meas(τ) (regarding Y as a compact
subset of M1(Y ) by using the topological embedding Φ : Y → M1(Y )).

Remark 3.12. If τ = δh ∈ M1(Rat+) with h ∈ Rat+, then J
0
pt(τ) and Jmeas(τ) are uncountable.

In fact, we have ∅ ≠ J(h) ⊂ J0
pt(τ) and J(h) is uncountable.

Lemma 3.13. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Let y ∈ Y. Suppose
τ̃({γ ∈ (CM(Y ))N | y ∈ Jγ,0}) = 0. Then y ∈ F 0

pt(τ).

Proof. By (6) in Lemma 3.3 and the assumption of our lemma, we obtain that for τ̃ -a.e.γ ∈
(CM(Y ))N, limm→∞ supn≥1 diam(γn,1(B(y, 1

m ))) = 0. Let ϵ > 0. By Egoroff’s theorem, there
exists a Borel subset A1 of Xτ with τ̃(Xτ \A1) < ϵ such that

sup
n≥1

diam(γn,1(B(y,
1

m
))) → 0 (7)
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as m → ∞ uniformly on A1. Let φ ∈ C(Y ). Then there exists a δ1 > 0 such that if d(z1, z2) < δ1
then |φ(z1)− φ(z2)| < ϵ. By (7), there exists a δ2 > 0 such that for each z ∈ Y with d(z, y) < δ2,
for each γ ∈ A1, and for each n ∈ N, we have d(γn,1(z), γn,1(y)) < δ1. Therefore for each z ∈ Y
with d(z, y) < δ2, we have

|Mn
τ (φ)(z)−Mn

τ (φ)(y)| ≤
∫
A1

|φ(γn,1(z)− φ(γn,1(y))|dτ̃(γ) +
∫
Xτ\A1

|φ(γn,1(z))− φ(γn,1(y))|dτ̃(γ)

≤ τ̃(A1) · ϵ+ 2ϵ · sup
a∈Ĉ

|φ(a)|

≤ ϵ(1 + 2∥φ∥∞).

It follows that y ∈ F 0
pt(τ). Thus we have proved our lemma.

For a smooth Riemannian real manifold Y with dimY = p, we denote by Lebp the (p-
dimensional) Lebesgue measure on Y.

Corollary 3.14. Let Y be a compact smooth manifold with dim(Y ) = p and let τ ∈ M1(CM(Y )).
Suppose that for τ̃ -a.e.γ ∈ (CM(Y ))N, Lebp(Jγ,0) = 0. Then Lebp(J

0
pt(τ)) = 0.

Proof. Under the assumptions of our corollary, Lemma 3.3 and Fubini’s theorem imply that for
Lebp-a.e.y ∈ Y , we have τ̃({γ ∈ (CM(Y ))N | y ∈ Jγ,0}) = 0. By Lemma 3.13, it follows that for
Lebp-a.e.y ∈ Y , y ∈ F 0

pt(τ). Thus we have proved our corollary.

The following lemma is very important and useful to prove many results.

Lemma 3.15. Let Y be a compact metric space. Let τ ∈ M1(CM(Y )). Let V be a non-empty open
subset of Y . Suppose that for each g ∈ Γτ , g(V ) ⊂ V. Let Lker := ∩g∈Gτ g

−1(Y \ V ). Let y ∈ Y
and let E := {γ ∈ Xτ | y ∈ ∩∞

j=1γ
−1
j,1 (Y \ V )}. Then for τ̃ -a.e.γ ∈ E, we have d(γn,1(y), Lker) → 0

as n→ ∞.

Proof. For each δ > 0 and n ∈ N, let A(δ, n) := {γ ∈ E | γn,1(y) ∈ (Y \ V ) \ B(Lker, δ)} and
C(δ) := {γ ∈ E | ∃n0 ∈ N s.t. ∀n ≥ n0, γn,1(y) ∈ B(Lker, δ)}. In order to prove our lemma, it
suffices to show that

τ̃(E \ C(δ)) = 0 for each δ > 0. (8)

Since E \ C(δ) = ∩∞
N=1 ∪∞

n=N A(δ, n), we have

τ̃(E \ C(δ)) = lim
N→∞

τ̃(∪∞
n=NA(δ, n)) ≤ lim

N→∞

∞∑
n=N

τ̃(A(δ, n)).

Thus, in order to show (8), it suffices to prove that

∞∑
n=1

τ̃(A(δ, n)) <∞ for each δ > 0. (9)

In order to prove (9), let δ > 0. Then for each z ∈ (Y \ V ) \ B(Lker, δ), there exists an element
gz ∈ G and a neighborhood Uz of z in Y such that gz(Uz) ⊂ V. Since H := (Y \ V ) \B(Lker, δ) is
compact, there exist finitely many points z1, . . . , zr ∈ Y such that H ⊂ ∪r

j=1Uzj . Since g(V ) ⊂ V
for each g ∈ Γτ , we may assume that there exists an l ∈ N such that for each j = 1, . . . , r, there
exists an element γj = (γj1, . . . , γ

j
l ) ∈ Γl

τ with gzj = γjl ◦ · · · ◦ γ
j
1. Then for each j = 1, . . . , r, there

exists a neighborhoodWj of γ
j in Γl

τ such that for each α = (α1, . . . , αl) ∈Wj , αl◦· · ·◦α1(Uzj ) ⊂ V.
Let δ0 := minrj=1 τ

l(Wj), where τ
l = ⊗l

n=1τ ∈ M1((CM(Y ))l). For each i = 0, 1, . . . , l − 1 and for
each n ∈ N, let

H(δ, i, n) := {γ ∈ ΓN
τ | γi+nl,1(y) ∈ (Y \ V ) \B(Lker, δ), γi+(n+1)l,1(y) ∈ V }
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and
I(δ, i, n) := {γ ∈ ΓN

τ | γi+nl,1(y) ∈ (Y \ V ) \B(Lker, δ)}.

Note that if n ̸= m then H(δ, i, n) ∩ H(δ, i,m) = ∅. Let Q1, . . . , Qs be mutually disjoint Borel
subsets of (Y \ V ) \ B(Lker, δ) such that (Y \ V ) \ B(Lker, δ) = ∪s

p=1Qp and such that for each
p = 1, . . . s there exists a j(p) ∈ {1, . . . , r} with Qp ⊂ Uzj(p) . Then for each i = 0, 1 . . . , l − 1, we
have

τ̃(H(δ, i, n)) = τ i+(n+1)l(
s⨿

p=1

{γ ∈ Γi+(n+1)l
τ | γi+nl,1(y) ∈ Qp, γi+(n+1)l,1(y) ∈ V })

=

s∑
p=1

τ i+(n+1)l({γ ∈ Γi+(n+1)l
τ | γi+nl,1(y) ∈ Qp, γi+(n+1)l,1(y) ∈ V })

≥
s∑

p=1

τ i+(n+1)l({γ ∈ Γi+(n+1)l
τ | γi+nl,1(y) ∈ Qp, (γi+nl+1 . . . , γi+(n+1)l) ∈Wj(p)})

=

s∑
p=1

τ i+nl({γ ∈ Γi+nl
τ | γi+nl,1(y) ∈ Qp}) · τ l(Wj(p))

≥ δ0τ̃(I(δ, i, n)),

where
⨿

denotes the disjoint union. Therefore

1 ≥ τ̃(
∪
n∈N

{γ ∈ ΓN
τ | γn,1(y) ∈ V })

≥ τ̃(
∞∪

n=1

H(δ, i, n)) =
∞∑

n=1

τ̃(H(δ, i, n)) ≥
∞∑

n=1

δ0τ̃(I(δ, i, n)).

Thus
∑∞

n=1 τ̃(I(δ, i, n)) <∞ for each i = 0, 1, . . . , l − 1. Hence

∞∑
n=1

τ̃(A(δ, n)) =
l−1∑
i=0

∞∑
n=1

τ̃(I(δ, i, n)) <∞.

Therefore (9) holds. Thus we have proved our lemma.

3.2 Systems with hyperbolic kernel Julia sets

In this subsection, we show a result on random complex dynamical systems with hyperbolic kernel
Julia sets.

For a holomorphic map φ : U → Ĉ defined on an open subset U of Ĉ and for any z ∈ U , we
denote by Dφz : TzU → Tφ(z)Ĉ the complex differential map of φ at z, where TzU denotes the

complex tangential space of U at z and Tφ(z)Ĉ denotes the complex tangential space of Ĉ at φ(z).

Also, we denote by ∥Dφz∥s the norm of Dφz with respect to the spherical metric on Ĉ.

Definition 3.16. Let Y be a compact metric space and let Γ be a non-empty subset of CM(Y ).
We endow Γ with the relative topology from CM(Y ). We define a map f : ΓN × Y → ΓN × Y as
follows: For a point (γ, y) ∈ ΓN × Y where γ = (γ1, γ2, . . .), we set f(γ, y) := (σ(γ), γ1(y)), where
σ : ΓN → ΓN is the shift map, that is, σ(γ1, γ2, . . .) = (γ2, γ3, . . .). The map f : ΓN × Y → ΓN × Y
is called the skew product associated with the generator system Γ. Moreover, we use the
following notation.

1. Let π : ΓN×Ĉ → ΓN and πY : ΓN×Y → Y be the canonical projections. For each γ ∈ ΓN and
n ∈ N, we set fnγ := fn|π−1{γ} : π−1{γ} → π−1{σn(γ)}. Moreover, we set fγ,n := γn ◦· · ·◦γ1.
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2. We set J̃(f) :=
∪

γ∈ΓN Jγ , where the closure is taken in the product space ΓN×Y. Furthermore,

we set F̃ (f) := (ΓN × Y ) \ J̃(f).

3. For each γ ∈ ΓN, we set Ĵγ,Γ := π−1{γ} ∩ J̃(f), F̂ γ,Γ := π−1({γ}) \ Ĵγ,Γ, Ĵγ,Γ := πY (Ĵ
γ,Γ),

and F̂γ,Γ := Y \ Ĵγ,Γ. Note that Jγ ⊂ Ĵγ,Γ.

4. When Γ ⊂ Rat, for each z = (γ, y) ∈ ΓN × Ĉ, we set Dfz := D(γ1)y.

Remark 3.17. Under the above notation, let G = ⟨Γ⟩. Then πY (J̃(f)) ⊂ J(G) and π ◦ f = σ ◦ π
on ΓN × Y. Moreover, for each γ ∈ ΓN, γ1(Jγ) ⊂ Jσ(γ), γ1(Ĵγ,Γ) ⊂ Ĵσ(γ),Γ, and f(J̃(f)) ⊂ J̃(f).

Furthermore, if Γ ∈ Cpt(Rat), then for each γ ∈ ΓN, γ1(Jγ) = Jσ(γ), γ
−1
1 (Jσ(γ)) = Jγ , γ1(Ĵγ,Γ) =

Ĵσ(γ),Γ, γ
−1
1 (Ĵσ(γ),Γ) = Ĵγ,Γ, f(J̃(f)) = J̃(f) = f−1(J̃(f)), and f(F̃ (f)) = F̃ (f) = f−1(F̃ (f)) (see

[31, Lemma 2.4]).

Definition 3.18. Let Γ be a subset of Rat. Let G = ⟨Γ⟩. We say that a subset A of J(G) is a
hyperbolic set for Γ if there are constants C > 0 and λ > 1 such that for each n ∈ N, for each
z ∈ A, and for each γ ∈ ΓN, we have ∥D(γn,1)z∥s ≥ Cλn.

We now show a result on the case that Jker(Gτ ) is a hyperbolic set for Γτ .

Proposition 3.19. Let τ ∈ M1,c(Rat). Suppose that F (Gτ ) ̸= ∅ and Jker(Gτ ) is a hyperbolic set

for Γτ . Then for τ̃ -a.e.γ ∈ (Rat)N, we have Leb2(Ĵγ,Γτ ) = 0, where Leb2 denotes the 2-dimensional

Lebesgue measure on Ĉ. Moreover, Leb2(J
0
pt(τ)) = 0.

Proof. Suppose that the statement “for τ̃ -a.e.γ ∈ (Rat)N, Leb2(Ĵγ,Γτ ) = 0” is not true. Then

since (σ, τ̃) is ergodic, we have for τ̃ -a.e.γ ∈ (Rat)N, Leb2(Ĵγ,Γτ
) > 0. Let V = F (Gτ ). Applying

Lemma 3.15, we obtain that

(τ̃ ⊗ Leb2)({(γ, y) ∈ J̃(f) | d(γn,1(y), Jker(Gτ )) ̸→ 0} as n→ ∞}) = 0.

Therefore for τ̃ -a.e.γ ∈ (Rat)N, for Leb2-a.e.y ∈ Ĵγ,Γτ ,we have d(γn,1(y), Jker(Gτ )) → 0 as n→ ∞.

Thus for τ̃ -a.e.γ, there exists a Lebesgue point y of Ĵγ,Γτ such that d(γn,1(y), Jker(Gτ )) → 0 as
n → ∞. Let (γ, y) be such an element. We may assume that D(γn,1)y ̸= 0 for each n ∈ N. Since
Jker(Gτ ) is a hyperbolic set for Γτ , we obtain that

y ∈ Jγ . (10)

Moreover, since Jker(Gτ ) is a hyperbolic set for Γτ and Γτ is compact, we have that there exists a

constant δ > 0 such that for each z ∈ Jker(Gτ ) and for each g ∈ Γτ , g : B(z, 2δ) → Ĉ is injective.
Let n0 ∈ N be an element such that

γn,1(y) ∈ B(Jker(Gτ ), δ) for each n with n ≥ n0. (11)

Combing (10), (11), that y is a Lebesgue point of Ĵγ,Γτ , the assumption that Jker(Gτ ) is a hyperbolic
set for Γτ and Koebe’s distortion theorem, we obtain that there exists an r > 0 such that

Leb2(Ĵσn(γ),Γτ
∩B(γn,1(y), r))

Leb2(B(γn,1(y), r))
→ 1 as n→ ∞.

Therefore there exist a point z ∈ Jker(Gτ ) and an element α ∈ ΓN
τ such that B(z, r) ⊂ Ĵα,Γτ . It

follows that αn,1(B(z, r)) ⊂ J(Gτ ) for each n ∈ N. Since we are assuming F (Gτ ) ̸= ∅, we obtain
that B(z, r) ⊂ Fα. However, it contradicts that Jker(Gτ ) is a hyperbolic set for Γτ . Thus we have
proved our proposition.
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3.3 Minimal sets with finite cardinality and related lemmas

In this subsection, we show some lemmas regarding random dynamical systems having minimal
sets with finite cardinality.

Definition 3.20. For a topological space Y , we denote by Cpt(Y ) the space of all non-empty
compact subsets of Y . If Y is a metric space, we endow Cpt(Y ) with the Hausdorff metric.

Definition 3.21. Let G be a rational semigroup. Let Y ∈ Cpt(Ĉ) be such that G(Y ) ⊂ Y. Let

K ∈ Cpt(Ĉ). We say that K is a minimal set for (G,Y ) if K is minimal among the space
{L ∈ Cpt(Y ) | G(L) ⊂ L} with respect to inclusion. Moreover, we denote by Min(G,Y ) the set of
all minimal sets for (G, Y ).

Remark 3.22. Let G be a rational semigroup. By Zorn’s lemma, it is easy to see that if K1 ∈
Cpt(Ĉ) and G(K1) ⊂ K1, then there exists a K ∈ Min(G, Ĉ) with K ⊂ K1. Moreover, it is easy to

see that for each K ∈ Min(G, Ĉ) and each z ∈ K, G(z) = K. In particular, if K1,K2 ∈ Min(G, Ĉ)
with K1 ̸= K2, then K1 ∩K2 = ∅. Moreover, by the formula G(z) = K, we obtain that for each

K ∈ Min(G, Ĉ), either (1) ♯K <∞ or (2) K is perfect and ♯K > ℵ0. Furthermore, it is easy to see

that if Γ ∈ Cpt(Rat), G = ⟨Γ⟩, and K ∈ Min(G, Ĉ), then K =
∪

h∈Γ h(K).

Remark 3.23. In [36, Remark 3.9], for the statement “for eachK ∈ Min(G,Y ), either (1) ♯K <∞
or (2) K is perfect”, we should assume that each element g ∈ G is a finite-to-one map.

We now show some lemmas on the minimal sets whose cardinalities are finite (Lemmas 3.25,
3.26).

Definition 3.24. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). For each r ∈ N, we
set Gr

τ := ⟨{g1 ◦ · · · ◦ gr | g1, . . . , gr ∈ Γτ}⟩.

Lemma 3.25. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). Let K be a nonempty
finite subset of Y. Suppose that Gτ (K) ⊂ K. Let {Ki}qi=1 = Min(Gτ ,K) where q = ♯Min(Gτ ,K).
For each i = 1, . . . q, let pi ∈ N be the period of the finite Markov chain with state space Ki induced
by τ (i.e. the finite Markov chain with state space Ki whose transition probability p(x,A) from
x ∈ Ki to A ⊂ Ki satisfies p(x,A) = τ({g ∈ Γτ | g(x) ∈ A})). (For the definition of “period”, see
[9, p308]). Let m =

∏q
i=1 pi ∈ N. Let {Hj}rj=1 = Min(Gm

τ ,K) where r = ♯(Min(Gm
τ ,K)). Then all

of the following hold.

(1) Let i = 1, . . . , q. Then ♯(Min(Gpi
τ ,Ki)) = pi. Moreover, there exist Ki,1, . . .Ki,pi ∈ Min(Gpi

τ ,Ki)
such that {Ki,k}

pj

k=1 = Min(Gpi
τ ,Ki), Ki = ∪pi

k=1Ki,k and h(Ki,k) ⊂ Ki,k+1 for each h ∈ Γτ ,
where Ki,pi+1 := Ki,1. Also, for each k = 1, . . . , pi there exists a unique element ωi,k ∈
M1(Ki,k) such that (M∗

τ )
pi(ωi,k) = ωi,k. Also, M

npi
τ (φ) → (

∫
φ dωi,k)1Ki,k

in C(Ki,k) as
n → ∞ for each φ ∈ C(Ki,k), suppωi,k = Ki,k and M∗

τ ωi,k = ωi,k+1 in M1(Ki) for each
k = 1, . . . , pi, where ωi,pi+1 := ωi,1.

(2) We have r =
∑q

i=1 pi and ∪r
j=1Hj = ∪q

i=1Ki. Moreover, we have that {Hj | j = 1, . . . , r} =
{Ki,k | i = 1, . . . , q, k = 1, . . . , pi} = Min(Gnm

τ ,K) for each n ∈ N. Moreover, for each j =
1, . . . , r, there exists a unique Borel probability measure ηj on Hj such that (Mm

τ )∗(ηj) = ηj.
Also, Mnm

τ (φ) → (
∫
φ dηj)·1Hj in C(Hj) as n→ ∞ for each φ ∈ C(Hj). Also, supp ηj = Hj

for each j = 1, . . . , r. Moreover, if Hj = Ki,k, then ηj = ωi,k.

(3) Let y ∈ Y and let Ω be a Borel subset of Xτ . Let A := {γ ∈ Ω | d(γn,1(y),K) → 0 (n→ ∞)}
and Aj := {γ ∈ Ω | d(γnm,1(y),Hj) → 0 (n → ∞)} for each j = 1, . . . , r. Then for each
φ ∈ C(Y ), we have

∫
A
φ(γnm,1(y))dτ̃(γ) →

∑r
j=1 τ̃(Aj)

∫
φdηj as n→ ∞.
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Proof. By [9, Theorem 6.6.4 and Lemma 6.7.1], it is easy to see that statements (1)(2) hold. In
order to prove statement (3), let φ ∈ C(Y ) and let j ∈ {1, . . . , r}. Let ϵ > 0. Then there exists a
δ1 > 0 with δ1 <

1
2 min{d(a, b) | a, b ∈ Hj , a ̸= b} such that

if d(z1, z2) < δ1 then |φ(z1)− φ(z2)| < ϵ. (12)

Let c ∈ (0, 1) such that for each j = 1, . . . , r, for each z ∈ Hj , for each w ∈ Ĉ with d(w, z) < cδ1
and for each (g1, . . . , gm) ∈ Γm

τ , we have

d(g1 ◦ · · · ◦ gm(w), g1 ◦ · · · ◦ gm(z)) < δ1. (13)

By Egorov’s theorem, there exist a Borel measurable subset Aj,ϵ of Aj and a positive integer n0
such that

τ̃(Aj \Aj,ϵ) < ϵ and for each γ ∈ Aj,ϵ, for each n with n ≥ n0, we have γnm,1(y) ∈ B(Hj , cδ1).
(14)

For each z ∈ B(Hj , δ1), let a(z) ∈ Hj be the point such that d(z,Hj) = d(z, a(z)). Since Γτ is
compact, there exists a compact subset Ej,ϵ of Aj,ϵ such that

τ̃(Aj.ϵ \ Ej,ϵ) < ϵ. (15)

For each s ∈ N, we set

Ej,ϵ,s = {γ ∈ Xτ | ∃(αs+1, αs+2, . . .) ∈ Xτ s.t. (γ1, . . . , γs, αs+1, αs+2, . . .) ∈ Ej,ϵ}.

Note that denoting by πs : Xτ → Γs
τ the canonical projection, we have Ej,ϵ,s = π−1

s (πs(Ej,ϵ)).
Moreover, Ej,ϵ,s is a Borel measurable subset of Xτ and we have Ej.ϵ,s ⊃ Ej,ϵ,s+1 for each s ∈ N.
Furthermore, Ej,ϵ = ∩∞

s=1Ej,ϵ,s. Hence there exists an s0 ∈ N such that

for each s ∈ N with s ≥ s0, we have τ̃(Ej,ϵ,s \ Ej,ϵ) < ϵ. (16)

By (14), we have

|
∫
Aj

φ(γnm,1(y))dτ̃(γ)−
∫
Aj,ϵ

φ(γnm,1(y))dτ̃(γ)| ≤ ϵ∥φ∥∞ for each n ≥ n0. (17)

Moreover, by (12) and (14), we have

|
∫
Aj,ϵ

φ(γnm,1(y))dτ̃(γ)−
∫
Aj,ϵ

φ(a(γnm,1(y)))dτ̃(γ)| < ϵ for each n ≥ n0. (18)

By (13) and (14), for each γ ∈ Aj,ϵ and for each l ∈ N, we have

a(γ(n0+l)m,1(y)) = γ(n0+l)m,n0m+1(a(γn0m,1(y))). (19)

Let n1 := max{n0, s0}. By (15) and (16), we obtain that for each s ≥ n1 and l ∈ N,

|
∫
Aj,ϵ

φ(γ(n1+l)m,n1m+1(a(γn1m,1(y)))dτ̃(γ)−
∫
Ej,ϵ,sm

φ(γ(n1+l)m,n1m+1(a(γn1m,1(y)))dτ̃(γ)| < 2ϵ∥φ∥∞.

(20)
Moreover, for each l ∈ N, we have∫

Ej,ϵ,n1m
φ(γ(n1+l)m.n1m+1(a(γn1m,1(y))))dτ̃(γ)

=
∫
πn1m(Ej,ϵ)×Γτ×Γτ×··· φ(γ(n1+l)m.n1m+1(a(γn1m,1(y))))dτ̃(γ)

=
∫
πn1m(Ej,ϵ)

M lm
τ (φ)(a(γn1m,1(y)))dτ

n1m(γ).
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Since M lm
τ (φ)(a(γn1m,1(y))) → ηj(φ) as l → ∞ for each γ ∈ πn1m(Ej,ϵ), it follows that∫

Ej,ϵ,n1m

φ(γ(n1+l)m,n1m+1(a(γn1m,1(y))))dτ̃(γ) → τn1m(πn1m(Ej,ϵ)) · ηj(φ) = τ̃(Ej,ϵ,n1m) · ηj(φ)

(21)
as l → ∞. Moreover, we have

τ̃(A \ ∪r
j=1Aj) = 0. (22)

Combining (14)–(22), we obtain that
∫
A
φ(γnm,1(y))dτ̃(γ) →

∑r
j=1 τ̃(Aj)ηj(φ) as n→ ∞.

Lemma 3.26. Let Y be a compact metric space. Let τ ∈ M1,c(CM(Y )). Let V be a non-empty
open subset of Y. Suppose that for each g ∈ Γτ , g(V ) ⊂ V. Let Lker := ∩g∈Gτ g

−1(Y \ V ). Suppose
that 1 ≤ ♯Lker <∞. Let {Ki}qi=1 = Min(Gτ , Lker) where q = ♯Min(Gτ , Lker). For each i = 1, . . . q,
let pi ∈ N be the period of the finite Markov chain with state space Ki induced by τ . Let m =∏q

i=1 pi ∈ N. Let {Hj}rj=1 = Min(Gm
τ , Lker) where r = ♯(Min(Gm

τ , Lker)). Then all of the following
hold.

(1) Let i = 1, . . . , q. Then ♯(Min(Gpi
τ ,Ki)) = pi. Moreover, there exist Ki,1, . . .Ki,pi ∈ Min(Gpi

τ ,Ki)
such that {Ki,k}

pj

k=1 = Min(Gpi
τ ,Ki), Ki = ∪pi

k=1Ki,k and h(Ki,k) ⊂ Ki,k+1 for each h ∈ Γτ ,
where Ki,pi+1 := Ki,1. Also, for each k = 1, . . . , pi there exists a unique element ωi,k ∈
M1(Ki,k) such that (M∗

τ )
pi(ωi,k) = ωi,k. Also, M

npi
τ (φ) → (

∫
φ dωi,k)1Ki,k

in C(Ki,k) as
n → ∞ for each φ ∈ C(Ki,k), suppωi,k = Ki,k and M∗

τ ωi,k = ωi,k+1 in M1(Ki) for each
k = 1, . . . , pi, where ωi,pi+1 := ωi,1.

(2) We have r =
∑q

i=1 pi and ∪r
j=1Hj = ∪q

i=1Ki. Moreover, we have that {Hj | j = 1, . . . , r} =
{Ki,k | i = 1, . . . , q, k = 1, . . . , pi} = Min(Gnm

τ ,K) for each n ∈ N. Moreover, for each j =
1, . . . , r, there exists a unique Borel probability measure ηj on Hj such that (Mm

τ )∗(ηj) = ηj.
Also, Mnm

τ (φ) → (
∫
φ dηj)·1Hj in C(Hj) as n→ ∞ for each φ ∈ C(Hj). Also, supp ηj = Hj

for each j = 1, . . . , r. Moreover, if Hj = Ki,k, then ηj = ωi,k.

(3) Let y ∈ Y . and let Ω be a Borel subset of Xτ . Let A := {γ ∈ Ω | y ∈ ∩∞
j=1γ

−1
j,1 (Y \ V )}

and Aj := {γ ∈ A | d(γnm,1(y), Hj) → 0 (n → ∞)} for each j = 1, . . . , r. Then for each
φ ∈ C(Y ), we have

∫
A
φ(γnm,1(y))dτ̃(γ) →

∑r
j=1 τ̃(Aj)

∫
φdηj as n→ ∞.

Proof. By Lemmas 3.15 and 3.25, the statement of our lemma holds.

3.4 Invariant measures and Lyapunov exponents

In this subsection, we define invariant measures and the Lyapunov exponents for random dynam-
ical systems generated by elements of M1(Rat). Also, We show some results on random complex
dynamical systems having minimal sets with non-zero Lyapunov exponents.

We now define τ -invariant measures, τ -ergodic measures and the Lyapunov exponents for τ ∈
M1(Rat).

Definition 3.27. Let τ ∈ M1(Rat). Let ρ ∈ M1(Ĉ). We say that ρ is τ-invariant if M∗
τ (ρ) = ρ.

Moreover, we say that a τ -invariant measusure ρ is τ-ergodic if A is a Borel subset of Ĉ with
ρ(A) > 0 and Mτ (1A)(z) = 1A(z) for ρ-a.e.z ∈ Ĉ, then ρ(A) = 1. For a τ -ergodic measure ρ, we

set χ(τ, ρ) :=
∫
log ∥Dfz∥sd(τ̃ ⊗ ρ)(z), where f : Xτ × Ĉ → Xτ × Ĉ denotes the skew product map

associated with Γτ (see Definition 3.16). This is called the Lyapunov exponent of (τ, ρ).

Remark 3.28. Let τ ∈ M1(Rat). Let ρ ∈ M1(Ĉ) be a τ -invariant measure. Let f : Xτ × Ĉ →
Xτ × Ĉ be the skew product map associated with Γτ . Then by [25, Lemma 3.1], the measure

τ̃ ⊗ ρ ∈ M1(Xτ × Ĉ) is f -invariant. Also, by [25, Theorem 4.1], if ρ is τ -ergodic, then τ̃ ⊗ ρ is
ergodic with respect to f.
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Definition 3.29. Let τ ∈ M1(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Let m ∈ N be the period
of the finite Markov chain with state space L induced by τ (see [9, p. 300]). Then by [9, Theorem
6.6.4 and Lemma 6.7.1] we have the following.

• ♯Min(Gm
τ , L) = m and denoting by {Lj}mj=1 = Min(Gm

τ , L) we have L = ∪m
j=1Lj .

• Renumbering L1, . . . , Lm, for each j = 1, . . . ,m there exists a unique ωL,j ∈ M1(Lj) such
that Mmn

τ (φ) → (ωL,j(φ)) · 1Lj in C(Lj) as n → ∞ for each φ ∈ C(Lj), (M
m
τ )∗(ωL,j) =

ωL,j , suppωL,j = Lj and M∗
τ ωL,j = ωL,j+1 where ωL,m+1 := ωL,1.

• ωL := 1
m

∑m
j=1 ωL,j is τ -ergodic.

We call ωL the canonical τ-ergodic measure on L. By [25, Lemma 3.1, Theorem 4.1], τ̃ ⊗ωL ∈
M1(Xτ × Ĉ) is f -invariant and ergodic with respect to f , where f : Xτ × Ĉ → Xτ × Ĉ is the skew
product map associated with Γτ . We set χ(τ, L) :=

∫
log ∥Dfz∥sd(τ̃ ⊗ ωL)(z). This is called the

Lyapunov exponent of (τ, L).

We now show a lemma and its corollary on τ -invariant and τ -ergodic measures µ with negative
Lyapunov exponents (Lemma 3.30 and Corollary 3.31).

Lemma 3.30. Let τ ∈ M1,c(Rat). Let µ ∈ M1(Ĉ) be a τ -invariant and τ -ergodic measure. Suppose

χ(τ, µ) < 0. Then for (τ̃ ⊗ µ)-a.e. (γ, z0) ∈ (Rat)N × Ĉ, we have z0 ∈ Fγ . Moreover, for µ-a.e.

z0 ∈ Ĉ, we have z0 ∈ F 0
pt(τ).

Proof. For each r ∈ N, let ψr : Γτ × Ĉ → R be the function defined by

ψr(h, y) =

{
log ∥Dhy∥s if log ∥Dhy∥s ≥ −r
−r if log ∥Dhy∥s < −r.

Let φr : Xτ × Ĉ → R be the function defined by φr(γ, y) = ψr(γ1, y). Since χ(τ, µ) < 0, there
exists an r ∈ N such that

∫
φr(z)d(τ̃ ⊗µ)(z) < 0. Let c0 = −

∫
φr(z)d(τ̃ ⊗µ)(z) > 0. By Birkhoff’s

ergodic theorem, there exists a Borel subset A of Xτ × Ĉ with (τ̃ ⊗ µ)(A) = 1 such that for each

(γ, z0) ∈ A, 1
n

∑n−1
j=0 φr(f

j(γ, z0)) → −c0 as n → ∞. Let ϵ0 ∈ (0, 14c0). Let (γ, z0) ∈ A. There
exists an n0 ∈ N such that for each n ∈ N with n ≥ n0,

1

n

n−1∑
j=0

ψr(γj+1, γj,1(z0)) =
1

n

n−1∑
j=0

φr(f
j(γ, z0)) ≤ −c0 + ϵ0,

where γ0,1 = Id. Let ϵ1 ∈ R with 0 < ϵ1 <
1
4c0. Since Γτ is compact, there exists a δ > 0 such that

for each w ∈ Ĉ, for each h ∈ Γτ and for each z ∈ B(w, δ), we have

log ∥Dhz∥s ≤ ψr(h,w) + ϵ1, thus ∥Dhz∥s ≤ exp(ψr(h,w) + ϵ1).

There exists a δ1 > 0 with δ1 <
δ
2 such that for each j = 1, . . . , n0, γj,1(B(z0, δ1)) ⊂ B(γj,1(z0),

δ
2 ).

Therefore we obtain

γn0,1(B(z0, δ1)) ⊂ B(γn0,1(z0), δ1 exp((

n0−1∑
j=0

ψr(γj+1, γj,1(z0))) + n0ϵ1))

⊂ B(γn0,1(z0), δ1 exp((−c0 + ϵ0 + ϵ1)n0)).

Hence we can show that for each m ∈ N ∪ {0},

γn0+m,1(B(z0, δ1)) ⊂ B(γn0+m,1(z0), δ1 exp(

n0+m−1∑
j=0

(ψr(γj+1, γj,1(z0)) + (n0 +m)ϵ1))

⊂ B(γn0+m,1(z0), δ1 exp((−c0 + ϵ0 + ϵ1)(n0 +m)))

⊂ B(γn0+m,1(z0),
δ

2
)
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by induction on m ∈ N ∪ {0}. Therefore z0 ∈ Fγ . Thus for µ-a.e. z0 ∈ Ĉ, we obtain that

τ̃({γ ∈ ΓN
τ | z0 ∈ Jγ}) = 0. By Lemma 3.13, it follows that for µ-a.e.z0 ∈ Ĉ, z0 ∈ F 0

pt(τ). Hence we
have proved our lemma.

Corollary 3.31. Let τ ∈ M1,c(Rat) and let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose χ(τ, L) < 0.
Then for each z0 ∈ L, for τ̃ -a.e.γ ∈ (Rat)N, we have z0 ∈ Fγ . Moreover, L ⊂ F 0

pt(τ).

Proof. Since suppωL = L, Lemma 3.30 implies the statement of our corollary.

We now show some lemmas on minimal sets of Gτ with positive Lyapunov exponents (Lem-
mas 3.32–3.36).

Lemma 3.32. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L <∞. Suppose χ(τ, L) > 0. Suppose
also that for each z0 ∈ L and for each g ∈ Γτ , Dgz0 ̸= 0. Let α > 0. Then there exist δ1 > 0, δ2 > 0
with δ2 < α, and a Borel subset A of ΓN

τ with τ̃(A) = 1, where δ1 and A do not depend on α,
such that for each z0 ∈ L, for each z ∈ B(z0, δ2) \ {z0} and for each γ ∈ A, there exists an
n1 = n1(γ, z) ∈ N with γn1,1(z) ̸∈ B(L, δ1). In particular, for each z0 ∈ L, for τ̃ -a.e.γ ∈ ΓN

τ , we
have z0 ∈ Jγ .

Proof. Since Γτ is compact, there exists a δ > 0 such that for each w0 ∈ L and for each g ∈ Γτ ,
g : B(w0, 5δ) → Ĉ is injective. Let s := min{d(a, b) | a, b ∈ L, a ̸= b} > 0. Let 0 < ϵ < 1

4χ(τ, L).
Then there exists a δ1 > 0 with δ1 < min{ s

2 , δ} such that

(i) for each w0 ∈ L and for each g ∈ Γτ , we have g(B(w0, δ1)) ⊂ B(g(w0),
s
2 ), and

(ii) for each w0 ∈ L and for each g ∈ Γτ , there exists an inverse branch g−1
w0

: B(g(w0), 2δ1) →
B(w0, δ) of g with g−1

w0
(g(w0)) = w0 such that for each w ∈ B(g(w0), 2δ1), we have

log ∥D(g−1
w0

)w∥s ≤ log ∥D(g−1
w0

)g(w0)∥s + ϵ. (23)

By Birkhoff’s ergodic theorem, there exists a Borel subset A of Xτ with τ̃(A) = 1 such that for
each (γ, z0) ∈ A× L, there exists an n0 = n0(γ, z0) ∈ N such that for each n ∈ N with n ≥ n0 we
have

| 1
n

n−1∑
j=0

log ∥D(γj+1)γj,1(z0)∥s − χ(τ, L)| < ϵ, thus en(χ(τ,L)−ϵ) ≤ ∥D(γn,1)z0∥s ≤ en(χ(τ,L)+ϵ). (24)

Let δ2 := 1
2 min{α, δ1} > 0. Let z0 ∈ L. Let z ∈ B(z0, δ2) \ {z0}. Let γ ∈ A. We now prove the

following claim.
Claim 1. There exists an n ∈ N such that γn,1(z) ̸∈ B(L, δ1).

To prove this claim, suppose that for each n ∈ N, γn,1(z) ∈ B(L, δ1). Let n0 = n0(γ, z0) be
the number defined above. Let m ∈ N with m ≥ n0. Then we have γm(γm−1,1(z)) = γm,1(z),
γm((γm)−1

γm−1,1(z0)
(γm,1(z))) = γm,1(z), γm−1,1(z) ∈ B(γm−1,1(z0), 5δ), (γm)−1

γm−1,1(z0)
(γm,1(z)) ∈

B(γm−1,1(z0), 5δ), and γm : B(γm−1,1(z0), 5δ) → Ĉ is injective. Hence

γm−1,1(z) = (γm)−1
γm−1,1(z0)

(γm,1(z)).

Similarly, it is easy to see that for each j = 1, . . . ,m,

γm−j,1(z) = (γm−j+1)
−1
γm−j,1(z0)

(γm−j+1,1(z)). (25)

Combining (23), (24), (25), we obtain that

d(z, z0) ≤ δ1 exp(−
m∑
j=1

log ∥D(γj)γj−1,1(z0)∥s +mϵ1)

= δ1∥D(γm,1)z0∥−1
s · emϵ

≤ δ1e
−m(χ(τ,L)−ϵ) · emϵ

= δ1e
−m(χ(τ,L)−2ϵ).

20



Since the above inequality holds for any m ∈ N, it follows that z = z0. However, this is a contra-
diction. Therefore Claim 1 holds.

By Claim 1, the statement of our lemma holds.

Lemma 3.33. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose χ(τ, L) > 0.

Suppose also that for each x ∈ L and for each g ∈ Γτ , we have Dgx ̸= 0. Let y ∈ Ĉ. Let
B = {γ ∈ Xτ | d(γn,1(y), L) → 0 as n → ∞}. Then for τ̃ -a.e. γ ∈ B, there exists a number
n0 = n0(γ, y) ∈ N such that for each n ∈ N with n ≥ n0, we have γn,1(y) ∈ L.

Proof. Suppose that there exists a Borel subset B0 of B with τ̃(B0) > 0 such that for each
γ ∈ B0 and for each n ∈ N, γn,1(y) ̸∈ L. Since τ̃ is invariant under the shift map σ : Xτ → Xτ ,
Lemma 3.32 implies that for τ̃ -a.e. γ ∈ B0, lim supn→∞ d(γn,1(y), L) > 0. However, this is a
contradiction. Hence the statement of our lemma holds.

Lemma 3.34. Let τ ∈ M1,c(Rat). Let y ∈ Ĉ. Then there exists a subset A of Ĉ with ♯(Ĉ\A) ≤ ℵ0

such that for each x ∈ A, τ({g ∈ Rat | g(x) = y}) = 0.

Proof. For each finite subset F = {x1, . . . , xn} of Ĉ such that x1, . . . , xn are mutually distinct, let
BF := {g ∈ Rat | g(xi) = y, for each i = 1, . . . , n}. Since supp τ is compact, there exists an N ∈ N
such that for each g ∈ Γτ , deg(g) ≤ N. Hence, if ♯F > N , then τ(BF ) = τ(BF ∩ Γτ ) = τ(∅) = 0.

For each k ∈ Z with 0 ≤ k ≤ N , let Fk = {F ⊂ Ĉ | ♯F = N + 1 − k, τ(BF ) > 0}. We now prove
the following claim.
Claim 1. Let k ∈ Z with 0 ≤ k < N. If ♯Fk ≤ ℵ0, then ♯Fk+1 ≤ ℵ0.

To prove this claim, let 0 ≤ k < N and suppose we have that ♯Fk ≤ ℵ0. Let H be the set
{H ∈ Fk+1 | ∃F ∈ Fk such that H ⊂ F}. Then ♯H ≤ ℵ0. Moreover, for each H1,H2 ∈ Fk+1 \ H
with H1 ̸= H2, we have

τ(BH1 ∩BH2) = 0. (26)

For, let x ∈ H2 \H1 and let F = H1 ∪ {x}. Then ♯F = N + 1− k and H1 ⊂ F. Since H1 ̸∈ H, we
have F ̸∈ Fk. Hence τ(BF ) = 0. Since BH1 ∩ BH2 ⊂ BF , (26) holds. By (26), ♯(Fk+1 \ H) ≤ ℵ0.
Therefore ♯Fk+1 ≤ ℵ0. Thus we have prove Claim 1.

By Claim 1, we obtain that ♯{H ⊂ Ĉ | ♯H = 1, τ(BH) > 0} ≤ ℵ0. Hence the statement of our
lemma holds.

Lemma 3.35. Let τ ∈ M1,c(Rat). Let C be a non-empty finite subset of Ĉ. Then there exists a

subset AC of Ĉ with ♯(Ĉ \AC) ≤ ℵ0 such that for each x ∈ AC ,

τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(x) ∈ C}) = 0.

Proof. Let Dy,n = {x ∈ Ĉ | τn({(γ1, . . . , γn) ∈ Γn
τ | γn · · · γ1(x) = y}) > 0} for each y ∈ C and

each n ∈ N, where τn = ⊗n
j=1τ ∈ M1,c(Γ

n
τ ). By using the argument in the proof of Lemma 3.34, we

can show that ♯Dy,n ≤ ℵ0. Let AC = Ĉ \ (∪y∈C,n∈NDy,n). Then ♯(Ĉ \AC) ≤ ℵ0. For each x ∈ AC ,
we have

τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(x) ∈ C})
≤ τ̃(∪n∈N,y∈C{γ ∈ Xτ | γn,1(x) = y})

≤
∑

n∈N,y∈C

τ̃({γ ∈ Xτ | γn,1(x) = y})

=
∑

n∈N,y∈C

τ̃({(γ1, . . . , γn) ∈ Γn
τ | γn · · · γ1(x) = y} ×

∞∏
j=n+1

Γτ )

=
∑

n∈N,y∈C

τn({(γ1, . . . , γn) ∈ Γn
τ | γn · · · γ1(x) = y}) = 0.

Thus the statement of our lemma holds.
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Lemma 3.36. Let τ ∈ M1,c(Rat). Let L ∈ Min(Gτ , Ĉ) with ♯L < ∞. Suppose that χ(τ, L) > 0

and for each x ∈ L and for each g ∈ Γτ , Dgx ̸= 0. Then for each y ∈ Ĉ. we have

τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) = τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L})

and
♯{y ∈ Ĉ | τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) > 0} ≤ ℵ0.

Proof. Lemma 3.33 implies that for each y ∈ Ĉ,

τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) = τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L}).

Hence

{y ∈ Ĉ | τ̃({γ ∈ Xτ | d(γn,1(y), L) → 0 as n→ ∞}) > 0}
= {y ∈ Ĉ | τ̃({γ ∈ Xτ | ∃n ∈ N such that γn,1(y) ∈ L}) > 0} ⊂ Ĉ \AL,

where AL is the set for L coming from Lemma 3.35. Since ♯(Ĉ \ AL) ≤ ℵ0, the statement of our
lemma holds.

3.5 Systems with finite kernel Julia sets

In this subsection, we show a theorem on the random dynamical systems generated by elements
τ ∈ M1,c(Rat) with Jker(Gτ ) <∞.

Theorem 3.37. Let τ ∈ M1,c(Rat). Suppose we have all of the following.

(i) ♯Jker(Gτ ) <∞.

(ii) For each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) ̸= 0.

(iii) For each L ∈ Min(Gτ , Jker(Gτ )) with χ(τ, L) > 0, for each g ∈ Γτ and for each x ∈ L, we
have Dgx ̸= 0.

Let H+ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and we denote by Ω the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+L}) = 0. Then, ♯(Ĉ \ Ω) ≤ ℵ0 and for each
z ∈ Ω, τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ (Rat)N, Leb2(Jγ) = 0. Furthermore,

J0
pt(τ) ⊂ Ĉ \ Ω and ♯(J0

pt(τ)) ≤ ℵ0.

Proof. By Lemma 3.36, we have ♯(Ĉ \ Ω) ≤ ℵ0 and for each y ∈ Ω,

τ̃({γ ∈ Xτ | d(γn,1(y),∪L∈H+L) → 0 as n→ ∞}) = 0. (27)

Let z ∈ Ω. Let Cz = {γ ∈ Xτ | z ∈ Jγ}. Suppose τ̃(Cz) > 0. Let H− be the set of all L ∈
Min(Gτ , Jker(Gτ )) with χ(τ, L) < 0. By Lemma 3.15, for τ̃ -a.e.γ ∈ Cz, d(γn,1(z),∪L∈H+∪H−L) → 0
as n→ ∞. Combining this with (27), we obtain that

for τ̃ -a.e. γ ∈ Cz, d(γn,1(z),∪L∈H−L) → 0 as n→ ∞. (28)

Let 0 < ϵ < 1
2 τ̃(Cz). By Corollary 3.31, for each z0 ∈ ∪L∈H−L. for τ̃ -a.e. γ, we have z0 ∈ Fγ .

Combining this with the argument in the proof of Lemma 3.13, we obtain that there exist a Borel
subset A1 of Xτ with τ̃(A1) ≥ 1− ϵ and a δ > 0 such that for each z0 ∈ ∪L∈H−L, for each γ ∈ A1,

we have supn≥1 diamγn,1(B(z0, δ)) ≤ 1
10diamĈ. In particular,

for each z0 ∈ ∪L∈H−L and for each γ ∈ A1, B(z0, δ) ⊂ Fγ . (29)
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By (28) and Egoroff’s theorem, there exist a Borel subset A2 of Cz with τ̃(A2) ≥ τ̃(Cz) − ϵ and
an n0 ∈ N such that for each γ ∈ A2,

γn0,1(z) ∈ B(∪L∈H−L, δ). (30)

By (29) and (30), we obtain A2 ∩ σ−n0(A1) = ∅. Therefore τ̃(A2) ≤ τ̃(Xτ \ σ−n0(A1)) ≤ ϵ.
Combining this with that τ̃(A2) ≥ τ̃(Cz) − ϵ, we obtain that τ̃(Cz) ≤ 2ϵ. However, this is a
contradiction because ϵ < 1

2 τ̃(Cz). Thus, we have proved that for each z ∈ Ω, τ̃(Cz) = 0. By
Fubini’s theorem, it follows that for τ̃ -a.e.γ, Leb2(Jγ) = 0. Moreover, by Lemma 3.13, we obtain

that J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0. Thus we have proved our theorem.

3.6 Random dynamical systems generated by measures on weakly nice
sets

In this subsection, we show several results (including Theorems 1.1, 1.2 and their detailed and more
generalized version Theorems 3.76, 3.81) regarding random complex dynamical systems generated
by measures on weakly nice subsets of Rat.

We now consider holomorphic families of rational maps.

Definition 3.38. Let Λ be a complex manifold. Let W = {fλ}λ∈Λ be a family of rational maps

on Ĉ. We say that W is a holomorphic family of rational maps if (z, λ) ∈ Ĉ×Λ 7→ fλ(z) ∈ Ĉ
is holomorphic on Ĉ× Λ. Throughout the paper, we always assume that Λ is connected.
If W = {fλ}λ∈Λ is a holomorphic family of rational maps and each fλ is a polynomial, then we
say that W is a holomorphic family of polynomial maps. We say that a holomorphic family
W = {fλ}λ∈Λ of rational maps is non-constant if λ ∈ Λ 7→ fλ ∈ Rat is non-constant.

For each n ∈ N, we set

Sn(W) = {z ∈ Ĉ | (λ1, . . . , λn) ∈ Λn 7→ fλ1 ◦ · · · ◦ fλn(z) is constant on Λn}.

Moreover, we set S(W) := ∩∞
n=1Sn(W). Each point of S(W) is called a singular point of W and

the set S(W) is called the singular set of W.

Lemma 3.39. Let W = {fλ}λ∈Λ be a holomorphic family of rational maps. Then Sn+1(W) =
∩λn+1∈Λf

−1
λn+1

(Sn(W)) and S(W) = ∩∞
n=1 ∩(λ1,...,λn)∈Λn (fλ1 ◦ · · · ◦ fλn)

−1(S1(W)). Moreover, if,

in addition to the assumption, W is non-constant, then ♯S1(W) < ∞ and ♯Sn(W) < ∞ for each
n ∈ N.

Proof. We may assume that W is non-constant. We first show that ♯S1(W) < ∞. Suppose that

♯S1(W) = ∞. Then there exist a sequence {zn} in S1(W) and a point z∞ ∈ Ĉ such that zn → z∞
and zn ̸= z∞ for each n ∈ N. By conjugating the family W by an element of Aut(Ĉ), we may
assume that z∞ ∈ C. Let b ∈ Λ. Then there exist an open connected neighborhood Λ0 of b in Λ
and an open connected neighborhood U of z∞ in C such that fλ(z) ∈ C for all λ ∈ Λ0 and all
z ∈ U. We may suppose that Λ0 ⊂ Cr where r = dimΛ ∈ N. Let n ∈ N, (i1, . . . , in) ∈ ({1, . . . , r})n

and z ∈ U. Let g(z) = ∂nfλ(z)
∂λi1 ···∂λin

|λ=b for each z ∈ U. Then g : U → C is holomorphic in U and

g(zj) = 0 for each large j. Hence g(z) = 0 for all z ∈ U. Therefore for each z ∈ U , the function

λ 7→ fλ(z) ∈ C is constant on Λ0. Thus, for each z ∈ U , the function λ 7→ fλ(z) ∈ Ĉ is constant
on Λ. Hence U ⊂ S1(W). Therefore

z∞ ∈ int(S1(W)). (31)

In particular, int(S1(W)) ̸= ∅. We now suppose that Ĉ ̸= int(S1(W)). Then ∂(int(S1(W))) ̸=
∅. If we take any w0 ∈ ∂(int(S1(W))), then by the argument of the proof of (31), we obtain
w0 ∈ int(S1(W)). However, this contradicts w0 ∈ ∂(int(S1(W))). Therefore, we must have that
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Ĉ = int(S1(W)). Hence, the function λ 7→ fλ ∈ Rat is constant on Λ. However, this contradicts to
the assumption that W is non-constant. Thus, we have that ♯S1(W) <∞.

It is easy to see that Sn+1(W) ⊂ ∩λn+1∈Λf
−1
λn+1

(Sn(W)). Since ♯S1(W) < ∞. it follows that

♯Sn(W) < ∞. We now prove ∩λn+1∈Λf
−1
λn+1

(Sn(W)) ⊂ Sn+1(W). Let z ∈ ∩λn+1∈Λf
−1
λn+1

(Sn(W)).

Then for each λn+1 ∈ Λ, we have fλn+1(z) ∈ Sn(W). Since ♯Sn(W) < ∞ and Λ is connected, it
follows that ♯{fλn+1(z) ∈ Sn(W) | λn+1 ∈ Λ} = 1. Therefore we obtain that the cardinality of the
set {fλ1

◦ · · · ◦ fλn+1
(z) | (λ1 . . . , λn+1) ∈ Λn+1} is equal to 1. In particular, z ∈ Sn+1(W). Thus

we have proved our lemma.

Corollary 3.40. Let W = {fλ}λ∈Λ be a holomorphic family of rational maps. Then fλ(S(W)) ⊂
S(W) for all λ ∈ Λ.

We now define weakly nice subsets of Rat.

Definition 3.41. We say that a subset Y of Rat is weakly nice (with respect to holomorphic
families {Wj}mj=1 of rational maps) if there exist an open subset U of Rat and finitely many non-
constant holomorphic families Wj = {fj,λ}λ∈Λj , j = 1, . . . ,m, of rational maps such that for each
j = 1, . . . ,m, {fj,λ | λ ∈ Λj} is a closed subset of U and Y = ∪m

j=1{fj,λ | λ ∈ Λj}.
Moreover, for a weakly nice set Y with respect to holomorphic families {Wj}mj=1 of rational

maps, we set

M1(Y, {Wj}mj=1) := {τ ∈ M1(Y) | supp τ ∩ {fj,λ | λ ∈ Λj} ≠ ∅ (∀j = 1, . . . ,m)}

and
M1,c(Y, {Wj}mj=1) := M1,c(Y) ∩M1(Y, {Wj}mj=1).

Here, for the notation “supp τ”, see Definition 3.4 (setting Y = Y). (Thus supp τ is a closed subset
of Y.) Also, each point of ∩m

j=1S(Wj) is called a singular point of (Y, {Wj}mj=1) and the set
∩m
j=1S(Wj) is called the singular set of (Y, {Wj}mj=1).

Definition 3.42. Let Y be a closed subset of an open subset of Rat. Let O be the topology in
M1,c(Y) such that the sequence {τn}∞n=1 in M1,c(Y) tends to an element τ ∈ M1,c(Y) with respect
to the topology O if and only if (a) for each bounded φ ∈ C(Y),

∫
φdτn →

∫
φdτ as n → ∞, and

(b) supp τn → supp τ as n→ ∞ in Cpt(Y) with respect to the Hausdorff topology.

By the definition of weakly nice subsets, it is easy to see the following lemma.

Lemma 3.43. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then M1,c(Y, {Wj}mj=1) is closed in M1,c(Y) with respect to the topology
O.

The following lemma is easy to show but it is one of the keys to proving many results.

Lemma 3.44. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Let τ ∈ M1(Y, {Wj}mj=1). Suppose that int(supp τ) ̸= ∅ with respect to
the topology in Y and F (Gτ ) ̸= ∅. Then Jker(Gτ ) ⊂ S(Wj) for some j = 1, . . . ,m and ♯Jker(Gτ ) <
∞.

Proof. Let Wj = {fj,λ}λ∈Λj for each j. Then there exists an element j ∈ {1, . . . ,m} such that
int(supp τ)∩ {fj,λ | λ ∈ Λj} ̸= ∅. Suppose Jker(Gτ ) \ S(Wj) ̸= ∅. Let z0 ∈ Jker(Gτ ) \ S(Wj). Then

there exists an element n ∈ N such that the map (λ1, . . . , λn) ∈ Λn
j 7→ fj,λ1 ◦ · · · ◦ fj,λn(z0) ∈ Ĉ is

non-constant on Λn
j . It implies that int(Jker(Gτ )) ̸= ∅. However, this contradicts to the assumption

F (Gτ ) ̸= ∅ and Montel’s theorem. Thus we must have that Jker(Gτ ) ⊂ S(Wj). Since ♯(Sn(Wj)) <
∞ (see Lemma 3.39), it follows that ♯Jker(Gτ ) <∞.
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Lemma 3.45. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Let τ ∈ M1(Y, {Wj}mj=1). Suppose that for each j = 1, . . . ,m, we have
int(supp τ∩{fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}, and that F (Gτ ) ̸= ∅.
Then Jker(Gτ ) ⊂ ∩m

j=1S(Wj).

Proof. By using the argument in the proof of Lemma 3.44, it is easy to see that our lemma
holds.

Lemma 3.46. Let Y be a weakly nice subset of Rat with respect to some holomorphic fami-
lies {Wj}mj=1 of rational maps. Let τ ∈ M1(Y, {Wj}mj=1). Let L ∈ Min(Gτ , Ĉ) such that L ⊂
∩m
j=1S(Wj). Then for each ρ ∈ M1(Y, {Wj}mj=1), we have L ∈ Min(Gρ, Ĉ).

Proof. Let z ∈ L. Let Wj = {fj,λ}λ∈Λj for each j. Let ρ ∈ M1(Y, {Wj}mj=1). Let h ∈ supp ρ.
Then there exist an i ∈ {1, . . . ,m} and an element λ0 ∈ Λi such that h = fi,λ0 . Since we have
supp τ ∩ {fi,λ | λ ∈ Λi} ̸= ∅, there exists an element λ1 ∈ Λi such that fi,λ1 ∈ supp τ. Since

L ∈ Min(Gτ , Ĉ), we have fi,λ1(z) ∈ L. Moreover, since L ⊂ S(Wi), we have that h(z) = fi,λ0(z) =

fi,λ1(z) ∈ L. Hence h(L) ⊂ L. Therefore L ∈ Min(Gρ, Ĉ).

Definition 3.47. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Let τ ∈ M1,c(Y, {Wj}mj=1). Then we set

Smin({Wj}mj=1) = ∪L∈Min(Gτ ,Ĉ),L⊂∩m
j=1S(Wj)

L.

Note that this definition does not depend on the choice of τ ∈ M1,c(Y, {Wj}mj=1) due to Lemma 3.46.

We now give the definition of attracting minimal sets which was introduced by the author in
[37].

Definition 3.48. Let Γ ∈ Cpt(Rat). We say that a minimal set L ∈ Min(⟨Γ⟩, Ĉ) is attracting

(for Γ) if there exist two open subsets A,B of Ĉ with ♯(Ĉ \A) ≥ 3 and an n ∈ N such that B ⊂ A
and such that for each (γ1, . . . , γn) ∈ Γn, we have γn ◦ · · · ◦ γ1(A) ⊂ B. In this case, we say that L

is an attracting minimal set for Γ. Also, for an element τ ∈ M1,c(Rat), if L ∈ Min(Gτ , Ĉ) is
attracting for Γτ then we say that L is attracting for τ, that L is an attracting minimal set
of Γτ , and that L is an attracting minimal set of τ.

Definition 3.49. Let Y be a subset of Rat endowed with the relative topology from Rat. We say
that Y is mild if for each Γ ∈ Cpt(Y), there exists an attracting minimal set for Γ.

We give some examples of mild sets.

Example 3.50 (Examples of mild sets).

(a) Any non-empty open subset U of P is a mild set. For, for each Γ ∈ Cpt(U), the set {∞} is
an attracting minimal set for Γ. Also, for any Λ ∈ Cpt(P), there exists an open subset V of
Rat with V ⊃ Λ such that V is mild.

(b) Let Λ ∈ Cpt(Rat) such that Λ has a minimal set for (⟨Λ⟩, Ĉ) which is attracting for Λ. Then
there exists an open subset U of Rat with U ⊃ Λ such that U is mild.

(c) Let a ∈ Ĉ and let Y = {f ∈ Rat | a is an attracting fixed point of f}. Then Y is a mild
subset of Rat.

We now give the definition of mean stability which is introduced by the author in [36].

Definition 3.51. Let Γ ∈ Cpt(Rat). Let G = ⟨Γ⟩. We say that Γ is mean stable if there exist
non-empty open subsets U and V of F (G) and a number n ∈ N such that all of the following hold.

(a) V ⊂ U and U ⊂ F (G).
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(b) For each γ ∈ ΓN, γn,1(U) ⊂ V.

(c) For each z ∈ Ĉ, there exists an element g ∈ G such that g(z) ∈ U.

Also, if Γ is mean stable, we say that G is mean stable (this notion does not depend on the choice
of Γ ∈ Cpt(Rat) with ⟨Γ⟩ = G). Moreover, for an element τ ∈ M1,c(Rat), if Γτ is mean stable,
then we say that τ is mean stable.

Remark 3.52. If τ ∈ M1,c(Rat) is mean stable, then the random dynamical system generated
by τ has many nice properties (e.g. Jker(Gτ ) = ∅, stability of the limit state functions under the

perturbation, negativity of Lyapunov exponent for any point of z ∈ Ĉ for τ̃ -a.e. γ etc., see [36, 37]).

We now give a result of the density of mean stable elements. Recall that an element g ∈ Aut(Ĉ)
is called loxodromic if g has exactly two fixed points a, b ∈ Ĉ and the modulus of multiplier of
(g, a) is strictly larger than 1 and the modulus of multiplier of (g, b) is strictly less than 1.

Lemma 3.53. Let Y be a mild subset of Rat and suppose that Y is weakly nice with respect to some
holomorphic families {Wj}mj=1 of rational maps. Suppose that for each τ ∈ M1,c(Y, {Wj}mj=1) and

for each L ∈ Min(Gτ , Ĉ), we have L ̸⊂ ∩m
j=1S(Wj) ∩ J(Gτ ). Then A := {τ ∈ M1,c(Y, {Wj}mj=1) |

τ is mean stable} is open and dense in M1,c(Y, {Wj}mj=1) with respect to the topology O.

Proof. By [36, Lemma 3.62], A is open in M1,c(Y, {Wj}mj=1) with respect to the topology O. To
prove the density ofA, let ρ ∈ M1,c(Y, {Wj}mj=1). Then there exists an element ρ0 ∈ M1,c(Y, {Wj}mj=1)
which is arbitrarily close to ρ with respect to O such that for each j ∈ {1, . . . ,m}, int(supp ρ0 ∩
{fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}, where Wj = {fj,λ}λ∈Λj . By
Lemma 3.45 and the assumption of our lemma, we obtain Jker(Gρ0) = ∅. Since Y is mild, each

g ∈ Γρ0 ∩ Aut(Ĉ) is loxodromic. By [37, Theorem 1.8] and its proof, if we enlarge suppρ0 a little
bit, and take an element ρ1 ∈ M1,c(Y, {Wj}mj=1) which is close to ρ0, then ρ1 is mean stable. Thus
A is dense in M1,c(Y, {Wj}mj=1).

Definition 3.54. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. We say that Y is exceptional with respect to {Wj}mj=1 if there
exists a non-empty subset L of ∩m

j=1S(Wj) such that for each τ ∈ M1,c(Y, {Wj}mj=1), we have that

L ∈ Min(Gτ , Ĉ) and χ(τ, L) = 0. We say that Y is non-exceptional with respect to {Wj}mj=1

if Y is not exceptional with respect to {Wj}mj=1.

Proposition 3.55. Let Y be a mild subset of Rat and suppose that Y is weakly nice and non-
exceptional with respect to some holomorphic families {Wj}mj=1 of rational maps. Then there exists
a dense subset A of the topological space (M1,c(Y, {Wj}mj=1),O) such that all of the following (a)(b)
hold.

(a) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(τ, L) ̸= 0.

(b) Let τ ∈ A. Then ♯Jker(Gτ ) < ∞ and Jker(Gτ ) ⊂ ∩m
j=1S(Wj). Moreover, setting H+ :=

{L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and denoting by Ω the set of points y ∈ Ĉ for which

τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+L}) = 0, we have that ♯(Ĉ \ Ω) ≤ ℵ0 and for each
z ∈ Ω, τ̃({γ ∈ ΓN

τ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e. γ ∈ (Rat)N, we have Leb2(Jγ) = 0.

Furthermore, J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0.

Proof. By Lemma 3.53, [36, Propositions 4.7, 4.8] and [37, Remark 3.5], we may assume that

there exist a τ ∈ M1,c(Y, {Wj}) and an L ∈ Min(Gτ , Ĉ) such that L ⊂ ∩m
j=1S(Wj)) ∩ J(Gτ ). For

such L, Lemma 3.46 implies that for each ρ ∈ M1,c(Y, {Wj}mj=1), we have L ∈ Min(Gρ, Ĉ) and
L ⊂ ∩m

j=1S(Wj). Let

{L1, . . . , Lr} := {K ⊂ ∩m
j=1S(Wj) | K ∈ Min(Gρ, Ĉ) for each ρ ∈ M1,c(Y, {Wj}mj=1)}.
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Since (Y, {Wj}mj=1) is non-exceptional with respect to {Wj}mj=1, for each k = 1, . . . , r there exists
a τk ∈ M1,c(Y, {Wj}mj=1) such that χ(τk, Lk) ̸= 0. Let Wj = {fj,λ | λ ∈ Λj} for each j = 1. . . . ,m.
We consider the following two cases.
Case (I). For each k = 1, . . . , r, for each z ∈ Lk and for each j = 1, . . . ,m, there exists a λ ∈ Λj

such that D(fj,λ)z ̸= 0.
Case (II). There exist a k ∈ {1, . . . , r}, a point z ∈ Lk and an element j ∈ {1, . . . ,m} such that
for each λ ∈ Λj , D(fj,λ)z = 0.
Suppose that we have Case (I). We now prove the following claim.
Claim 1. For each k there exists an element ρk ∈ M1,c(Y, {Wj}mj=1) which is arbitrarily close to
τk such that ♯suppρk < ∞, such that for each g ∈ suppρk and for each z ∈ Lk, we have Dgz ̸= 0,
and such that χ(ρk, Lk) ̸= 0.

To prove this claim, for each τ ∈ M1,c(Y, {Wj}mj=1) and for each L ∈ Min(Gτ , Ĉ), let µτ,L be
the canonical τ -ergodic measure on L (see Definition 3.29). Let k ∈ {1, . . . , r}. We now consider
the following two cases.
Case (I)(a). χ(τk, Lk) ̸= −∞. Case (I)(b). χ(τk, Lk) = −∞.
Suppose we have Case (I)(a). Let Bk := {g ∈ Y | Dgz = 0 for some z ∈ Lk}. Since χ(τk, Lk) =∫
Lk

∫
Y log ∥Dgz∥sdτk(g)dµτk,Lk

(z), we obtain that τk(Bk) = 0. Let Ck,n be the set of elements

g ∈ Y with κ(g,Bk) ≥ 1/n. Then
∫
Lk

∫
Ck,n

log ∥Dgz∥sdτk(g)dµτk,Lk
(z) → χ(Lk, τk) as n → ∞

and
τk|Ck,n

τk(Ck,n)
→ τk as n→ ∞ in M1.c(Y,O). Modifying

τk|Ck,n

τk(Ck,n)
, we obtain ρk which is arbitrarily

close to τk such that ♯suppρk < ∞, such that for each g ∈ suppρk and for each z ∈ Lk, we have
Dgz ̸= 0, and such that χ(ρk, Lk) ̸= 0.

We now suppose that we have Case (I)(b). Let αn(g, z) = max{log ∥Dgz∥s,−n} for each n ∈ N.
Since χ(τk, Lk) = −∞, we have

∫
Lk

∫
Y αn(g, z)dτk(g)dµτk,Lk

(z) → −∞ as n→ ∞. Hence for each

M < 0 there exists an n ∈ N such that
∫
Lk

∫
Y αn(g, z)dτk(g)dµτk,Lk

(z) < M . Therefore there exists

a ρk ∈ M1,c(Y, {Wj}mj=1) which is arbitrarily close to τk such that ♯suppρk <∞, such that for each

g ∈ suppρk and for each z ∈ Lk, we have Dgz ̸= 0, and such that
∫
Lk

∫
Y αn(g, z)dρk(g)dµρk,Lk

(z) <
M
2 . Hence χ(ρk, Lk) ≤

∫
Lk

∫
Y αn(g, z)dρk(g)dµρk,Lk

(z) < M
2 . Thus we have proved Claim 1.

For each n ∈ N, let

Dk,n := {((λji)i=1,...,n)j=1,...,m ∈
m∏
j=1

Λn
j | D(fj,λji)z = 0 for some z ∈ Lk}.

Moreover, let

Ek,n := {(pij)i=1,...,n,j=1,...,m ∈ (0, 1)nm |
∑
i,j

pi,j = 1} × ((

m∏
j=1

Λn
j ) \Dk,n)

and let αk,n : Ek,n → R be the function defined by αk,n((pij), (λji)) = χ(
∑m

j=1

∑n
i=1 pijδfj,λji

, Lk).

Then (
∏m

j=1 Λ
n
j ) \Dk,n is connected and αk,n : Ek,n → R is real-analytic. Hence claim 1 implies

the following claim.
Claim 2. There exists an n0 ∈ N such that for each n ∈ N with n ≥ n0, the function αk,n : Ek,n → R
is not identically equal to zero in any open subset of Ek,n.

We now let ζ ∈ M1,c(Y, {Wj}mj=1) be an arbitrary element. Then there exists an element
ζ0 ∈ M1,c(Y, {Wj}mj=1) arbitrarily close to ζ such that ♯supp ζ0 < ∞ and such that for each
g ∈ supp ζ0, for each k, and for each z ∈ Lk, we have Dgz ̸= 0. We may assume that for some
n ≥ n0 there exists an element (((pij)i=1,...,n)j=1,...,m, ((λji)i=1,...,n)j=1,...,m) ∈ ∩r

k=1Ek,n such that
ζ0 =

∑m
j=1

∑n
i=1 pijδfj,λji

. By claim 2, there exists a ζ1 close to ζ0 such that for each g ∈ supp ζ1,

for each k, and for each z ∈ Lk, we have Dgz ̸= 0, and such that for each k, χ(ζ1, Lk) ̸= 0. By
enlarging the support of ζ1, we obtain an element ζ2 ∈ M1,c(Y, {Wj}mj=1) which is close to ζ1
such that for each g ∈ supp ζ2, for each k, and for each z ∈ Lk, we have Dgz ̸= 0, such that for
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each k, χ(ζ2, Lk) ̸= 0, and such that for each j = 1, . . . ,m, int(supp ζ2 ∩ {fj,λ | λ ∈ Wj}) ̸= ∅
in the space {fj,λ | λ ∈ Wj}. By Lemma 3.45, we obtain that Jker(Gζ2) ⊂ ∩m

j=1S(Wj). In
particular, ♯Jker(Gζ2) <∞ by Lemma 3.39. By Theorem 3.37, denoting by H+ the set of elements

L ∈ Min(Gζ2 , Jker(Gζ2)) with χ(ζ2, L) > 0 and denoting by Ω the set of elements y ∈ Ĉ for which

ζ̃2({γ ∈ Xζ2 | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+L}) = 0, we have that ♯(Ĉ \ Ω) ≤ ℵ0 and for each

z ∈ Ω, ζ̃2({γ ∈ Xζ2 | z ∈ Jγ}) = 0. Moreover, for ζ̃2-a.e.γ ∈ (Rat)N, Leb2(Jγ) = 0. Furthermore,

J0
pt(τ) ⊂ Ĉ \ Ω and ♯J0

pt(τ) ≤ ℵ0.
We now suppose that we have Case (II). Let

I := {k ∈ {1, . . . , r} | ∃z ∈ Lk ∃j ∈ {1, . . . ,m} such that for each λ ∈ Λj , D(fj,λ)z = 0}.

We modify the argument in Case (I). Namely, we can choose ζ1 and ζ2 in the argument of Case
(I) so that χ(ζ1, Lk) = χ(ζ2, Lk) = −∞ for any k ∈ I. For any k ̸∈ I, we use the same argument
in that of Case (I). Thus we have proved our proposition.

Lemma 3.56. Under the assumptions of Proposition 3.55, there exists an open dense subset A of
the topological space (M1,c(Y, {Wj}mj=1),O) such that all of the following hold.

(i) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(τ, L) ̸= 0.

(ii) For each τ ∈ A and for each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), if χ(τ, L) > 0, then for

each z ∈ L and for each g ∈ Gτ , we have Dgz ̸= 0.

Proof. Let Wj = {fj,λ}λ∈Λj for all j. We use the arguments in the proof of Proposition 3.55.
As in the proof of Proposition 3.55, we may assume that there exists a τ ∈ M1,c(Y, {Wj}mj=1)

and an L ∈ Min(Gτ , Ĉ) such that L ⊂ ∩m
j=1S(Wj) ∩ J(Gτ ). Let L1, . . . , Lr be as in the proof of

Proposition 3.55. Let ζ ∈ M1,c(Y, {Wj}mj=1). Let ζ0 ∈ M1,c(Y, {Wj}mj=1) with ♯Γζ0 < ∞ which is
arbirarily close to ζ. We classify the elements k of {1, . . . , r} into the following two types (I) and
(II).

Type (I). There exist an element i = 1, . . . ,m and an element z0 ∈ Lk such that D(fi,λ)z0 = 0
for all λ ∈ Λi.

Type (II). Not type (I).　
Note that if k is of type (I), then χ(ζ0, Lk) = −∞. Note also that if k is of type (II), then

perturbing ζ0 if necessary, we may assume that for each g ∈ Γζ0 and for each z ∈ Lk, we have
Dgz ̸= 0. Therefore, by using the arguments in the proof of Proposition 3.55, we can take ζ1 ∈
M1,c(Y, {Wj}mj=1) with ♯Γζ1 <∞ which is arbitrarily close to ζ0 such that the following hold.

(a) χ(ζ1, Lk) = −∞ for any k of type (I).

(b) For any k of type (II), for any z ∈ Lk and for any g ∈ Γζ1 , we have Dgz ̸= 0.

(c) For any k of type (II) and for any z ∈ Lk, we have χ(ζ1, Lk) ̸= 0.

Hence for any ζ2 ∈ M1,c(Y, {Wj}mj=1) which is close enough to ζ1, we have the following.

(a)’ χ(ζ2, Lk) < 0 for any k of type (I).

(b)’ For any k of type (II), for any z ∈ Lk and for any g ∈ Γζ2 , we have Dgz ̸= 0.

(c)’ For any k of type (II) and for any z ∈ Lk, we have χ(ζ2, Lk) ̸= 0.

Thus we have proved our lemma.

Definition 3.57. For a topological spaceX, we denote by Con(X) the set of connected components
of X.
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Definition 3.58. Let τ ∈ M1(Rat). For an element L ∈ Min(Gτ , Ĉ), we denote by Uτ,L the space
of all finite linear combinations of unitary eigenfunctions of Mτ : C(L) → C(L), where we say that
an element φ ∈ C(L)\{0} is a unitary eigenfunction ofMτ : C(L) → C(L) if there exists an element
α ∈ C with |α| = 1 such that Mτ (φ) = αφ in L. Also, we say that an element α ∈ C with |α| = 1
is a unitary eigenvalue of Mτ : C(L) → C(L) if there exists an element φ ∈ C(L) \ {0} such that
Mτ (φ) = αφ. Moreover, we denote by Uτ,L,∗ the set of unitary eigenvalues of Mτ : C(L) → C(L).

Definition 3.59. Let U be an open subset of Ĉ and let {φn : U → Ĉ}∞n=1 be a sequence of

holomorphic maps from U to Ĉ. We say that a map ψ : U → Ĉ is a limit function of {φn}∞n=1

if there exists a subsequence {φnj}∞j=1 of {φn}∞n=1 such that φnj → ψ as j → ∞ locally uniformly
on U.

The following lemma is very important to analyze the random dynamical system generated by
τ ∈ M1,c(Rat) with ♯Jker(Gτ ) < ∞. The proof is based on careful observations of limit functions
on Fatou components of Gτ by using the hyperbolic metrics on the Fatou components of Gτ .

Lemma 3.60. Let τ ∈ M1,c(Rat) and suppose ♯J(Gτ ) ≥ 3. Let L ∈ Min(G, Ĉ) with L∩F (Gτ ) ̸= ∅.
Let ΩL := ∪U∈Con(F (Gτ )),U∩L̸=∅U. Suppose that ♯((∂ΩL) ∩ Jker(Gτ )) < ∞. Then we have the

following (I)(II)(III).

(I) There exists a Borel subset A of Xτ with τ̃(A) = 1 such that for each γ = (γ1, γ2, . . .) ∈ A
and for each z ∈ ΩL, there exists a δ = δ(z, γ) > 0 satisfying that d(γn,1(z), L) → 0 and
diam(γn,1(B(z, δ))) → 0 as n→ ∞.

(II) We have C(L) = Uτ,L ⊕ {φ ∈ C(L) | Mn
τ (φ) → 0 as n → ∞} in the Banach space C(L)

endowed with the supremum norm and dimC Uτ,L < ∞. Moreover, setting rL := dimC Uτ,L,
we have ♯Min(GrL

τ , L) = rL. Also, there exist L1, . . . , LrL ∈ Min(GrL
τ , L) such that {Lj}rLj=1 =

Min(GrL
τ , L), L = ∪rL

j=1Lj and h(Lj) = Lj+1 for each h ∈ Γτ , where LrL+1 := L1. Moreover,
for each j = 1, . . . , rL, there exists a unique element ωL,j ∈ M1(Lj) such that (MrL

τ )∗(ωL,j) =
ωL,j . Also, for each j = 1, . . . , rL, we have MnrL

τ (φ) → (
∫
φ dωL,j) · 1Lj in the Banach space

C(Lj) endowed with the supremum norm as n→ ∞ for each φ ∈ C(Lj), suppωL,j = Lj and
M∗

τ (ωL,j) = ωL,j+1 in M1(L) where ωL,rL+1 = ωL,1. Also, we have Uτ,L,∗ = {α ∈ C | αrL =
1} and for each α ∈ Uτ,L,∗, we have dimC{φ ∈ C(L) |Mτφ = αφ} = 1.

(III) The function TL,τ : Ĉ → [0, 1] of probability of tending to L is locally constant on F (Gτ ).

Proof. Let Ω = ΩL. Let U ∈ Con(Ω). Let a ∈ U ∩ L. To prove item (I), it suffices to prove that
there exists a Borel subset Aa of Xτ with τ̃(Aa) = 1 such that for each γ ∈ Aa, each limit function
of the sequence {γn,1}∞n=1 around a is constant. Since L ∩ F (Gτ ) ̸= ∅, we have L ∩ Jker(Gτ ) = ∅.
Hence there exists a δ > 0 such that

B(Jker(Gτ ), δ) ∩Gτ (B(a, δ)) = ∅. (32)

Since we are assuming ♯(J(Gτ )) ≥ 3, we have that J(Gτ ) is perfect. Since we are assuming
♯(∂Ω ∩ Jker(Gτ )) <∞, taking δ so small, we may assume that

J(Gτ ) \B((∂Ω) ∩ Jker(Gτ ), δ) ̸= ∅. (33)

By (32) and (33), taking δ so small, we may assume that for each U0 ∈ Con(F (Gτ )) with L∩U0 ̸= ∅,
we have

(∂U0) \B((∂Ω) ∩ Jker(Gτ ), δ) ̸= ∅. (34)

For each z ∈ (∂Ω) \ B((∂Ω) ∩ Jker(Gτ ), δ), there exist an element gz ∈ Gτ and an open disk

neighborhood Vz of z in Ĉ such that gz(Vz) ⊂ F (Gτ ). Since (∂Ω) \ (B((∂Ω) ∩ Jker(Gτ ), δ) is
compact, there exists a finite set {z1, . . . , zp} in (∂Ω) \B((∂Ω) ∩ Jker(Gτ ), δ) such that

∪p
j=1Vzj ⊃ (∂Ω) \B((∂Ω) ∩ Jker(Gτ ), δ) and gzj (Vzj ) ⊂ F (Gτ ) for each j. (35)
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For each j = 1, . . . , p there exists an element αj = (αj
1, . . . , α

j
k(j)) ∈ Γ

k(j)
τ for some k(j) ∈ N

such that gzj = αj
k(j) ◦ · · · ◦ αj

1. Since Gτ (F (Gτ )) ⊂ F (Gτ ), we may assume that there exists

a k ∈ N such that for each j = 1, . . . , p, we have k(j) = k. For each j = 1, . . . , p, let Wj

be a compact neighborhood of αj in Γk
τ such that for each β = (β1, . . . , βk) ∈ Wj , we have

βk ◦ · · · ◦ β1(Vzj ) ⊂ F (Gτ ). Also, for each j = 1, . . . , p, let Bj := ∪B∈Con(Ω),B∩Vzj
̸=∅B. Let n ∈ N

and let cq = 1/q for each q ∈ N. Let (i1, . . . , il) be a finite sequence of positive integers with
i1 < · · · < il. Let q > 0. We denote by Aq,j(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies
all of the following (a) and (b).

(a) γkt,1(a) ∈ (Ĉ \B(∂Ω), cq)) ∩Bj if t ∈ {i1, . . . , il}.

(b) γkt,1(a) ̸∈ (Ĉ \B(∂Ω, cq)) ∩Bj if t ∈ {1, . . . , il} \ {i1, . . . , il}.

Moreover, when l ≥ n, we denote by Bq,j,n(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies
items (a) and (b) above and the following (c).

(c) (γkis+1, . . . , γkis+k) ̸∈Wj for each s = n, n+ 1, . . . , l.

Furthermore, we denote by Cq,j,n(i1, . . . , il) the set of elements γ ∈ Xτ which satisfies items (a)
and (b) above and the following (d).

(d) (γkis+1, . . . , γkis+k) ̸∈Wj for each s = n, n+ 1, . . . , l − 1.

Furthermore, for each q, j, n, l with l ≥ n, let Bq,j,n,l :=
∪

i1<···<il
Bq,j,n(i1, . . . , il). Let D :=∪∞

q=1

∪p
j=1

∪
n∈N

∩
l≥nBq,j,n,l. We show the following claim.

Claim 1. Let γ ∈ Xτ be such that there exists a non-constant limit function of the sequence
{γn,1|U : U → Ĉ}∞n=1. Then γ ∈ D.

To show this claim, let γ ∈ Xτ be an element such that there exists a non-constant limit function
of {γn,1|U : U → Ĉ}∞n=1. Then there exists a q ∈ N, a j ∈ {1, . . . , p}, and a strictly increasing
sequence {il}∞l=1 in N such that γ ∈

∩∞
l=1Aq,j(i1, . . . , il) and any subsequence of {γkil,1|U : U →

Ĉ}∞l=1 does not converge to a constant map. Suppose that there exists a strictly increasing sequence
{lp}∞p=1 in N such that for each p ∈ N, (γkilp+1, . . . , γkilp+k) ∈ Wj . Since ♯J(Gτ ) ≥ 3, for each

A ∈ Con(F (Gτ )), we can take the hyperbolic metric on A. From the definition of Wj and [24, Pick
Theorem], we obtain that there exists a constant 0 < α < 1 such that for each p ∈ N and for each
a′ in a small neighborhood Ua of a, we have ∥(γkilp+k · · · γkilp+1

)′(γkilp ,1(a
′))∥h ≤ α, where for each

g ∈ Gτ and for each z ∈ F (Gτ ), ∥g′(z)∥h denotes the norm of the derivative of g at z measured
from the hyperbolic metric on the element of Con(F (Gτ )) containing z to that on the element of
Con(F (Gτ )) containing g(z). Hence, for each a′ ∈ Ua, ∥(γkilp ,1)

′(a′)∥h → 0 as p → ∞. However,

this is a contradiction, since {γkilp ,1|U}
∞
p=1 does not converge to a constant map. Therefore, γ ∈ D.

Thus, we have proved claim 1.
Let η := maxpj=1(⊗k

s=1τ)(Γ
k
τ \Wj) (< 1). Then we have for each (l, n) with l ≥ n,

τ̃(Bq,j,n(i1, . . . , il+1)) ≤ τ̃(Cq,j,n(i1, . . . , il+1) ∩ {γ ∈ Xτ | (γkil+1+1, . . . , γkil+1+k) ̸∈Wj})
≤ τ̃(Cq,j,n(i1, . . . , il+1)) · η.

Hence, for each l with l ≥ n,

τ̃(Bq,j,n,l+1) =τ̃(
∪

i1<···<il+1

Bq,j,n(i1, . . . , il+1)) =
∑

i1<···<il+1

τ̃(Bq,j,n(i1, . . . , il+1))

≤
∑

i1<···<il+1

ητ̃(Cq,j,n(i1, . . . , il+1)) = ητ̃(
∪

i1<···<il+1

Cq,j,n(i1, . . . , il+1)) ≤ ητ̃(Bq,j,n,l).

Therefore τ̃(D) ≤
∑∞

q=1

∑p
j=1

∑
n∈N τ̃(

∩
l≥nBq,j,n,l) = 0. Hence we have proved item (I) of our

lemma.
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We now prove item (II). Since L∩ Jker(Gτ ) = ∅, Lemmas 3.13 and 3.15 imply that L ⊂ F 0
pt(τ).

Thus we obtain that for each φ ∈ C(L), {Mn
τ (φ)|L}∞n=1 is equicontinuous on L. Combining this

with item (I) and the argument in [36, page 83-87], we easily see that item (II) holds.
We now prove (III). Let U be a connected component of F (Gτ ) and let x1, x2 ∈ U. Let Hi :=

{γ ∈ Xτ | d(γn,1(xi), L) → 0 as n → ∞} for each i = 1, 2. Then TL,τ (xi) = τ̃(Hi). Let Ii := {γ ∈
Hi | ∃n ∈ N. such that γn,1(xi) ∈ Ω}. Let A be as in (I). Since τ̃(A) = 1 and τ̃ is σ-invariant,
we have τ̃(Ii) = τ̃(Ii ∩ ∩∞

n=1σ
−n(A)). By (I), we have I1 ∩ ∩∞

n=1σ
−n(A) = I2 ∩ ∩∞

n=1σ
−n(A).

Hence τ̃(I1) = τ̃(I2). Let γ ∈ H1 \ I1. Then d(γn,1(x1), L ∩ J(Gτ )) → 0 as n → ∞ and every
limit function of γn,1 on U should be constant. Therefore γ ∈ H2 \ I2. Thus H1 \ I1 ⊂ H2 \ I2.
Similarly, we have H2 \ I2 ⊂ H1 \ I1. Hence H1 \ I1 = H2 \ I2. From these arguments, it follows
that TL,τ (x1) = TL,τ (x2). Therefore TL,τ is locally constant on F (Gτ ).

Thus, we have completed the proof of Lemma 3.60.

Definition 3.61. Under the assumptions of Lemma 3.60, we call the number rL the period of
(τ, L).

Remark 3.62. The above argument in the proof of item (I) generalizes the argument in the
proof of [36, Lemma 5.2]. In the proof of [36, Lemma 5.2], in order to make the argument more

precise, “and {γkil,1|U : U → Ĉ}∞l=1 converges to a non-constant map.” ([36, page 81,line -5])

should be “and any subsequence of {γkil,1|U : U → Ĉ}∞l=1 does not converge to a constant map.”
and “converges to a non-constant map.” ([36, page 82, line 4]) should be “does not converge
to a constant map.” Also, in the proof of [36, Lemma 5.3], the definition of En,m should be
“En,m := {γ ∈ A | γik,1(a0) ∈ ∪p

j=1Vzj ∩B(∂J(Gτ ), b), i = n, . . . ,m}, where the number b is equal
to min{d(u, v) | u ∈ ∂J(Gτ ), v ∈ ∪p

j=1 ∪(γ1,...,γk)∈Wj
γk · · · γ1(Vzj )} > 0”.

The following is an important result on random dynamical systems generated by τ ∈ M1,c(Rat)
with ♯Jker(Gτ ) <∞. In the proof we use the no-wandering-domain theorem ([29]) and the Fatou-
Shishikura inequality ([26]).

Proposition 3.63. Let τ ∈ M1,c(Rat) with ♯J(Gτ ) ≥ 3. Suppose ♯Jker(Gτ ) < ∞. Then 1 ≤
♯Min(Gτ ) < ∞ and for each L ∈ Min(Gτ ) with L ∩ F (Gτ ) ̸= ∅, statements (I)(II)(III) of
Lemma 3.60 hold.

Proof. By Lemma 3.60, for each L ∈ Min(Gτ ) with L ∩ F (Gτ ) ̸= ∅, statements (I)(II)(III) of
Lemma 3.60 hold. Also, by Lemma 3.60, we obtain that

for each W ∈ Con(F (Gτ )), ♯{L ∈ Min(Gτ , Ĉ) | L ∩W ̸= ∅} ≤ 1. (36)

We now suppose that ♯Min(Gτ , Ĉ) = ∞. Then, since we are assuming ♯Jker(Gτ ) < ∞, we obtain
that

♯{L ∈ Min(Gτ , Ĉ) | L ∩ F (Gτ ) ̸= ∅} = ∞. (37)

We now show the following claim.
Claim 1. Let {Lj}∞j=1 be a sequence in Min(Gτ , Ĉ) consisting of mutually distinct elements such

that for each j, Lj ∩ F (Gτ ) ̸= ∅. Moreover, let {wj}∞j=1 be a sequence in Ĉ such that wj ∈ Lj for

each j and {wj} tends to a point w∞ ∈ Ĉ. Then w∞ ∈ Jker(Gτ ).
To show this claim, suppose that w∞ ̸∈ Jker(Gτ ). Then there exists an element α ∈ Gτ such

that α(w∞) ∈ F (Gτ ). Let U ∈ Con(F (Gτ )) with α(w∞) ∈ U. Then for each large j, we have
U ∩ Lj ̸= ∅. However, this contradicts (36). Hence, Claim 1 holds.

Let {Lj}∞j=1 be a sequence in Min(Gτ , Ĉ) consisting of mutually distinct elements such that
for each j, Lj ∩ F (Gτ ) ̸= ∅. For each j, let zj ∈ Lj ∩ F (Gτ ) be a point. Since ♯J(Gτ ) ≥ 3, by the
density of repelling fixed points in the Julia set ([27]), either there exists a loxodromic element of

Aut(Ĉ) ∩G or there exists an element in G of degree two or more.
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Suppose that there exists a loxodromic element g ∈ Aut(Ĉ)∩G. Let ag be the attracting fixed
point of g. Then for each j, we have gn(zj) → ag as n → ∞. This implies ag ∈ Lj for each j.
However, this is a contradiction.

Suppose that there exists an element g ∈ G with deg(g) ≥ 2. By the no-wandering-domain
theorem ([29]), we have that for each z ∈ F (Gτ ), g

n(z) tends to one of the following cycles. (I)
attracting cycle. (II) parabolic cycle. (III) Siegel disc cycle. (IV) Hermann ring cycle. Moreover,
by the Fatou-Shishikura inequality ([26]), the number of those cycles for one element g is finite.
Suppose that there exist a subsequence {zjk} of {zj} and a sequence {nk} in N such that gnk(zjk)
tends to an attracting or parabolic cycle cg of g. Then cg ∈ Ljk for each large k ∈ N and this is a
contradiction. Therefore, there exist a subsequence {zjk} of {zj} and a sequence {nk} in N such
that gnk(zjk) belongs to a Siegel disk cycle or Hermann ring cycle of g for each k. By taking a
higher iterate of g, we may assume that the period of the cycle is one. Also, by renaming gnk(zjk)
as zk, we may assume that there exists a B ∈ Con(F (g)) which is either Siegel disk or Hermann
ring of g such that for each j, we have zj ∈ B ∩ Lj ∩ F (Gτ ). Note that each B ∩ Lj ∩ F (Gτ ) is a
union of analytic Jordan curves in B. Let

D := {z ∈ Ĉ | for each δ > 0, ♯{j ∈ N | B(z, δ) ∩B ∩ Lj ∩ F (Gτ ) ̸= ∅} = ∞}.

Then by Claim 1, we have D ⊂ Jker(Gτ ). Since we are assuming ♯Jker(Gτ ) < ∞, Claim 1 again
implies that for any connected component A of ∂B, we cannot have that A ⊂ D. Thus it follows that
there exists a point z∞ ∈ Jker(Gτ ) such that D = {z∞}. Therefore B is a Siegel disk for g and z∞ is
the center of B, i.e. z∞ ∈ B and g(z∞) = z∞. Let 0 < ϵ < 1

2 min{d(a, b) | a, b ∈ Jker(Gτ ), a ̸= b}.
For each j ∈ N, let Cj be the connected component of Ĉ \ (B ∩ Lj) such that z∞ ∈ Cj . Let

e0 := max{∥Dhz∥s | h ∈ Γτ , z ∈ Ĉ}. We may assume that for each j, maxa∈Cj d(z∞, a) <
1
2e

−1
0 ϵ.

Since z∞ ∈ Jker(Gτ ) ⊂ J(Gτ ), it follows that for each j there exists an element hj ∈ Gτ such that

max
a∈Cj

d(hj(z∞), hj(a)) ≥
1

2
e−1
0 ϵ. (38)

We may assume that fixing the generator system Γτ of Gτ , the word length of hj is the minimum
among the word lengths of elements of Gτ satisfying the same property as that of hj . Then, by
(38) and the minimality of the word length of hj , it follows that

max
a∈Cj

d(hj(z∞), hj(a)) < ϵ, for each j. (39)

Let aj ∈ Cj be a point such that d(hj(z∞), hj(aj)) = maxa∈Cj
d(hj(z∞), hj(a)). Then aj ∈ ∂Cj ⊂

Lj for each j. Hence, setting uj = hj(aj), we have

uj ∈ Lj for each j. (40)

By (38) and (39), we have
1

2
e−1
0 ϵ ≤ d(hj(z∞), uj) < ϵ. (41)

Since hj(z∞) ∈ Jker(Gτ ) and by the way of the choice of ϵ, (41) implies that {uj}∞j=1 cannot accu-
mulate in any point of Jker(Gτ ). Combining this with (40) and Claim 1, we obtain a contradiction.

Hence, ♯Min(Gτ , Ĉ) <∞.
Thus we have proved our proposition.

The following is an important and interesting object in random dynamics.

Definition 3.64. Let A be a subset of Ĉ. Let τ ∈ M1(Rat). For each z ∈ Ĉ, we set TA,τ (z) :=
τ̃({γ = (γ1, γ2, . . .) ∈ Xτ | d(γn,1(z), A) → 0 as n→ ∞}). This is the probability of tending to

A regarding the random orbits starting with the initial value z ∈ Ĉ. For any a ∈ Ĉ, we
set Ta,τ := T{a},τ .
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We now prove the following theorem regarding the systems with finite kernel Julia sets.

Theorem 3.65. Let τ ∈ M1,c(Rat) with ♯J(Gτ ) ≥ 3. Suppose that ♯Jker(Gτ ) < ∞ and for each

z ∈ F (Gτ ), we have Gτ (z) ∩ (
∪

L∈Min(Gτ ,Ĉ),L̸⊂Jker(Gτ )
L) ̸= ∅. Then we have the following.

(i) ♯Min(Gτ , Ĉ) <∞. Moreover, for each L ∈ Min(Gτ , Ĉ), we have

C(L) = Uτ,L ⊕ {φ ∈ C(L) |Mn
τ (φ) → 0 as n→ ∞}

in the Banach space C(L) endowed with the supremum norm and dimC Uτ,L <∞. Moreover,

for each L ∈ Min(Gτ , Ĉ), let rL = dimC(Uτ,L). Then ♯Min(GrL
τ , L) = rL. Also, there exist

L1, . . . , LrL ∈ Min(GrL
τ , L) such that {Lj}rLj=1 = Min(GrL

τ , L), L = ∪rL
j=1Lj and h(Li) ⊂ Li+1

for each h ∈ Γτ , where LrL+1 := L1.

(ii) For each j = 1, . . . , rL, there exists a unique element ωL,j ∈ M1(Lj) such that (MrL
τ )∗(ωL,j) =

ωL,j . Also, for each j = 1, . . . , rL, we have MnrL
τ (φ) → (

∫
φ dωL,j) · 1Lj in the Banach space

C(Lj) endowed with the supremum norm as n→ ∞ for each φ ∈ C(Lj), suppωL,j = Lj and
M∗

τ (ωL,j) = ωL,j+1 in M1(L) where ωL,rL+1 = ωL,1. Moreover, Uτ,L,∗ = {a ∈ C | arL = 1}
and for each a ∈ Uτ,L,∗, we have dimC{φ ∈ C(L) |Mτφ = aφ} = 1.

(iii) Let l :=
∏

L∈Min(Gτ ,Ĉ) rL. For each L ∈ Min(Gτ , Ĉ), for each j = 1, . . . , rL and for each

y ∈ Ĉ, let α(Lj , y) = τ̃({γ ∈ ΓN
τ | d(γnl,1(y), Lj) → 0 as n→ ∞.}). Then for each y ∈ Ĉ and

for each φ ∈ C(Ĉ), we have

Mnl
τ (φ)(y) →

∑
L∈Min(Gτ ,Ĉ)

rL∑
j=1

α(Lj , y)

∫
φ dωL,j as n→ ∞ (pointwise convergence), (42)

i.e. we have

(M∗
τ )

nl(δy) →
∑

L∈Min(Gτ ,Ĉ)

rL∑
j=1

α(Lj , y)ωL,j as n→ ∞ in M1(Ĉ) (43)

with respect to the weak convergence topology. Also,

(M∗
τ )

l(
∑

L∈Min(Gτ ,Ĉ)
∑rL

j=1 α(Lj , y)ωL,j) =
∑

L∈Min(Gτ ,Ĉ)
∑rL

j=1 α(Lj , y)ωL,j .

(iv) For each z ∈ Ĉ there exists a Borel subset Az of ΓN
τ with τ̃(Az) = 1 such that for each

γ = (γ1, γ2, . . .) ∈ Az, we have d(γn,1(z),∪L∈Min(Gτ ,Ĉ)L) → 0 as n→ ∞.

(v) There exists a Borel subset A of RatN with τ̃(A) = 1 such that for each L ∈ Min(Gτ , Ĉ) with
L ̸⊂ Jker(Gτ ), for each point z ∈ ΩL := ∪U∈Con(F (Gτ )):U∩L ̸=∅U and for each γ ∈ A, there

exists a δ = δ(z, γ) > 0 such that diam(γn,1(B(z, δ))) → 0 and d(γn,1(z), L) → 0 as n → ∞.

In particular, for each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) and for each j = 1, . . . , rL, if
y ∈ ΩL,j := ∪U∈Con(F (Gτ )):U∩Lj ̸=∅U , then α(Lj , y) = 1, and if y ∈ ΩL′,i with (L′, i) ̸= (L, j)

then α(Lj , y) = 0.

(vi) Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Then the functions TL,τ : Ĉ → [0.1] and α(Lj , ·) :
Ĉ → [0, 1] are locally constant on F (Gτ ).

(vii) Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Then for each y ∈ F 0
pt(τ), we have

limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y).
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Proof. Let L :=
∪

L∈Min(Gτ ,Ĉ),L̸⊂Jker(Gτ )
L. Then, by the assumption of our theorem, we have

L ̸= ∅. Moreover, we have L =
∪

L∈Min(Gτ ,Ĉ),L∩F (Gτ )̸=∅ L. Let

V :=
∪

{U ∈ Con(F (Gτ )) | ∃L ∈ Min(Gτ , Ĉ) with L ∩ U ̸= ∅}.

Then Gτ (V ) ⊂ V. Moreover, by the assumptions of our theorem, we obtain ∩g∈Gτ g
−1(Ĉ \ V ) =

Jker(Gτ ). Therefore, the statements (i)–(v) of our theorem follow from Lemma 3.26, Proposi-
tion 3.63 and Lemma 3.15.

We now prove statement (vi). Let L ∈ Min(Gτ , Ĉ) and j = 1, . . . , rL. If L ̸⊂ Jker(Gτ ), then
by Lemma 3.60 (III) and its proof, the functions TL,τ and α(Lj , ·) are locally constant on F (Gτ ).
If L ⊂ Jker(Gτ ), then for any U ∈ Con(F (Gτ )), for any x, y ∈ U and for any γ ∈ Xτ with
d(γn,1(x), L) → 0 (n → ∞), we have that any limit function of {γn,1}∞n=1 is constant on U.
Hence d(γn,1(y), L) → 0 as n → ∞. This argument implies that TL,τ is constant on U for any
U ∈ Con(F (Gτ )). Therefore TL,τ is locally constant on F (Gτ ). By the same method as above, we
can show that α(Lj , ·) is locally constant on F (Gτ ).

We now prove (vii). Let L ∈ Min(Gτ , Ĉ) and let j = 1, . . . , rL. Since ♯Min(Gτ , Ĉ) < ∞, there

exists an element φL ∈ C(Ĉ) such that φL|L = 1 and φL|L′ = 0 for any L′ ∈ Min(Gτ , Ĉ) with

L′ ̸= L. By statement (iv), we have TL,τ (x) = limn→Mn
τ (φL)(x) for any x ∈ Ĉ. Thus for any

y ∈ F 0
pt(τ), we have limz∈Ĉ,z→y TL,τ (z) = TL,τ (y). Similarly, we can show that for any y ∈ F 0

pt(τ),

limz∈Ĉ,z→y α(Lj , z) = α(Lj , y).
Thus we have proved our theorem.

We now prove the following theorem, which is a generalization of [36, Theorem 3.15].

Theorem 3.66. Let τ ∈ M1,c(Rat). Suppose that ♯Jker(Gτ ) < ∞, ♯J(Gτ ) ≥ 3 and that for each

L ∈ Min(Gτ , Jker(Gτ )), χ(τ, L) < 0. Then we have F 0
pt(τ) = Ĉ, Fmeas(τ) = M1(Ĉ), Leb2(Jγ) = 0

for τ̃ -a.e.γ ∈ (Rat)N, and all statements in [36, Theorem 3.15 (1)–(3),(4a),(5)(6),(8)–(16), (19)(20)]

hold for τ. Moreover, for each z ∈ Ĉ, there exists a Borel subset Az of Xτ with τ̃(Az) = 1 satisfying
that for each γ = (γ1, γ2, . . .) ∈ Az and for each m ∈ N ∪ {0}, we have

lim
n→∞

∥D(γn+m,1+m)γm,1(z)∥s = 0.

Also, if, in addition to the assumptions of our theorem, each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ )
is attracting for τ , then there exist a constant cτ < 0 and a constant ρτ ∈ (0, 1) such that for each

z ∈ Ĉ, there exists a Borel subset Az of Xτ with τ̃(Az) = 1 such that for each γ ∈ Az and for each
m ∈ N ∪ {0}, we have the following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an attracting
minimal set L = L(τ, z, γ) of τ such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

Proof. We modify the proof of Theorem 3.37. By the assumption of our theorem, the set Ω
in the proof of Theorem 3.37 is equal to Ĉ. By Theorem 3.37, we see that for each z ∈ Ĉ,
τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0 and F 0

pt(τ) = Ĉ. Therefore by [36, Lemma 4.2], Fmeas(τ) = M1(Ĉ).
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Let δ1 > 0 be a small number. Let ϵ > 0 be an arbitrarily small number. Then by the
argument in the proof of Lemma 3.13, there exist a δ2 > 0 with δ2 < δ1 and a Borel subset Aϵ

of Xτ with τ̃(Aϵ) ≥ 1 − ϵ such that for each L ∈ Min(Gτ , Jker(Gτ )), for each z ∈ L, and for each
γ = (γ1, γ2 . . .) ∈ Aϵ, we have diam(γn,1(B(z, δ2))) ≤ δ1. For this δ2, by the argument in the proof
of Lemma 3.13 again, there exist a δ3 > 0 and a Borel subset Bϵ of Xτ with τ̃(Bϵ) ≥ 1 − ϵ such
that for each L ∈ Min(Gτ , Jker(Gτ )), for each z ∈ L, and for each γ = (γ1, γ2 . . .) ∈ Bϵ, we have
diam(γn,1(B(z, δ3))) ≤ δ2.

Let I1 := {L ∈ Min(Gτ , Ĉ) | L ⊂ Jker(Gτ )} and I2 := {L ∈ Min(Gτ , Ĉ) | L ∩ F (Gτ ) ̸= ∅}.
Note that I1∪I2 = Min(Gτ , Ĉ). For each L ∈ I2, let WL := ∪U∈Con(F (Gτ )),U∩L̸=∅U. Then for each

z ∈ Ĉ, there exists an element gz ∈ Gτ such that gz(z) ∈ B(∪L∈I1L, δ3) ∪ ∪L∈I2WL. Let δz > 0

be a number such that gz(B(z, δz)) ⊂ B(∪L∈I1L, δ3) ∪ ∪L∈I2WL. Since Ĉ is compact, there exist

finitely many points z1, . . . , zn ∈ Ĉ such that Ĉ = ∪n
j=1B(zj , δzj ). Note that Gτ (WL) ⊂ WL for

each L ∈ I2. Thus if gz(z) ∈ WL for some L ∈ I2, then for each g ∈ Gτ , we have ggz(z) ∈ WL.
Moreover, for each L ∈ I1, for each z ∈ L, for each γ ∈ Bϵ and for each n ∈ N, we have
γn,1(B(z, δ3)) ⊂ B(∪L∈I1L, δ2). Hence, considering αj ◦ gzj for some αj ∈ Gτ for each j, we have
the following claim.
Claim 1. There exist an l ∈ N and n elements hz1 , . . . , hzn ∈ Gτ such that each hzj is the

composition of l elements of Γτ and such that for each j = 1 . . . , n, we have hzj (B(z, δzj )) ⊂
B(∪L∈I1L, δ2) ∪ ∪L∈I2WL.

For each j = 1, . . . , l, let (γj1, . . . , γ
j
l ) ∈ Γl

τ be an element such that hzj = γjl ◦ · · · ◦ γ
j
1. For each

j = 1, . . . , n, let Vj be a neighborhood of (γj1, . . . , γ
j
l ) ∈ Γl

τ such that for each (α1, . . . , αl) ∈ Vj , we

have αl · · ·α1(B(zj , δzj )) ⊂ B(∪L∈I1L, δ2)∪∪L∈I2WL. Let Ω1, . . . ,Ωt be the measurable partition

of Ĉ such that each Ωi is a finite intersection of elements of {B(zj , δzj )}nj=1. For each i = 1, . . . , t, let

φ(i) ∈ {1, . . . , n} be an element such that Ωi ⊂ B(zφ(i), δzφ(i)
). For each z ∈ Ĉ, let i(z) ∈ {1, . . . , t}

be the unique element such that z ∈ Ωi(z). Let j(z) = φ(i(z)) ∈ {1, . . . , n}. For each n ∈ N and

each z ∈ Ĉ, let Cn,z be the set of elements γ = (γ1, γ2, . . .) ∈ Xτ satisfying the following.

• (γ1, . . . , γl) ̸∈ Vj(z), (γl+1, . . . , γ2l) ̸∈ Vj(γl,1(z)), . . . , (γ(n−2)l+1, . . . , γ(n−1)l) ̸∈ Vj(γ(n−2)l,1(z)),
and (γ(n−1)l+1, . . . , γnl) ∈ Vj(γ(n−1)l,1(z)).

Similarly, let Dn,z := {γ ∈ Cn,z | (γnl+1, γnl+2, . . .) ̸∈ Aϵ}. Moreover, let Ez be the set of elements
γ = (γ1, γ2, . . .) ∈ Xτ satisfying that for each n ∈ N, (γ(n−1)l+1, . . . , γnl) ̸∈ Vj(γ(n−1)l,1(z)). Then for

each z ∈ Ĉ we have

{γ ∈ Xτ | γn,1(z) ̸∈ B(∪L∈I1L, δ1) ∪ ∪L∈I2WL for infinitely many n ∈ N} ⊂ ∪∞
n=1Dn,z ∪ Ez.

It is easy to see that τ̃(Ez) = 0. Moreover,

τ̃(∪∞
n=1Dn,z) =

∑∞
n=1 τ̃(Dn,z) =

∑∞
n=1 τ̃(Cn,z) · τ̃(Xτ \Aϵ) = τ̃(∪∞

n=1Cn,z) · τ̃(Xτ \Aϵ) ≤ ϵ.

Hence

τ̃({γ ∈ Xτ | γn,1(z) ̸∈ B(∪L∈I1L, δ1) ∪ ∪L∈I2WL for infinitely many n ∈ N}) ≤ ϵ. (44)

　 Since ϵ, δ1 are arbitrary, combining (44) and Lemma 3.60 implies that for each z ∈ Ĉ, there
exists a Borel subset Qz of Xτ with τ̃(Qz) = 1 such that for each γ ∈ Qz, we have

d(γn,1(z),∪L∈Min(Gτ ,Ĉ)L) → 0 as n→ ∞. (45)

　 By the result Fmeas(τ) = M1(Ĉ), (45), Lemma 3.25 and its proof, Lemma 3.30 and its proof,
Lemma 3.60, the proof of [36, Theorem 3.15] and [36, Theorem 3.14], the statement of our theorem
holds. 　　　 　　　　　　　　 　　　　　　　　 　　　　
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Remark 3.67. Under the assumptions of Theorem 3.66, suppose that Jker(Gτ ) ̸= ∅. Then τ is
not mean stable. Also, τ does not satisfy the assumptions of [36, Theorem 3.15], although most of
the statements of [36, Theorem 3.15] hold for τ. Note that we have many examples τ ∈ M1,c(Rat)
with Jker(Gτ ) ̸= ∅ satisfying the assumptions of Theorem 3.66. See Section 5, Example 5.4.

We now give the definition of nice sets and strongly nice sets of Rat.

Definition 3.68. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m.

• We say that Y is nice (with respect to holomorphic families {Wj}mj=1 of rational maps) if for
each z ∈ Smin({Wj}mj=1) (see Definition 3.47) and for each j = 1, . . . ,m, either (a) the map
λ 7→ D(fj,λ)z is non-constant on Λj or (b) D(fj,λ)z = 0 for all λ ∈ Λj .

• We say that a finite sequence {zi}ni=1 of points of Ĉ is a peripheral cycle for (Y, {Wj}mj=1)
if there exists a Γ ∈ Cpt(Y) such that both of the following (a)(b) hold.

(a) {zi | i = 1, . . . , n} ⊂ (∪m
j=1S1(Wj)) \ ∪L∈Min(⟨Γ⟩,Ĉ),L⊂∪m

j=1S1(Wj)
L.

(b) There exists a finite sequence {γi}ni=1 of elements of Γ such that for each i = 1, . . . , n,
there exists a number ji ∈ {1, . . . , n} satisfying that for each i = 1, . . . , n, we have
γi ∈ {fji,λ | λ ∈ Λji}, zi ∈ S1(Wji) and γi(zi) = zi+1 where zn+1 := z1.

• We say that Y is strongly nice with respect to {Wj}mj=1 if Y is nice with respect to {Wj}mj=1

and there exists no peripheral cycle for (Y, {Wj}mj=1).

Definition 3.69. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m. Let Γ ∈ Cpt(Y) such

that Γ∩{fj,λ | λ ∈ Λj} ≠ ∅ for each j = 1, . . . ,m. Let L ∈ Min(⟨Γ⟩, Ĉ) with L ̸= Ĉ. Let g ∈ Γ and
j ∈ {1, . . . ,m}. We say that g is a strict bifurcation element for (Γ, L) with corresponding
suffix j if one of the following statements (a)(b) holds.

(a) g ∈ {fj,λ | λ ∈ Λj} and there exists a point z ∈ (L ∩ J(⟨Γ⟩)) \ S1(Wj) such that g(z) ∈
L ∩ J(⟨Γ⟩).

(b) g ∈ {fj,λ | λ ∈ Λj} and there exist an open subset U of Ĉ with (U ∩ L) \ S1(Wj) ̸= ∅ and
finitely many elements γ1, . . . , γn−1 ∈ Γ such that g ◦ γn−1 · · · γ1(U) ⊂ U and U is a subset
of a Siegel disk or a Hermann ring of g ◦ γn−1 ◦ · · · ◦ γ1.

Lemma 3.70. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m. Suppose there exists
no peripheral cycle for (Y, {Wj}mj=1). Let Γ ∈ Cpt(Y) such that Γ ∩ {fj,λ | λ ∈ Λj} ̸= ∅ for each

j = 1, . . . ,m. Let L ∈ Min(⟨Γ⟩, Ĉ) with L ̸= Ĉ. Suppose that Jker(⟨Γ⟩) ⊂ ∩m
j=1S(Wj) and ♯L = ∞.

Suppose also that L is not attracting for Γ. Then there exists an element (g, j) ∈ Γ × {1, . . . ,m}
such that g is a strict bifurcation element for (Γ, L) with corresponding suffix j. Moreover, if
(h, i) ∈ Γ× {1, . . . ,m} and h is a strict bifurcation element for (Γ, L) with corresponding suffix i,
then h ∈ ∂(Γ ∩ {fi,λ | λ ∈ Λi}) with respect to the topology in {fi,λ | λ ∈ Λi}.

Proof. Let G = ⟨Γ⟩. [37, Lemma 3.8] implies that we have one of the following two situations
(I)(II).

(I) There exist an element (g, j) ∈ Γ × {1, . . . ,m} with g ∈ Γ ∩ {fj,λ | λ ∈ Λj} and a point
z0 ∈ L ∩ J(G) such that g(z0) ∈ L ∩ J(G).

(II) There exist an open subset U of Ĉ with U ∩L ̸= ∅ and finitely many elements γ1, . . . , γr ∈ Γ
such that γr◦· · · γ1(U) ⊂ U and U is a subset of a Siegel disk or a Hermann ring of γr◦· · ·◦γ1.
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Suppose we have case (II). Since ♯L = ∞, by using [36, Remark 3.9] and [37, Remark 2.24] we
obtain that ♯(U ∩ L) = ∞. Let j ∈ {1, . . . ,m} with γr ∈ {fj,λ | λ ∈ Λj}. Since ♯S1(Wj) < ∞
(Lemma 3.39), it follows that γr is a strict bifurcation element with corresponding suffix j.

Suppose we have case (I). Then there exist a sequence {γi}∞i=1 in Γ with γi ∈ {fji,λ | λ ∈ Λji},
ji ∈ {1, . . . ,m} and a point z0 ∈ L ∩ J(G) such that γi · · · γ1(z0) ∈ L ∩ J(G) for each i. We now
consider the following two cases (a)(b).

(a) There exists an i ∈ N such that γi · · · γ1(z0) ̸∈ S1(Wji+1).

(b) For each i ∈ N, γi · · · γ1(z0) ∈ S1(Wji+1).

Suppose we have case (a). Then γi+1 is a strict bifurcation element with corresponding suffix ji+1.
Suppose we have case (b). Since ♯L = ∞ and ♯∪m

j=1 S1(Wj) <∞ (Lemma 3.39), we have that
L ̸⊂ ∪m

j=1S1(Wj). Then for each i ∈ N, we have

γi · · · γ1(z0) ∈ (∪m
j=1S1(Wj)) \ ∪K∈Min(G,Ĉ),K⊂∪m

j=1S1(Wj)
K.

Since we are assuming case (b) and since ♯ ∪m
j=1 S1(Wj) < ∞, there exist two elements i, j ∈ N

with j > i such that γj · · · γi · · · γ1(z0) = γi · · · γ1(z0). This contradicts to the assumption that
there exists no peripheral cycle for (Y, {Wj}mj=1).

We now suppose that (h, i) ∈ Γ × {1, . . . ,m} is a strict bifurcation element for (Γ, L) with
corresponding suffix i. Supoose that h ∈ int(Γ ∩ {fi,λ | λ ∈ Λi}) with respect to the topology in

{fi,λ | λ ∈ Λi}. Then for each z ∈ Ĉ \ S1(Wi), we have that int(⟨Γ⟩(z)) ̸= ∅. Hence it is easy to

see that int(L)∩J(G) ̸= ∅. It implies that L = Ĉ. However, this contradicts the assumption of our
lemma. Hence h ∈ ∂(Γ ∩ {fi,λ | λ ∈ Λi}).

Thus we have proved our lemma.

Lemma 3.71. Let Y be a weakly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps, where Wj = {fj,λ}λ∈Λj , j = 1, . . . ,m. Suppose that there exists no
peripheral cycle for (Y, {Wj}mj=1). Let ρ ∈ M1,c(Y, {Wj}mj=1) and suppose that the interior of
Γρ∩{fj,λ | λ ∈ Λj} is not empty with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m.
Suppose also that F (Gρ) ̸= ∅. Then we have the following.

(i) Jker(Gρ) ⊂ ∩m
j=1S(Wj), ♯Jker(Gρ) <∞ and ♯Min(Gρ) <∞.

(ii) Let L ∈ Min(Gρ, Ĉ) with L ̸⊂ ∩m
j=1S(Wj). Suppose that L is not attracting for ρ. Then

there exists an element (g, j) ∈ Γρ × {1, . . . ,m} such that g is a strict bifurcation element
for (Γρ, L) with corresponding suffix j. Moreover, if (h, i) ∈ Γρ × {1, . . . ,m} such that h
is a strict bifurcation element for (Γρ, L) with corresponding suffix i, then h belongs to the
boundary of Γρ ∩ {fi,λ | λ ∈ Λi}, where the boundary of Γρ ∩ {fi,λ | λ ∈ Λi} is taken with
respect to the topology in {fi,λ | λ ∈ Λi}.

(iii) Suppose that there exists an element L0 ∈ Min(Gρ, Ĉ) which is attracting for ρ. Then there
exists an open neighborhood V of ρ in (M1,c(Y, {Wj}mj=1),O) such that for each ρ1 ∈ V
satisfying that Γρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γρ1 ∩ {fj,λ | λ ∈ Λj}) with respect to the topology
in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, we have the following.

(a) ♯Min(Gρ1 , Ĉ) =
♯({L′ ∈ Min(Gρ, Ĉ) | L′ ⊂ ∩m

j=1S(Wj)})
+♯{L′ ∈ Min(Gρ, Ĉ) | L′ ̸⊂ ∩m

j=1S(Wj) and L
′ is attracting for ρ}.

(b) For each L ∈ Min(Gρ1 , Ĉ) there exists a unique L′ ∈ Min(Gρ, Ĉ) with L′ ⊂ L such that
either “L′ ⊂ ∩m

j=1S(Wj)” or “L′ ̸⊂ ∩m
j=1S(Wj) and L

′ is attracting for ρ”.

(c) In item (b), if L′ ⊂ ∩m
j=1S(Wj), then L = L′. If L′ ̸⊂ ∩m

j=1S(Wj) and L′ is attracting
for ρ, then L is attracting for ρ1.
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(d) Each L ∈ Min(Gρ1 , Ĉ) with L ̸⊂ ∩m
j=1S(Wj) is attracting for ρ1.

(iv) Suppose that each element L0 ∈ Min(Gρ, Ĉ) is not attracting for ρ. Let ρ1 ∈ M1,c(Y, {Wj}mj=1)
be an element such that Γρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γρ1 ∩ {fj,λ | λ ∈ Λj}) with respect to the
topology in {fj.λ | λ ∈ Λj} for each j = 1, . . . ,m. Then we have the following.

(a) If there exists an element L ∈ Min(Gρ, Ĉ) with L ⊂ ∩m
j=1S(Wj), then Min(Gρ1 , Ĉ) =

{L ∈ Min(Gρ, Ĉ) | L ⊂ ∩m
j=1S(Wj)}.

(b) If there exists no L ∈ Min(Gρ, Ĉ) with L ⊂ ∩m
j=1S(Wj), then Min(Gρ1 , Ĉ) = Ĉ and

J(Gρ1
) = Ĉ.

Proof. By Lemma 3.45, we obtain that Jker(Gρ) ⊂ ∩m
j=1S(Wj). Thus by Lemma 3.39, ♯Jker(Gρ) <

∞. From Proposition 3.63, it follows that ♯Min(Gρ, Ĉ) <∞. Thus statement (i) holds.
To prove statement (ii), since L ̸⊂ ∩m

j=1S(Wj) and since int(Γρ ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ with
respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, we obtain that ♯L = ∞. Moreover,
since int(Γρ ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ for each j and since J(Gρ) \ ∪m

j=1S1(Wj) ̸= ∅, we have

int(J(Gρ)) ̸= ∅. Combining this with the assumption F (Gρ) ̸= ∅, we obtain that Ĉ cannot be a

minimal set for (Gρ, Ĉ). Thus statement (ii) follows from Lemma 3.70.
To prove statement (iii), let V be a small open neighborhood V of ρ in (M1,c(Y, {Wj}mj=1),O)

and let ρ1 ∈ V such that Γρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γρ1 ∩ {fj,λ | λ ∈ Λj}). Taking V small

enough, we have that for each ρ′ ∈ V , F (Gρ′) ̸= ∅. By Zorn’s lemma, for each L ∈ Min(Gρ1 , Ĉ)
there exists an element L′ ∈ Min(Gρ, Ĉ) with L′ ⊂ L. If L′ ̸⊂ ∩m

j=1S(Wj) and L
′ is not attracting

for ρ, then statement (ii) (for ρ and ρ1) implies a contradiction. Hence either L′ ⊂ ∩m
j=1S(Wj)

or L′ is attracting for ρ. If L′ ⊂ ∩m
j=1S(Wj), then Lemma 3.46 implies that L′ = L. Suppose

L′ ̸⊂ ∩m
j=1S(Wj) and L

′ is attracting for ρ. Then taking V so small, [37, Lemma 5.2] implies that

L is attacting for ρ1 and there is no L′′ ∈ Min(Gρ, Ĉ) with L′′ ̸= L′ such that L′′ ⊂ L. Also, by

Lemma 3.46 again, for any K ∈ Min(Gρ, Ĉ) with K ⊂ ∩m
j=1S(Wj), we have K ∈ Min(Gρ1 , Ĉ).

Moreover, by [37, Lemma 5.2] again, for any K ∈ Min(Gρ, Ĉ) with K ̸⊂ ∩m
j=1S(Wj) which is

attracting for ρ, there exists a unique element K̃ ∈ Min(Gρ1 , Ĉ) close to K, and this K̃ is attracting
for ρ1. From these arguments, statement (iii) follows.

We now prove statement (iv). Suppose that each L0 ∈ Min(Gρ, Ĉ) is not attracting for ρ. Let
ρ1 ∈ M1,c(Y, {Wj}mj=1) be an element such that Γρ ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γρ1

∩ {fj,λ | λ ∈ Λj})
for each j = 1, . . . ,m. Let L ∈ Min(Gρ1 , Ĉ). Suppose that L ̸= Ĉ and L ̸⊂ ∩m

j=1S(Wj). Then

∅ ̸= int(L), ♯(Ĉ \ int(L)) ≥ 3 and Gρ1(int(L)) ⊂ int(L). Hence ∅ ̸= int(L) ⊂ F (Gρ1). Also, L is not
attracting for ρ1 (otherwise by Zorn’s lemma there exists an element L0 ∈ Min(Gρ, L) which is
attracting for ρ). By applying statement (ii) for ρ and ρ1, we obtain a contradiction. Thus either

L = Ĉ or L ⊂ ∩m
j=1S(Wj). If L = Ĉ, then since int(J(Gρ1)) ̸= ∅ (see the argument in the proof of

(ii)), we obtain that F (Gρ1
) = ∅. Hence statements (a) and (b) in (iv) hold.

Thus we have proved our lemma.

Definition 3.72. Let Γ ∈ Cpt(Rat).We say that Γ isweakly mean stable if there exist a positive

integer n and two non-empty open subsets V1,Γ, V2,Γ of Ĉ with V1,Γ ⊂ V2,Γ and ♯(Ĉ \ V2,Γ) ≥ 3
such that the following three conditions hold.

(a) For each (γ1, . . . , γn) ∈ Γn, γn ◦ · · · ◦ γ1(V2,Γ) ⊂ V1,Γ.

(b) Let DΓ := ∩g∈⟨Γ⟩g
−1(Ĉ \ V2,Γ). Then ♯DΓ <∞.

(c) For each L ∈ Min(⟨Γ⟩, DΓ) there exist an element z ∈ L and an element gz ∈ ⟨Γ⟩ such that
z is a repelling fixed point of gz.
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Moreover, we say that τ ∈ M1,c(Rat) is weakly mean stable if supp τ is weakly mean stable. If
τ ∈ M1,c(Rat) is weakly mean stable, then we set Vi,τ = Vi,Γτ

and Dτ = DΓτ
.

Lemma 3.73. Let A := {Γ ∈ Cpt(Rat) | Γ is weakly mean stable}. Then A is open in Cpt(Rat).
In particular, the set A′ := {τ ∈ M1,c(Rat) | τ is weakly mean stable} is open in (M1,c(Rat),O).

Proof. Let Γ ∈ A. For this Γ, let V1,Γ, V2,Γ, n as in Definition 3.72. Let V ′
1,Γ be an open subset of

Ĉ such that V1,Γ ⊂ V ′
1,Γ ⊂ V ′

1,Γ ⊂ V2,Γ. Then there exists a neighborhood U of Γ in Cpt(Rat) such
that for each Λ ∈ U and for each (γ1, . . . , γn) ∈ Λn, we have γn ◦ · · · ◦ γ1(V2,Γ) ⊂ V ′

1,Γ.
For each L ∈ Min(⟨Γ⟩, DΓ), let zL ∈ L and gL ∈ ⟨Γ⟩ such that zL is a repelling fixed point

of gL. Let ϵ > 0 be a small number. By considering linearizing coordinate for gL at zL and the
fundamental region for gL near zL, it is easy to see that for each L ∈ Min(⟨Γ⟩, DΓ) there exist
small simply connected open neighborhoods HL,Γ,1,HL,Γ,2 of zL with HL,Γ,2 ⊂ HL,Γ,1 such that
for each z ∈ B(zL, ϵ) \ {zL} there exists an element n ∈ N such that gnL(z) ∈ HL,Γ,1 \HL,Γ,2.

Shrinking U if necessary, we may assume that for each Λ ∈ U and for each L ∈ Min(⟨Γ⟩, DΓ)
there exist zL,Λ ∈ B(zL,

ϵ
2 ) and gL,Λ ∈ ⟨Λ⟩ such that zL,Λ is a repelling fixed point of gL,Λ and such

that gL,Λ → gL and zL,Λ → zL as Λ → Γ. Since the linearizing coordinate for a repelling fixed point
is continuous on Rat, if U is small enough, then for each Λ ∈ U , for each L ∈ Min(⟨Γ⟩, DΓ) there
exist two small simply connected open neighborhoods HL,Λ,1,HL,Λ,2 of zL,Λ with HL,Λ,2 ⊂ HL,Λ,1

such that the following hold.

1. For each z ∈ B(zL,Λ, ϵ)\{zL,Λ} there exists an element n ∈ N with gnL,Λ(z) ∈ HL,Λ,1 \HL,Λ,2.

2. There exist two small numbers ϵ1, ϵ2 > 0 with ϵ1 < ϵ2 <
1
3 min{d(a, b) | a, b ∈ DΓ, a ̸= b}

such that for each Λ ∈ U and for each L ∈ Min(⟨Γ⟩, DΓ),

B(zL, ϵ1) ⊂ HL,Λ,2, HL,Λ,1 ⊂ B(zL, ϵ2). (46)

For each w ∈ DΓ, let Lw ∈ Min(⟨Γ⟩, DΓ) be an element such that ⟨Γ⟩(w) ∩ Lw ̸= ∅. Moreover, let
hw ∈ ⟨Γ⟩ such that hw(w) = zLw . Taking U small enough, there exists a δ > 0 with

δ < ϵ1, δ <
1

3
min{d(a, b) | a, b ∈ DΓ, a ̸= b}. (47)

such that for each ρ ∈ U and for each w ∈ DΓ, there exists an element hw,Λ ∈ ⟨Λ⟩ close to hw such
that

hw,Λ(B(w, δ)) ⊂ B(zLw
,
ϵ

2
) ⊂ B(zLw,Λ, ϵ). (48)

Let Kδ = Ĉ \ B(DΓ, δ). Then for each z ∈ Kδ there exists an element αz ∈ ⟨Γ⟩ such that
αz(z) ∈ V2,Γ. Since Kδ is compact, there exist a finite set {z1, . . . , zq} in Kδ, a number ϵ0 > 0 and
elements β1, . . . , βq ∈ ⟨Γ⟩ such that

Kδ ⊂ ∪q
j=1B(zj , ϵ0) (49)

and βj(B(zj , ϵ0)) ⊂ V2,Γ for all j = 1, . . . , q. Hence shrinking U if necessary, we have that for each
Λ ∈ U , there exist elements β1,Λ, . . . , βq,Λ ∈ ⟨Λ⟩ such that

βj,Λ(B(zj , ϵ0)) ⊂ V2,Γ, for all j = 1, . . . , q. (50)

We now let Λ ∈ U and let z0 ∈ ∩g∈⟨Λ⟩g
−1(Ĉ\V2,Γ). Then by (49) and (50), we have z0 ̸∈ Kδ. Thus

z0 ∈ B(DΓ, δ). Moreover, by (46) and (47), we have HL,Λ,2 \HL,Λ,1 ⊂ Kδ for all L ∈ Min(⟨Γ⟩, DΓ)
and for all Λ ∈ U . Combining this with (48), we obtain that taking an element w ∈ DΓ with
d(z0, w) < δ, we have hw,Λ(z0) = zLw,Λ for all Λ ∈ U . It follows that∩

g∈⟨Λ⟩

g−1(Ĉ \ V2,Γ) ⊂
∪

L∈Min(⟨Γ⟩,DΓ),w∈DΓ

h−1
w,Λ(zL,Λ) for all Λ ∈ U . (51)
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Since the right hand side of the above is a finite set, we obtain that ♯DΛ < ∞, where DΛ :=
∩g∈⟨Λ⟩g

−1(Ĉ \ V2,Γ). Moreover, by (51), we have that for each K ∈ Min(⟨Λ⟩, DΛ) there exist an
element z ∈ K and an element ζz ∈ ⟨Λ⟩ such that z is a repelling fixed point of ζz. Thus Λ is
wealky mean stable. Hence we have proved our lemma.

Lemma 3.74. Let Γ ∈ Cpt(Rat) be weakly mean stable. Let DΓ be as in Definition 3.72. Then
DΓ = Jker(⟨Γ⟩), ♯(Jker(⟨Γ⟩)) <∞, and for each z ∈ F (⟨Γ⟩), we have

⟨Γ⟩(z) ∩

 ∪
L∈Min(⟨Γ⟩,Ĉ),L ̸⊂Jker(⟨Γ⟩)

L

 ̸= ∅.

In particular, if τ ∈ M1,c(Rat) is weakly mean stable and ♯J(Gτ ) ≥ 3, then statements (i)-(vii) in
Theorem 3.65 hold.

Proof. By definition of DΓ, we have ⟨Γ⟩(DΓ) ⊂ DΓ. Also, by condition (c) in Definition 3.72, we
have DΓ ⊂ J(⟨Γ⟩). Thus DΓ ⊂ Jker(⟨Γ⟩). Let V2,Γ be as in Definition 3.72. Then V2,Γ ⊂ F (⟨Γ⟩).
Since ⟨Γ⟩(Jker(⟨Γ⟩)) ⊂ Jker(⟨Γ⟩) ⊂ J(⟨Γ⟩) ⊂ Ĉ \ V2,Γ, we obtain Jker(⟨Γ⟩) ⊂ DΓ. Hence we have
DΓ = Jker(⟨Γ⟩). By definition of weakly mean stable elements again, we have ♯DΓ < ∞. Thus
♯Jker(⟨Γ⟩) < ∞. Let V2,Γ be as in Definition 3.72 for Γ. Let z ∈ F (⟨Γ⟩). Since z ̸∈ Jker(⟨Γ⟩) and

DΓ = Jker(⟨Γ⟩), it follows that ⟨Γ⟩(z) ∩ V2,Γ ̸= ∅. Thus ⟨Γ⟩(z) ∩ (
∪

L∈Min(⟨Γ⟩,Ĉ),L̸⊂Jker(⟨Γ⟩) L) ̸= ∅.
If τ ∈ M1,c(Rat) is weakly mean stable and ♯J(Gτ ) ≥ 3, then combining the above argument and
Theorem 3.65 implies that statements (i)–(vii) in Theorem 3.65 hold for τ.

Lemma 3.75. Let Γ ∈ Cpt(Rat). Let G = ⟨Γ⟩. Let L ∈ Min(G, Ĉ) with ♯L < ∞. Then we have
the following.

(i) Suppose that for each z ∈ L and for each g ∈ G with g(z) = z, we have ∥Dgz∥s > 1. Then
there exist a constant C1 > 0 and a constant α > 1 such that for each γ ∈ ΓN and for each
z ∈ L, we have ∥D(γn,1)z∥s ≥ C1α

n.

(ii) Suppose that for each z ∈ L and for each g ∈ G with g(z) = z, we have ∥Dgz∥s < 1. Then
there exist a constant C2 > 0 and a constant β < 1 such that for each γ ∈ ΓN and for each
z ∈ L, we have ∥D(γn,1)z∥s ≤ C2β

n.

Proof. We first prove statement (i). We show the following claim.
Claim 1. Under the assumptions of our lemma and statement (i), let k ∈ N with 1 ≤ k ≤ ♯L.
Then there exist a constant Ak > 0 and a constant αk > 1 such that for any subset H ⊂ L with
♯H = k, for any n ∈ N, for any z ∈ H and for any γ ∈ ΓN, if γj,1(z) ∈ H for each j = 1, . . . , n,
then ∥D(γn,1)z∥s ≥ Akα

n
k .

To prove this claim, we use the induction on k. Apparently, the statement of the conclusion of
the claim holds for k = 1. Suppose that the statement of the conclusion of the claim holds for k,
where 1 ≤ k < ♯L. Let u ∈ N with u ≥ 2 such that for each u′ ∈ N with u′ ≥ u, we have

(min
w∈L

∥Dgw∥s)Akα
u′

k ≥ 2. (52)

For this u, let

B := min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr, ρr ◦ · · · ◦ ρ1(w) = w} > 1. (53)

Also, let v ∈ N be a large number such that

(min
w∈L

∥Dgw∥s)Akα
uv
k · (min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr}) > 2. (54)

Let p ∈ N be a large number such that

Bp ·min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | w ∈ L, r ≤ u, (ρ1, . . . , ρr) ∈ Γr} > 2. (55)
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Let n ∈ N with n > puv. Let H ⊂ L with ♯H = k+1. Let γ ∈ ΓN, z ∈ H and suppose that γj,1(z) ∈
H for each j = 1, . . . , n. Let j1, . . . , jm ∈ N with 1 ≤ j1 < j2 < · · · < jm ≤ n such that γji,1(z) = z
for each i = 1, . . . ,m and γl,1(z) ̸= z for each l ∈ {1, . . . , n} \ {ji | i = 1, . . . ,m}. Also, let j0 := 0
and jm+1 = n. (If there is no j ∈ N such that γj,1(z) = z, then we set j0 = 0,m = 0, j1 = n.) We
now want to show that ∥D(γn,1)z∥s ≥ 2. In order to do that, we consider the following three cases
1,2,3.

Case 1. jm+1 − jm > u. In this case, by the definition of {ji}, assumptions of our lemma and
(52), we obtain that ∥D(γn,1)z∥s ≥ 2.

Case 2. jm+1 − jm ≤ u and there exists an element q ∈ N ∪ {0} with 0 ≤ q ≤ m − 1 such
that jq+1 − jq > uv. In this case, by the definition of {ji}, assumptions of our lemma and (54), we
obtain that ∥D(γn,1)z∥s ≥ 2.

Case 3. jm+1 − jm ≤ u and for each i ∈ N ∪ {0} with 0 ≤ i ≤ m − 1, ji+1 − ji ≤ uv. In this
case, we have puv < n =

∑m
i=0(ji+1 − ji) ≤ (m + 1)uv. Hence m ≥ p. Combining this with the

definition of {ji} and (55), we obtain that

∥D(γn,1)z∥s ≥ Bm ·min{∥D(ρr ◦ · · · ◦ ρ1)w∥s | r ≤ u, (ρ1, . . . , ρr) ∈ Γr} ≥ 2.

From these arguments, the induction step for k+1 is complete. Thus we have proved Claim 1. By
Claim 1, statement (i) of our lemma holds.

By the similar method to the above, we can show that statement (ii) of our lemma holds.
Thus we have proved our lemma.

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.76. Let Y be a mild subset of Rat+ and suppose that Y is strongly nice with respect
to some holomorphic families {Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c(Y, {Wj}mj=1) | τ is weakly mean stable}

is open and dense in (M1,c(Y, {Wj}mj=1),O). Moreover, there exists the largest open and dense
subset A of (M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, all of the following statements (i)–(v)
hold.

(i) τ is weakly mean stable.

(ii) Let Dτ be as in Definition 3.72 for τ. Then ♯Jker(Gτ ) < ∞, Dτ = Jker(Gτ ) ⊂ ∩m
j=1S(Wj)

and ♯Min(Gτ , Ĉ) <∞.

(iii) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for τ.

(iv) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ (∪L∈Min(Gτ ,Ĉ),L̸⊂Jker(Gτ )
L) ̸= ∅.

(v) All statements (i)–(vii) of Theorem 3.65 hold for τ.

Proof. Let τ ∈ M1,c(Y, {Wj}mj=1) be an element. There exists an element τ0 ∈ M1,c(Y, {Wj}mj=1)
with ♯supp τ0 <∞ arbitrarily close to τ. Since Y is nice with respect to {Wj}mj=1, we may assume
that for each z ∈ Smin({Wj}mj=1) and for each j ∈ {1, . . . ,m}, either

• Dhz ̸= 0 for all h ∈ Γτ0 ∩ {fj,λ | λ ∈ Λj}, or

• D(fj,λ)z = 0 for all λ ∈ Λj .

By enlarging the support of τ0 a little bit, we obtain an element τ1 ∈ M1,c(Y, {Wj}mj=1) arbitrarily
close to τ such that int(Γτ1 ∩ {fj,λ | λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}
for each j = 1, . . . ,m. By enlarging the support of τ1 a little bit again, Lemma 3.71 implies that,
we can obtain an element τ2 ∈ M1,c(Y, {Wj}mj=1) arbitrarily close to τ such that int(Γτ2 ∩ {fj,λ |
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λ ∈ Λj}) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, such that

Jker(Gτ2) ⊂ ∩m
j=1S(Wj), such that ♯Jker(Gτ2) < ∞, such that ♯Min(Gτ2 , Ĉ) < ∞, and such that

each L ∈ Min(Gτ2 , Ĉ) with L ̸⊂ ∩m
j=1S(Wj) is attracting for τ2. We now prove the following claim.

Claim 1. There exists an element τ3 ∈ (M1,c(Y, {Wj}mj=1) arbitrarily close to τ2 such that the
interior of Γτ3 ∩ {fj,λ | λ ∈ Λj} is not empty with respect to the topology in {fj,λ | λ ∈ Λj} for

each j = 1, . . . ,m, and such that for each L ∈ Min(Gτ3 , Ĉ) with L ⊂ ∩m
j=1S(Wj), exactly one of

the following (I)-(IV) holds.

(I) For each z ∈ L and for each g ∈ Gτ3 with g(z) = z, we have ∥Dgz∥s > 1.

(II) For each z ∈ L and for each g ∈ Gτ3 with g(z) = z, we have ∥Dgz∥s < 1.

(III) There exist a point z1 ∈ L and elements g1, g2, g3 ∈ Gτ3 such that g1(z1) = z1, ∥D(g1)z1∥s >
1, g2(z1) = z1, 0 < ∥D(g2)z1∥ < 1, g3(z1) = z1, and z1 is the center of a Siegel disk of g3.
Moreover, there exist some elements α1, . . . , αl ∈ Γτ3 with αk ∈ int(Γτ3 ∩ {fjk,λ | λ ∈ Λjk})
with respect to the topology in {fjk,λ | λ ∈ Λjk}, k = 1, . . . , l, such that g3 = α1 ◦ · · · ◦ αl.

(IV) There exist a point z1 ∈ L and a j ∈ {1, . . . ,m} such that for each λ ∈ Λj , we have
D(fj,λ)z = 0. Moreover, there exist a point z2 ∈ L and an element g ∈ Gτ3 such that
g(z2) = z2 and ∥Dgz2∥s > 1.

To prove this claim, we first remark that regarding the minimal set L ∈ Min(Gτ2 , Ĉ) with L ⊂
∩m
j=1S(Wj) of type (I), by Lemmas 3.46 and 3.75, if we perturb τ2 a little bit to τ ′3, then L ∈

Min(Gτ ′
3
, Ĉ) with L ⊂ ∩m

j=1S(Wj) and L is of type (I) for τ ′3. By Lemmas 3.46 and 3.75 again,

the similar thing holds for minimal sets L ∈ Min(Gτ2 , Ĉ) with L ⊂ ∩m
j=1S(Wj) of type (II). Let

τ3 ∈ M1,c(Y, {Wj}mj=1) be an element such that τ3 is close to τ2 and Γτ2 ⊂ int(Γτ3∩{fj,λ | λ ∈ Λj})
with respect to the topology in {fj,λ | λ ∈ Λj}), for each j = 1, . . . ,m. Regarding the element τ3,
suppose that we do not have (I) or (II). Then there exist a point z1 ∈ L, an element g1 ∈ Gτ3 , a
point z2 ∈ L, and an element h2 ∈ Gτ3 such that g1(z1) = z1, ∥D(g1)z1∥s ≥ 1, h2(z2) = z2, and
∥D(h2)z2∥s ≤ 1. Since Y is nice with respect to {Wj}mj=1, by enlarging the support of τ3 a little
bit, we may assume that ∥D(g1)z1∥s > 1 and ∥D(h2)z2∥s < 1. (For, if g1 = γn ◦ · · · ◦ γ1 where
γk ∈ Γτ3 ∩ {fjk,λ | λ ∈ Λjk}, k = 1, . . . , n, we may assume that γn ∈ int(Γτ3 ∩ {fjn,λ | λ ∈ Λjn}.
Since Y is nice with respect to {Wj}mj=1, perturbing γn a little bit if necessary, we may assume
that ∥D(g1)z1∥ > 1. Similar argument is valid for h2.) Let α, β ∈ Γτ3 such that α(z2) = z1 and
β(z1) = z2. Take a large n ∈ N so that ∥D(αhn2β)z1∥s < 1. Let g2 = αhn2β. Suppose we do not
have (IV). Then we may assume that 0 < ∥D(g2)z1∥s. In order to take an element g3 as in (III),
let a = ∥D(g1)z1∥s > 1 and b = ∥D(g2)z1∥s ∈ (0, 1). Let

Ω := {m log a+ n log b | (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}}.

We now prove the following subclaim which is needed in the proof of Claim 1.
Subclaim (∗). 0 ∈ Ω with respect to the topology in R.

To prove this subclaim, let Ω+ = Ω∩{x ∈ R | x ≥ 0} and Ω− := {x ∈ R | x ≤ 0}. Suppose that
0 ̸∈ Ω. Then inf Ω+ > 0 and supΩ− < 0. Suppose that inf Ω+ > − supΩ−. Then for each ϵ > 0
with ϵ < max{inf Ω+ + supΩ−,− supΩ−}, there exist an element c1 ∈ Ω+ with c1 < inf Ω+ + ϵ
and an element d1 ∈ Ω− with d1 > supΩ− − ϵ. Then c1 + d1 ≥ inf Ω+ + supΩ− − ϵ > 0. Hence
c1 + d1 ∈ Ω+. However, c1 + d1 ≤ inf Ω+ + supΩ− + ϵ < inf Ω+. This is a contradiction. Thus
we must have that inf Ω+ ≤ − supΩ−. Similarly, we must have that inf Ω+ ≥ − supΩ−. Hence
inf Ω+ = − supΩ−. This implies 0 ∈ Ω. However, this is a contradiction. Thus we have proved
subclaim (∗).

Going back to the proof of Claim 1, for each i = 1, 2, we write gi = γi1 ◦ · · · ◦ γipi
where

γik ∈ Γτ3 ∩ {fji,k,λ | λ ∈ Λji,k}. By enlarging the support of τ3 a little bit, we may assume that
γik ∈ int(Γτ3 ∩{fji,k,λ | λ ∈ Λji,k}) with respect to the topology in {fji,k,λ | λ ∈ Λji,k} for each i, k.
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Then there exist an ϵ > 0 and a neighborhood Vk,i of γ
i
k in int(Γτ3 ∩{fjk,i,λ | λ ∈ Λjk,i

}) such that
(log a − ϵ, log a + ϵ) ⊂ {log ∥D(γ̃11 · · · γ̃1p1

)z1∥s | γ̃1k ∈ Vk,1, k = 1 . . . , p1} and (log b − ϵ, log b + ϵ) ⊂
{log ∥D(γ̃21 · · · γ̃2p2

)z1∥s | γ̃2k ∈ Vk,2, k = 1 . . . , p2}. We set

Ω̃ := {m log ∥D(γ̃11 · · · γ̃1p1
)z1∥s + n log ∥D(γ̃21 · · · γ̃2p2

)z1∥s
| (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}, γ̃1k ∈ Vk,1, γ̃

2
k ∈ Vk,2, ∀k}.

Then for each c ∈ Ω, we have (c− ϵ, c+ ϵ) ⊂ Ω̃. By Subclaim (∗), it follows that 0 ∈ Ω̃. Therefore
there exist an element (m,n) ∈ (N ∪ {0})2 \ {(0, 0)}, p1-elements γ̃1k ∈ Vk,1, k = 1, . . . , p1, and
p2-elements γ̃2k ∈ Vk,2, k = 1, . . . , p2 such that setting h3 = (γ̃11 · · · γ̃1p1

)m(γ̃21 · · · γ̃2p2
)n, we have

∥D(h3)z1∥s = 1. Perturbing γ̃ik a little bit, we obtain an element g3 which is close to h3 such that

g′3(z1) is a Brjuno number (we may assume z1 ∈ C by conjugating Gτ3 by an element of Aut(Ĉ)).
Thus g3 has a Siegel disk whose center is z1 ([24]). Thus we have proved Claim 1.

By Lemma 3.75, we have the following two claims.
Claim 2 There exists a k ∈ N such that for each L ∈ Min(Gτ3 , Smin({Wj}mj=1)) of type (I), for each

z ∈ L and for each (γ1, . . . , γk) ∈ Γk
τ3 , we have ∥D(γk ◦ · · · ◦ γ1)z∥s > 2.

Claim 3. There exists a k ∈ N such that for each L ∈ Min(Gτ3 , Smin({W}mj=1)) of type (II), for

each z ∈ L and for each (γ1, . . . , γk) ∈ Γk
τ3 , we have ∥D(γk ◦ · · · ◦ γ1)z∥s < 1

2 . Moreover, there

exists a neighborhood V of L with ♯(Ĉ \ V ) ≥ 3 such that for each (γ1, . . . , γk) ∈ Γτ3 , we have
γk ◦ · · · ◦ γ1(V ) ⊂ V. In particular, L is attracting for Gτ3 and L ⊂ F (Gτ3).

Throughout the rest of the proof, we fix an element k ∈ N which satisfies the statements in
Claims 2,3.

We now prove the following claim.
Claim 4. Let L ∈ Min(Gτ3 , Smin({Wj}mj=1)) be of type (III). Then L ⊂ int(J(Gτ3)). In particular,

for each z ∈ F (Gτ3), we have Gτ3(z) ∩ L = ∅.
To prove Claim 4, let z1, g1, g2, g3 be as in (III). Since z1 is a repelling fixed point of g1, we

have z1 ∈ J(Gτ3). Since J(Gτ3) is perfect (see [13]), there exists a point w ∈ J(Gτ3) ∩ (B \ {z1}),
where B denotes the Siegel disk of g3 whose center is z1. Therefore there exists a g3-invariant
analytic Jordan curve ζ in J(Gτ3) ∩ B with w ∈ ζ. If K is a compact subset in Ĉ \ S1(Wj), A is
a subset of {fj,λ | λ ∈ Λj} with int(A) ̸= ∅ with respect to the topology in {fj,λ | λ ∈ Λj}, and
h0 ∈ int(A), then there exists an ϵ > 0 such that for each z ∈ K, B(h0(z), ϵ) ⊂ {h(z) | h ∈ A}.
From this fact and that ♯(S1(Wj)) < ∞ for each j, it follows that ζ ⊂ int(J(Gτ3)). Similarly, for
each w′ ∈ B ∩ J(Gτ3), if we take the g3-invariant analytic Jordan curve ζ ′ in B with w′ ∈ ζ ′, then
ζ ′ ⊂ int(J(Gτ3)). From this argument, we obtain that z1 ∈ int(J(Gτ3)). Therefore L ⊂ int(J(Gτ3)).
Thus we have proved Claim 4.

We now prove the following claim.
Claim 5. Let L ∈ Min(Gτ3 , Smin({Wj}mj=1)) be of type (IV). Then L ⊂ int(J(Gτ3)). In particular,

for each z ∈ F (Gτ3), Gτ3(z) ∩ L = ∅.
To prove Claim 5, let j ∈ {1, . . . ,m}, z1, z2 ∈ L and g ∈ Gτ3 be as in (IV). Since z2 is a repelling

fixed point of g, we have z2 ∈ J(Gτ3). Moreover, let λ ∈ Λj with fj,λ ∈ Γτ3 and let α, β ∈ Gτ3

such that α(z2) = z1, β(fj,λ(z1)) = z2. Then β ◦ fj,λ ◦ α(z2) = z2 and D(β ◦ fj,λ ◦ α)z2 = 0. By
[14, Corollary 4.1], we obtain that z2 ∈ int(J(⟨g, β ◦ fj,λ ◦ α⟩)) ⊂ int(J(Gτ3)). Moreover, for each
z ∈ L, there exists an element γ ∈ Gτ3 such that γ(z) = z2. Thus L ⊂ int(J(Gτ3)). Hence we have
proved Claim 5.

Let I := {L ∈ Min(Gτ3 , Ĉ) | L ⊂ ∩m
j=1S(Wj), L is of type (I)}. Let

Cτ3 := {w ∈ Ĉ \ ∪L∈IL | ∃(γ1, . . . , γk) ∈ Γk
τ3 s.t. γk · · · γ1(w) ∈ ∪L∈IL}.

Note that Cτ3 ⊂ J(Gτ3). Moreover, by Claim 2,

Cτ3 ∩ ∪L∈Min(Gτ3 ,Ĉ)
L = ∅ and Cτ3 is compact. (56)
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We now prove the following claim.
Claim 6. Let z ∈ F (Gτ3). If Gτ3(z) ∩ (∪L∈Min(Gτ3 ,Ĉ),L∩F (Gτ3 )̸=∅L) = ∅, then

Gτ3(z) ∩ (∪L∈I,L⊂J(Gτ3 )
L) ̸= ∅ and Gτ3(z) ∩ Cτ3 ̸= ∅.

To prove Claim 6, let z ∈ F (Gτ3) and suppose Gτ3(z) ∩ (∪L∈Min(Gτ3 ,Ĉ),L∩F (Gτ3 ) ̸=∅L) = ∅. Since

Gτ3(z) ∩ ∪L∈Min(Gτ3 ,Ĉ)
L ̸= ∅, Claims 3,4,5 imply that Gτ3(z) ∩ (∪L∈I,L⊂J(Gτ3 )

L) ̸= ∅. Let δ1 > 0

be a number such that for each (γ1, . . . , γk) ∈ Γk
τ3 , for each L ∈ I and for each x ∈ L, we have

γk · · · γ1|B(x,δ1) is injective and we can take well-defined inverse branch ζ : B(γk · · · γ1(x), δ1) → Ĉ
of γk · · · γ1 such that ζ(γk · · · γ1(x)) = x. We may assume

δ1 < (1/2) ·min{d(a, b) | L ∈ I, a, b ∈ L, a ̸= b}.

Let δ2 ∈ (0, δ1) be a number such that for each L ∈ I, for each x ∈ L and for each y ∈
B(x, δ2), we have d(γk · · · γ1(y), γk · · · , γ1(x)) < δ1. Let ϵ ∈ (0, δ1) be any small number with
ϵ < d(z,∪L∈IL). Then there exist an element γ = (γ1, γ2, . . .) ∈ Xτ3 an element n ∈ N, and an
element L ∈ I such that γnk,1(z) ∈ B(L, ϵ). We may assume that n is the minimum one. Sup-
pose γ(n−1)k,1(z) ∈ ∪L∈IB(L, δ2). Then there exist an element L0 ∈ I and an element z0 ∈ L0

such that γ(n−1)k,1(z) ∈ B(z0, δ2). It implies that d(γnk,1(z), γnk · · · γ(n−1)k+1(z0)) < δ1. Let

ξ : B(γnk · · · γ(n−1)k+1(z0), δ1) → Ĉ be the well-defined inverse branch of γnk · · · γ(n−1)k+1 such
that ξ(γnk · · · γ(n−1)k+1(z0)) = z0. By Claim 2, taking δ1 small enough, we obtain that

ξ(B(γnk · · · γ(n−1)k+1(z0), ϵ)) ⊂ B(z0,
3

4
ϵ) ⊂ B(z0, δ1).

Since γnk · · · γ(n−1)k+1|B(z0,δ1) is injective, it follows that

γ(n−1)k,1(z) ∈ ξ(B(γnk · · · γ(n−1)k+1(z0), ϵ)) ⊂ B(z0, ϵ).

However, this contradicts the minimality of n. Therefore we should have that γ(n−1)k,1(z) ̸∈
∪L∈IB(L, δ2). Since the above argument is valid for arbitrarily small ϵ > 0, we obtain that
Gτ3(z) ∩ Cτ3 ̸= ∅. Thus we have proved Claim 6.

Let p ∈ N with p >
∑m

j=1 ♯S1(Wj) + 1 and let H := {z ∈ F (Gτ3) | Gτ3(z) ∩ Cτ3 ̸= ∅}. For
each z ∈ H and for each n ∈ N, there exist an element (wz,n,0, . . . , wz,n,p) ∈ (Gτ3(z))

p+1 and an
element (γz,n,1, . . . , γz,n,p) ∈ Γp

τ3 such that γz,n,i+1(wz,n,i) = wz,n,i+1 for each i = 0, . . . , p− 1 and
such that d(wz,n,p, Cτ3) <

1
n . We may assume that for each i = 0, . . . , p, there exists an element

wz,∞,i ∈ Gτ3(z) such that wz,n,i → wz,∞,i as n → ∞. Moreover, we may assume that for each
i = 1, . . . , p, there exists an element γz,∞,i ∈ Γτ3 such that γz,n,i → γz,∞,i as n → ∞. Then we
have that γz,∞,i+1(wz,∞,i) = wz,∞,i+1 for each i = 0, . . . , p − 1. Since wz,∞,p ∈ Cτ3 ⊂ J(Gτ3), we
obtain that wz,∞,i ∈ J(Gτ3) for each i = 0, . . . , p. For each i = 1, . . . , p, let jz,i ∈ {1, . . . ,m} be an
element such that γz,∞,i ∈ Γτ3 ∩ {fjz,i,λ | λ ∈ Λjz,i}. We now prove the following claim.
Claim 7. There exists a number ϵ > 0 such that for each z ∈ H, there exists an element i ∈ N with
1 ≤ i ≤ p such that d(wz,∞,i−1, S1(Wjz,i)) > ϵ.

To prove Claim 7, suppose that the statement of Claim 7 does not hold. Then for each r ∈ N
there exists a zr ∈ H such that for each i ∈ N with 1 ≤ i ≤ p, we have d(wzr,∞,i−1, S1(Wjzr,i)) <

1
r .

We may assume that for each i = 1, . . . , p, there exist an element ai−1 ∈ Cτ3 , an element ji ∈
{1, . . . ,m}, and an element γi ∈ Γτ3 ∩ {fji,λ | λ ∈ Λji} such that jzr,i = ji for each r, such that
wzr,∞,i−1 → ai−1 as r → ∞, and such that γzr,∞,i → γi as r → ∞. Also we may assume that there
exists an element ap ∈ Cτ3 such that wzr,∞,p → ap as r → ∞. Then we have that ai−1 ∈ S1(Wji)
and γi(ai−1) = ai for each i = 1, . . . , p and thus ai−1 ̸∈ ∪L∈Min(Gτ3 ,Ĉ)

L for each i = 1, . . . , p (by

(56) and the fact ap ∈ Cτ3). However, this contradicts to the assumption that there exists no
peripheral cycle for (Y, {Wj}mj=1). Thus we have proved Claim 7.
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Since wz,∞,i ∈ J(Gτ3) for each z ∈ H and i = 1, . . . , p, Claim 7 implies that if τ4 ∈
M1,c(Y, {Wj}mj=1) is an element such that Γτ3 ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γτ4 ∩ {fj,λ | λ ∈ Λj})
with respect to the topology in {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, then for each z ∈ H there
exists an element gz ∈ Γτ4 such that

Gτ3(gz(z)) ∩ ∪
L∈Min(Gτ3 ,Ĉ), L is attracting for τ3

L ̸= ∅.

Combining this with Lemma 3.71 and Claim 6, we easily see that if we assume further that τ4 is
close enough to τ3, then for each L ∈ Min(Gτ4 , Ĉ) with L ̸⊂ Jker(Gτ4), we have that L is attracting
for τ4 and

for each z ∈ F (Gτ4), we have that Gτ4(z) ∩ ∪L∈Min(Gτ4 ,Ĉ), L is attracting for τ4
L ̸= ∅. (57)

Moreover, Lemma 3.71 implies that there exist two non-empty open neighborhoods V1,τ4 , V2,τ4 of

the union of attracting minimal sets for (Gτ4 , Ĉ) and an element n ∈ N such that V1,τ4 ⊂ V2,τ4 ,

♯(Ĉ \ V2,τ4) ≥ 3 and for each (γ1, . . . , γn) ∈ Γn
τ4 , we have γn ◦ · · · ◦ γ1(V2,τ4) ⊂ V1,τ4 . By (57) and

Lemma 3.71 (i), we have

Dτ4 :=
∩

g∈Gτ4

g−1(Ĉ \ V2,τ4) = Jker(Gτ4) ⊂ ∩m
j=1S(Wj). (58)

Furthermore, for each L ∈ Min(Gτ4 , Ĉ) with L ⊂ ∩m
j=1S1(Wj), L satisfies exactly one of (I)–(IV)

in Claim 1. Therefore τ4 is weakly mean stable. By (58), Lemma 3.46, Lemma 3.73 and its proof,
and Lemma 3.74, we see that there exists an neighborhood V of τ4 in (M1,c(Y, {Wj}mj=1),O) such
that for each τ5 ∈ V , we have that statements (i)(ii)(iii)(iv)(v) in our theorem hold for τ5. Thus
we have proved Theorem 3.76.

Definition 3.77. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. We set

M1,c,mild(Y, {Wj}mj=1) := {τ ∈ M1,c(Y, {Wj}mj=1) | ∃L ∈ Min(Gτ , Ĉ) which is attracting for τ}.

Also, we denote by M1,c,JF (Y, {Wj}mj=1) the set of elements τ ∈ M1,c(Y, {Wj}mj=1) satisfying that

J(Gτ ) = Ĉ and either Min(Gτ , Ĉ) = {Ĉ} or ∪L∈Min(Gτ ,Ĉ)L ⊂ ∩m
j=1S(Wj).

Remark 3.78. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then it is easy to see that M1,c,mild(Y, {Wj}mj=1) is an open subset of
(M1,c(Y, {Wj}mj=1),O).

We now prove a theorem in which we do not assume that Y is mild with {Wj}mj=1.

Theorem 3.79. Let Y be a strongly nice subset of Rat+ with respect to some holomorphic families
{Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c,mild(Y, {Wj}mj=1) | τ is weakly mean stable}

is open and dense in (M1,c,mild(Y, {Wj}mj=1),O). Moreover, there exists the largest open and dense
subset A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A, all statements (i)–(v) in Theo-
rem 3.76 hold. Furthermore, we have

A ∪M1,c,JF (Y, {Wj}mj=1) = M1,c(Y, {Wj}mj=1)

with respect to the topology O.
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Proof. By using the argument in the proof of Theorem 3.76, we obtain that the set of mean
stable elements τ ∈ M1,c,mild is open and dense in (M1,c,mild(Y, {Wj}mj=1),O), and there exists
the largest open and dense subset A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A,
all statements (i)–(v) in Theorem 3.76 hold. To prove the last statement of the theorem, let

τ ∈ M1,c(Y, {Wj}mj=1) and suppose that there exists no element in Min(Gτ , Ĉ) which is attracting
for τ. We want to find an element in M1,c,JF (Y, {Wj}mj=1) which is arbitrarily close to τ , by using
the arguments in the proof of Theorem 3.76 with some modifications. We take τ1 close to τ as in
the proof of Theorem 3.76. We may assume that there exists no element in Min(Gτ1 , Ĉ) which is
attracting for τ1. We now consider the following two cases.
Case 1. F (Gτ1) = ∅. Case 2. F (Gτ1) ̸= ∅.
Suppose we have Case 1. Let L ∈ Min(Gτ1 , Ĉ) and suppose L ̸= Ĉ and L ̸⊂ ∩m

j=1S(Wj). Then

∅ ̸= int(L), ♯(Ĉ \ (int(L))) ≥ 3 and Gτ1(int(L)) ⊂ int(L). Hence by Montel’s theorem, we obtain
∅ ̸= int(L) ⊂ F (Gτ1). However, this is a contradiction. Thus τ2 ∈ M1,c,JF (Y, {Wj}mj=1).

Suppose that we have Case 2. Let τ2 ∈ M1,c(Y, {Wj}mj=1) such that Γτ1 ∩ {fj,λ | λ ∈ Λj} ⊂
int(Γτ2∩{fj,λ | λ ∈ Λj}) for each j = 1, . . . ,m, and such that τ2 is close to τ1. Then by Lemma 3.71

(iv), we have that either Min(Gτ2 , Ĉ) = {Ĉ} or ∪L∈Min(Gτ2 ,Ĉ)
L ⊂ ∩m

j=1S(Wj), and if Min(Gτ2 , Ĉ) =
{Ĉ} then J(Gτ2) = Ĉ. Thus we may assume that ∪L∈Min(Gτ2 ,Ĉ)

L ⊂ ∩m
j=1S(Wj). Under this

condition, if F (Gτ2) = ∅, then τ2 ∈ M1,c,JF (Y, {Wj}mj=1). Thus we may assume F (Gτ2) ̸= ∅. By
the argument in the proof of Claim 1 in the proof of Theorem 3.76, there exists an element τ3 close
to τ2 such that Γτ2 ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γτ3 ∩ {fj,λ | λ ∈ Λj} for each j = 1, . . . ,m, and such
that the statement in Claim 1 in the proof of Theorem 3.76 holds for τ3. By Lemma 3.46, we have

∪L∈Min(Gτ3 ,Ĉ)
L ⊂ ∩m

j=1S(Wj). (59)

Also, since Γτ2 ⊂ Γτ3 , there exists no element in Min(Gτ3 , Ĉ) which is attracting for τ3. As before,
we may assume that F (Gτ3) ̸= ∅. There exists a k ∈ N for which the statement of Claim 2 in the
proof of Theorem 3.76 holds. We fix such an element. It is easy to see that statements in Claims
4,5 hold for τ3 even under our assumptions. Let I, Cτ3 be as in the proof of Theorem 3.76. Then
the statement of Claim 6 in the proof of Theorem 3.76 holds for τ3. More precisely, we have that

if z ∈ F (Gτ3), then Gτ3(z) ∩ (∪L∈IL) ̸= ∅ and Gτ3(z) ∩ Cτ3 ̸= ∅. (60)

As in the proof of Theorem 3.76, let p >
∑m

j=1 ♯S(Wj) + 1 and let

H := {z ∈ F (Gτ3) | Gτ3(z) ∩ Cτ3 ̸= ∅}. (61)

Then we have that

the statement of Claim 7 in the proof of Theorem 3.76 holds for our τ3. (62)

Let τ4 be an element close to τ3 such that Γτ3 ∩ {fj,λ | λ ∈ Λj} ⊂ int(Γτ4 ∩ {fj,λ | λ ∈ Λj}) for
each j = 1, . . . ,m. Then by (59) and Lemma 3.46, we have that

∪L∈Min(Gτ4 ,Ĉ)
L ⊂ ∩m

j=1S(Wj). (63)

Moreover, by (62), we see that for each z ∈ H there exists an element gz ∈ Γτ4 such that
Gτ3(gz(z))∩ int(J(Gτ3)) ̸= ∅. In particular, H ⊂ J(Gτ4). Combining this with (60) and (61), it fol-

lows that F (Gτ3) ⊂ J(Gτ4).Hence J(Gτ4) = Ĉ. Therefore we obtain that τ4 ∈ M1,c,JF (Y, {Wj}mj=1).
Thus we have proved our theorem.

We now prove the following theorem on the systems generated by weakly mean stable elements.
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Theorem 3.80. Let τ ∈ M1,c(Rat) be weakly mean stable. Suppose ♯J(Gτ ) ≥ 3. Suppose
that for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(L, τ) ̸= 0. Suppose also that for each L ∈
Min(Gτ , Jker(Gτ )), if χ(L, τ) > 0 then for each z ∈ L and for each g ∈ Γτ , we have Dgz ̸= 0.
Then all of the following hold.

(i) ♯Jker(Gτ ) <∞.

(ii) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for Gτ .

(iii) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ ((∪L∈Min(Gτ ,Ĉ),L̸⊂Jker(Gτ )
L) ̸= ∅.

(iv) All statements (i) –(vii) in Theorem 3.65 hold for τ.

(v) Let H+,τ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and let Ωτ be the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+,τL}) = 0. Then we have Ωτ = F 0

pt(τ),

♯(Ĉ \ Ωτ ) ≤ ℵ0 and for each z ∈ Ωτ , τ̃({γ ∈ Xτ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ Xτ ,

we have Leb2(Jγ) = 0. Moreover, ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ \ Ωτ and ♯J0

pt(τ) ≤ ℵ0.

(vi) Let Ωτ be as in (v). Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and there exist a constant cτ < 0 and a constant
ρτ ∈ (0, 1) such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1
satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we have the
following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an
attracting minimal set L = L(τ, z, γ) of τ such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

(vii) For τ̃ -a.e. γ ∈ Xτ , for Leb2-a.e. z ∈ Ĉ. there exists an attracting minimal set L = L(τ, γ, z)
such that d(γn,1(z), L) → ∞. Also, for τ̃ -a.e. γ ∈ Xτ , for each z ∈ Fγ , there exists an
attracting minimal set L = L(τ, γ, z) such that d(γn,1(z), L) → ∞.

(viii) Let Ωτ be as in (v). Then we have Ωτ = F 0
pt(τ), ♯(Ĉ \ F 0

pt(τ)) ≤ ℵ0 and for each L ∈
Min(Gτ , Ĉ), for each j = 1, . . . , rL, where rL = dimC Uτ,L, and for each y ∈ F 0

pt(τ), we have
that limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y), where α(Lj , ·) is the

function coming from Theorem 3.65 (iii).

(ix) Let H+,τ and Ωτ be as in (v). Let y ∈ J0
pt(τ) = Ĉ\Ωτ . Then there exist an element L ∈ H+,τ

and j ∈ {1, . . . , rL} such that all of the following hold.

(a) TL,τ (z) does not tend to TL,τ (y) as z → y.

(b) α(Lj , z) does not tend to α(Lj , y) as z → y. Here, for the notation Lj, see Theorem 3.65
(i).

(c) Let φL ∈ C(Ĉ) be any element such that φL|L = 1 and φL|L′ = 0 for any L′ ∈
Min(Gτ , Ĉ) with L′ ̸= L. Then the convergence in (42) in Theorem 3.65 for φ = φL is
not uniform in any neighborhood of y.
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(d) There exists a Borel subset Eτ,y of Xτ with τ̃(Eτ,y) = TL,τ (y) > 0 such that for each
γ ∈ Eτ,y, there exists an element m ∈ N such that γm,1(y) ∈ L and
limn→∞

1
n log ∥D(γn+m,1+m)γm,1(y)∥s = χ(τ, L) > 0.

Proof. By Lemma 3.74, statements (i)–(iv) hold. By Theorem 3.37, we have ♯(Ĉ \ Ωτ ) ≤ ℵ0 and
for each z ∈ Ωτ , τ̃({γ ∈ ΓN

τ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Jγ) = 0.

Moreover, J0
pt(τ) ⊂ Ĉ \ Ωτ and ♯J0

pt(τ) ≤ ℵ0. In order to prove Ωτ = F 0
pt(τ), let y ∈ Ĉ \ Ωτ . Then

by Lemma 3.36,
τ̃({γ ∈ Xτ | d(γn,1(y),∪L∈H+,τL) → 0 as n→ ∞}) > 0. (64)

Since ♯(Ĉ \Ωτ ) ≤ ℵ0, there exists a sequence {xm}∞m=1 in Ωτ such that xm → y as m→ ∞. Then
by Lemma 3.36 again, we have τ̃({γ ∈ Xτ | d(γn,1(zm),∪L∈H+,τL) → 0 as n → ∞}) = 0 for each
m ∈ N. Combining this with (iv) and Theorem 3.65 (iv), we obtain that

τ̃({γ ∈ Xτ | d(γn,1(zm),∪L∈Min(Gτ ,Ĉ)\H+,τ
L) → 0 as n→ ∞}) = 1 for each m ∈ N. (65)

By (64) and (65), it follows that y ∈ J0
pt(τ). Hence Ωτ = F 0

pt(τ). Also, by the definition of Ωτ ,

we have ∪L∈H+,τL ⊂ Ĉ \ Ωτ . Thus statement (v) holds. Moreover, by using the above argument,
we can show that there exist an element L ∈ H+,τ and an element j ∈ {1, . . . , rL} such that (a)
and (b) in (ix) hold. By statement (a) in (ix) and the fact ♯Min(Gτ ) < ∞, statement (c) in (ix)
holds. Statement (d) in (ix) follows from the definition of Ωτ , Lemma 3.36 and Birkhoff’s ergodic
theorem. Hence statement (ix) holds.

We now prove statement (vi). By Theorem 3.65 (iv) and Lemma 3.36, it follows that for
each z ∈ Ωτ , there exists a Borel subset Dτ,z of Xτ with τ̃(Dτ,z) = 1 satisfying that for each
γ = (γ1, γ2, . . .) ∈ Dτ,z, we have

d

γn,1(z), ∪
L∈Min(Gτ ,Ĉ),L is attracting

L ∪
∪

L∈Min(Gτ ,Jker(Gτ )) and χ(L,τ)<0

L

 → 0 as n→ ∞.

(66)
There exist a constant λτ ∈ (0, 1) and a constant Cτ > 0 such that for each γ = (γ1, γ2 . . . , ) ∈
Xτ , for each z ∈ ∪L∈Min(Gτ ,Ĉ),L is attracting L and for each n ∈ N, we have ∥D(γn,1)z∥s ≤
Cτλ

n
τ . Let cτ := max{log λτ ,maxL∈Min(Gτ ,Jker(Gτ )),χ(L,τ)<0 χ(L, τ)} < 0 (if there exists no L ∈

Min(Gτ , Jker(Gτ )) with χ(L, τ) < 0, then we set cτ = log λτ ). Then for each z ∈ Ωτ , there exists a
Borel subset Cτ,z of Dτ,z with τ̃(Cτ,z) = 1 such that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each
m ∈ N ∪ {0}, we have

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

Also, by (66) and Lemma 3.30 and its proof, there exists an element ρτ ∈ (0, 1) such that we can
arrange Cτ,z so that for any γ ∈ Cτ,z and for any m ∈ N ∪ {0}, statement (vi)(b) holds. Hence
statement (vi) holds for τ.

By statements (vi) and (v), statement (vii) holds.
By (iv)(v) and Theorem 3.65 (vii), statement (viii) holds. Thus we have proved our theorem.

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.81. Let Y be a mild subset of Rat+ and suppose that Y is non-exceptional and strongly
nice with respect to some holomorphic families {Wj}mj=1 of rational maps. Then there exists the
largest open and dense subset A of (M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, all of the
following hold.

(i) τ is weakly mean stable.
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(ii) For each L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), we have χ(L, τ) ̸= 0. Moreover, for each

L ∈ Min(Gτ , Ĉ) with L ⊂ ∩m
j=1S(Wj), if χ(L, τ) > 0, then for each z ∈ L and for each

g ∈ Γτ , we have Dgz ̸= 0.

(iii) ♯Jker(Gτ ) <∞ and Jker(Gτ ) ⊂ ∩m
j=1S(Wj).

(iv) For each L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ), we have that L is attracting for τ.

(v) For each z ∈ F (Gτ ), we have that Gτ (z) ∩ ((∪L∈Min(Gτ ,Ĉ),L̸⊂Jker(Gτ )
L) ̸= ∅.

(vi) All statements (i) –(vii) in Theorem 3.65 hold for τ.

(vii) Let H+,τ = {L ∈ Min(Gτ , Jker(Gτ )) | χ(τ, L) > 0} and let Ωτ be the set of points y ∈ Ĉ
for which τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) ∈ ∪L∈H+,τL}) = 0. Then we have Ωτ = F 0

pt(τ),

♯(Ĉ \ Ωτ ) ≤ ℵ0 and for each z ∈ Ωτ , τ̃({γ ∈ ΓN
τ | z ∈ Jγ}) = 0. Moreover, for τ̃ -a.e.γ ∈ Xτ ,

we have Leb2(Jγ) = 0. Moreover, ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ \ Ωτ and ♯J0

pt(τ) ≤ ℵ0.

(viii) Let Ωτ be as in (vii). Then ♯(Ĉ \Ωτ ) ≤ ℵ0 and there exist a constant cτ < 0 and a constant
ρτ ∈ (0, 1) such that for each z ∈ Ωτ , there exists a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1
satisfying that for each γ = (γ1, γ2, . . .) ∈ Cτ,z and for each m ∈ N ∪ {0}, we have the
following (a) and (b).

(a)

lim sup
n→∞

1

n
log ∥D(γn+m,1+m)γm,1(z)∥s ≤ cτ < 0.

(b) There exist a constant δ = δ(τ, z, γ,m) > 0, a constant ζ = ζ(τ, z, γ,m) > 0 and an
attracting minimal set L = L(τ, z, γ) of τ such that

diam(γn+m,1+m(B(γm,1(z), δ))) ≤ ζρnτ for all n ∈ N,

and
d(γn+m,1+m(γm,1(z)), L) ≤ ζρnτ for all n ∈ N.

(ix) For τ̃ -a.e. γ ∈ Xτ , for Leb2-a.e. z ∈ Ĉ. there exists an attracting minimal set L = L(τ, γ, z)
such that d(γn,1(z), L) → ∞. Also, for τ̃ -a.e. γ ∈ Xτ , for each z ∈ Fγ , there exists an
attracting minimal set L = L(τ, γ, z) such that d(γn,1(z), L) → ∞.

(x) Let Ωτ be as in (vii). Then we have Ωτ = F 0
pt(τ), ♯(Ĉ \ F 0

pt(τ)) ≤ ℵ0 and for each L ∈
Min(Gτ , Ĉ), for each j = 1, . . . , rL, where rL = dimC Uτ,L, and for each y ∈ F 0

pt(τ), we have
that limz∈Ĉ,z→y TL,τ (z) = TL,τ (y) and limz∈Ĉ,z→y α(Lj , z) = α(Lj , y), where α(Lj , ·) is the

function coming from Theorem 3.65 (iii).

(xi) Let H+,τ and Ωτ be as in (vii). Let y ∈ J0
pt(τ) = Ĉ \ Ωτ . Then there exist an element

L ∈ H+,τ and an element j ∈ {1, . . . , rL} such that all of the following hold.

(a) TL,τ (z) does not tend to TL,τ (y) as z → y.

(b) α(Lj , z) does not tend to α(Lj , y) as z → y. Here, for the notation Lj, see Theorem 3.65
(i).

(c) Let φL ∈ C(Ĉ) be any element such that φL|L = 1 and φL|L′ = 0 for any L′ ∈
Min(Gτ , Ĉ) with L′ ̸= L. Then the convergence in (42) in Theorem 3.65 for φ = φL is
not uniform in any neighborhood of y.

(d) There exists a Borel subset Eτ,y of Xτ with τ̃(Eτ,y) = TL,τ (y) > 0 such that for each
γ ∈ Eτ,y, there exists an element m ∈ N such that γm,1(y) ∈ L and
limn→∞

1
n log ∥D(γn+m,1+m)γm,1(y)∥s = χ(τ, L) > 0.
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Proof. By Theorem 3.76 and Lemma 3.56, there exists an open and dense subset A of the space
(M1,c(Y, {Wj}mj=1),O) such that for each τ ∈ A, statements (i), (ii) and (iii) hold. By Theo-
rem 3.80, for each τ ∈ A, statements (iv)–(xi) hold. Thus we have proved our theorem.

We now prove a theorem in which we do not assume that Y is mild with {Wj}mj=1.

Theorem 3.82. Let Y be a non-exceptional and strongly nice subset of Rat+ with respect to some
holomorphic families {Wj}mj=1 of rational maps. Then there exists the largest open and dense subset
A of (M1,c,mild(Y, {Wj}mj=1),O) such that for each τ ∈ A, all statements (i)–(xi) in Theorem 3.81
hold. Furthermore, we have

A ∪M1,c,JF (Y, {Wj}mj=1) = M1,c(Y, {Wj}mj=1)

with respect to the topology O.

Proof. By the arguments in the proof of Theorem 3.81 and Theorem 3.79, it is easy to see that
the statements of our theorem hold.

We now give corollaries of Theorems 3.76 and 3.81.

Corollary 3.83. Let Y be a mild subset of Rat+ and suppose that Y is strongly nice with respect
to some holomorphic families {Wj}mj=1 of rational maps. Then the set

{τ ∈ M1,c(Y, {Wj}mj=1) | τ is weakly mean stable and ♯supp τ <∞}

is dense in (M1,c(Y, {Wj}mj=1),O). Moreover, there exists a dense subset A of (M1,c(Y, {Wj}mj=1),O)
such that for each τ ∈ A, we have ♯supp τ < ∞ and all statements (i)–(v) of Theorem 3.76 hold
for τ.

Corollary 3.84. Let Y be a mild supset of Rat+ and suppose that Y is non-exceptional and strongly
nice with respect to some holomorphic families {Wj}mj=1 of rational maps. Let A be the largest open

and dense subset of (M1,c(Y, {Wj}mj=1),O) given in Theorem 3.81. Let Af := {τ ∈ A | ♯Γτ <∞}.
Then Af is a dense subset of A and is a dense subset of (M1,c(Y, {Wj}mj=1),O) such that for each

τ ∈ Af , we have that ♯supp τ < ∞ and all statements (i)–(xi) in Theorem 3.81 hold for τ. Also,

let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Ĉ) s.t. χ(τ, L) > 0} and let Af
+ := A+ ∩ Af . Then A+ is an

open subset of A (hence an open subset of (M1,c(Y, {Wj}mj=1),O)) and Af
+ is a dense subset of

A+. Moreover, for each τ ∈ Af
+, we have J0

pt(τ) = J(Gτ ) which is a perfect set.

Proof. It is easy to show that Af is dense in A. Thus Af is dense in (M1,c(Y, {Wj}mj=1),O). Also,
by statement (ii) in Theorem 3.81, it is easy to show that A+ is open in A. In order to prove

the last statement, suppose τ ∈ Af
+. Since ∪L∈H+,τL ⊂ J0

pt, we have J0
pt ̸= ∅. Moreover, since

Γτ ⊂ Rat+, we have J0
pt ⊂ J(Gτ ) ⊂ Ĉ \ E(Gτ ) (recall that E(Gτ ) denotes the exceptional set of

Gτ ). Hence G−1
τ (J0

pt(τ)) ⊃ J(Gτ ) (see [13, Lemma 3.2]). Also, by the definition of Ωτ , since Γτ

is finite, we have Ĉ \ Ω = (Gτ ∪ {Id})−1(∪L∈H+.τL) and G−1
τ (Ĉ \ Ωτ ) ⊂ Ĉ \ Ωτ . Furthermore,

by Theorem 3.81 (vii), we have J0
pt(τ) = Ĉ \ Ωτ . It follows that G−1

τ (J0
pt(τ)) ⊂ J0

pt(τ) ⊂ J(Gτ ).

Therefore J0
pt(τ) = G−1

τ (J0
pt(τ)) = J(Gτ ). Finally, by [13, Lemma 3.1], J(Gτ ) is perfect.

4 Random relaxed Newton’s method

In this section we apply Theorems 3.76, 3.81 and the other results in the previous sections to
random relaxed Newton’s methods in which we find roots of given any polynomial.
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Definition 4.1. Let g ∈ P. Let Λ := {λ ∈ C | |λ − 1| < 1} and let fλ(z) = z − λ g(z)
g′(z) for

each λ ∈ Λ. Let W = {fλ}λ∈Λ. Let Y := {fλ ∈ Rat | λ ∈ Λ}. Then Y is called the random
relaxed Newton’s method set for g and W is called the random relaxed Newton’s method
family for g. Also, (Y,W) is called the random relaxed Newton’s method scheme for g.

Moreover, for each τ ∈ M1,c(Y), the random dynamical system on Ĉ generated by τ is called a
random relaxed Newton’s method (or random relaxed Newton’s method system) of
(g, τ). Also, let Qg := {z0 ∈ C | g(z0) = 0}.

We need the following lemma to investigate random relaxed Newton’s methods and other
examples to which we can apply Theorems 3.76 and 3.81. The proof is easy and it is left to the
reader.

Lemma 4.2. Let Y be a nice subset of Rat with respect to a holomorphic family W = {fλ}λ∈Λ

of rational maps. Then Y is strongly nice with respect to W and Y satisfies the assumptions in
Theorem 3.76. Moreover, if, in addition to the assumption of our lemma, Y satisfies that for
each Γ ∈ Cpt({fλ | λ ∈ Λ}) and for each L ∈ Min(⟨Γ⟩, S(W)), we have ♯L = 1, then Y is
non-exceptional and strongly nice with respect to W.

We now show that we can apply Theorem 3.81 to random relaxed Newton’s methods.

Lemma 4.3. Let g ∈ P and let (Y,W) be the random relaxed Newton’s method scheme for g.
Then Y is a mild subset of Rat and Y is non-exceptional and strongly nice with respect to W.
Also, for each x ∈ Qg and λ ∈ Λ, we have that fλ(x) = x and f ′λ(x) = 1− λ

mx
, where mx denotes

the order of g at the zero x, and |f ′λ(x)| < 1. Moreover, for each λ ∈ Λ, we have fλ(∞) = ∞, the
multiplier of fλ at ∞ is equal to (1 − λ

deg(g) )
−1, and ∥D(fλ)∞∥s = |1 − λ

deg(g) |
−1 > 1. Moreover,

we have S(W) = Qg ⨿ {∞}⨿ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}. Moreover, for each Γ ∈ Cpt(Y), we
have Min(⟨Γ⟩, S(W)) = {{x} | x ∈ Qg} ∪ {{∞}}.

Proof. It is easy to see that S(W) = Qg ⨿ {∞} ⨿ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0} and for each
Γ ∈ Cpt(Y), we have Min(⟨Γ⟩, S(W)) = {{x} | x ∈ Qg} ∪ {{∞}}.

It is easy to see that fλ(x) = x and f ′λ(x) = 1 − λ
mx

for each x ∈ Qg and λ ∈ Λ. Since

{1 − λ
mx

| λ ∈ Λ} = {z ∈ C | |z − (1 − 1
mx

)| < 1
mx

}, we have |f ′λ(x)| < 1 for all x ∈ Qg, λ ∈ Λ.
Similarly, it is easy to see that for each λ ∈ Λ, we have fλ(∞) = ∞, the multiplier of fλ at ∞
is equal to (1 − λ

deg(g) )
−1, and ∥D(fλ)∞∥s = |1 − λ

deg(g) |
−1 > 1. From the above arguments, we

obtain that Y is a mild subset of Rat and Y is non-exceptional and nice with respect to W. By
Lemma 4.2, it follows that Y is strongly nice with respect to W.

We now prove the following theorem on random relaxed Newton’s methods.

Theorem 4.4. Let g ∈ P. Let (Y,W) be the random relaxed Newton’s method scheme for g. Then
we have the following.

(i) There exists the largest open and dense subset A of (M1,c(Y,W),O) such that for each τ ∈ A,
all statements (i)–(xi) in Theorem 3.81 hold.

(ii) Let τ ∈ A. Let Ωτ be the set defined in Theorem 3.81. Then ♯(Ĉ \ Ωτ ) ≤ ℵ0 and

Ωτ = {y ∈ C | τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(y) = ∞}) = 0}.

Moreover, there exists a constant ρτ ∈ (0, 1) such that for each z ∈ F 0
pt(τ) = Ωτ , there exists

a Borel subset Cτ,z of Xτ with τ̃(Cτ,z) = 1 satisfying that for each γ ∈ Cτ,z, there exists a
constant ζ = ζ(τ, z, γ) > 0 such that

d(γn,1(z), Qg ∪L∈Min(Gτ ,Ĉ),L is attracting for τ,L∩Qg=∅ L) ≤ ζρnτ for all n ∈ N.
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(iii) For each τ ∈ A, we have ∞ ∈ J0
pt(τ) = Ĉ \ Ωτ and Jker(Gτ ) = {z0 ∈ C | g′(z0) = 0, g(z0) ̸=

0} ∪ {∞}. In particular, ∅ ̸= J0
pt(τ) and Jker(Gτ ) ̸= ∅ for each τ ∈ A. Also, if we set

Af := {τ ∈ A | ♯Γτ < ∞}, then Af is dense in (M1,c(Y,W),O). Moreover, if, in addition
to the assumptions of our theorem, g/g′ is not a polynomial of degree one, then for each

τ ∈ Af , we have J0
pt(τ) = J(Gτ ) which is perfect.

(iv) Let Aconv := {τ ∈ A | Min(Gτ , Ĉ) = {{x} | x ∈ Qg} ∪ {∞}}}. Then Aconv is open in A.

(v) Let τ ∈ Aconv. Then we have ♯(Ĉ \ Ωτ ) ≤ ℵ0 and maxx∈Qg e
χ(τ,{x}) < 1. Moreover, for

each α ∈ (maxx∈Qg e
χ(τ,{x}), 1) and for each z ∈ F 0

pt(τ) = Ωτ , there exists a Borel subset
Cτ,z,α of Xτ with τ̃(Cτ,z,α) = 1 satisfying that for each γ ∈ Cτ,z,α, there exist an element
x = x(τ, z, α, γ) ∈ Qg and a constant ξ = ξ(τ, z, α, γ) > 0 such that

d(γn,1(z), x) ≤ ξαn for all n ∈ N. (67)

Also, for τ̃ -a.e. γ ∈ Xτ , we have Leb2(Jγ) = 0 and for each z ∈ Fγ , there exists an element
x = x(τ, γ, z) ∈ Qg such that

d(γn,1(z), x) → 0 as n→ ∞. (68)

Moreover, for each x ∈ Qg and for each z ∈ Ωτ , we have

lim
w∈Ĉ,w→z

Tx,τ (w) = Tx,τ (z). (69)

Furthermore, we have

τ̃({γ ∈ Xτ | ∃n ∈ N s.t. γn,1(z) = ∞}) +
∑
x∈Qg

Tx,τ (z) = 1 for all z ∈ Ĉ, (70)

and we have∑
x∈Qg

Tx,τ (z) > 0 for all z ∈ Ĉ \ Jker(Gτ ) = C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}. (71)

In particular, for any subset B of C with ♯B ≥ deg(g), there exists an element z ∈ B such
that

∑
x∈Qg

Tx,τ (z) > 0.

(vi) Let τ ∈ M1,c(Y,W) and suppose that int(Γτ ) ⊃ {fλ | λ ∈ C, |λ− 1| ≤ 1
2} with respect to the

topology in Y. Then τ ∈ Aconv. In particular, the statements regarding (67), (68), (69), (70)
and (71) hold for τ.

(vii) Let τ ∈ M1,c(Y,W) and suppose that int(Γτ ) ⊃ {fλ | λ ∈ C, |λ − 1| ≤ 1
2} with respect to

the topology in Y and τ is absolutely continuous with respect to the 2-dimensional Lebesgue
measure on Y ∼= Λ (e.g., let τ be the normalized 2-dimensional Lebesgue measure on the set
{fλ | λ ∈ C, |λ− 1| ≤ r} where 1

2 < r < 1, under the identification Y ∼= Λ). Then τ ∈ Aconv

and the statements regarding (67), (68), (69), (70) and (71) hold for τ. Moreover, we have

Ωτ = C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}. (72)

In particular, we have ♯(Ĉ \ Ωτ ) ≤ deg(g)− 1, and for any subset B of C with ♯B ≥ deg(g),
there exists an element z ∈ B such that∑

x∈Qg

Tx,τ (z) = 1. (73)
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Furthermore, for each φ ∈ C(Ĉ) and for each z ∈ Ωτ , we have

Mn
τ (φ)(z) →

∑
x∈Qg

Tx,τ (z)φ(x) as n→ ∞ (74)

and this convergence is uniform on any compact subset of Ωτ .

Proof. When g/g′ is a polynomial of degree one, then it is easy to see that statements (i)-(vii)
hold. Thus we may assume that g/g′ is not a polynomial. By Lemma 4.3, Theorem 3.81, the proof
of Lemma 3.30 and Corollary 3.84, statements (i)–(v) hold.

We now prove (vi). Let Θ := {L ∈ Min(⟨f1⟩, Ĉ) | L ⊂ C \ Qg, L is attracting for δf1}. Then
each L is an attracting periodic cycle of f1. Let L ∈ Θ. If the period pL of (f, L) is equal to 1, then
there exists an element x ∈ Qg with L = {x}. However, this is a contradiction. Hence, we have
pL ≥ 2. In particular, two different points of L never belong to the same connected component of
F (f1).

We now let τ ∈ M1,c(Y,W) and suppose int(Γτ ) ⊃ Γ0 with respect to the topology in Y, where
Γ0 := {fλ | λ ∈ C, |λ− 1| ≤ 1

2}. Let Γ ∈ Cpt(Y) be an element such that int(Γ) ⊃ Γ0, int(Γτ ) ⊃ Γ,
and Γ is close enough to Γ0 with respect to the Hausdorff metric. We now use the arguments in
the proof of Theorem 3.81 and we modify them a little. By Lemma 4.3, we have the following
claim.
Claim 1. Let h ∈ Γ and x ∈ Qg. Then we have h(x) = x and ∥Dhx∥s < 1. Also, h(∞) = ∞ and
∥Dh∞∥s > 1.

We now prove the following claim.
Claim 2. Let L ∈ Min(⟨Γ0⟩, Ĉ) and suppose L ⊂ C \Qg. Then L is not attracting for Γ0.

To prove this claim, suppose that there exists an element L ∈ Min(⟨Γ0⟩, Ĉ) with L ⊂ C \ Qg

which is attracting for Γ0. Then there exists an element L0 ∈ Θ with L0 ⊂ L. We have that the
period of (f1, L0) is not 1. Let B := max{|f1(x) − x| | x ∈ L0} > 0. Let x0 ∈ L0 be an element
such that |f1(x0)− x0| = B. Then we have

{fλ(x0) | λ ∈ C, |λ− 1| ≤ 1

2
} = {x0 −λ

g(x0)

g′(x0)
| λ ∈ C, |λ− 1| ≤ 1

2
} = {z ∈ C | |z− f1(x0)| ≤

1

2
B}.

(75)
Let f0 = Id. By (75) and the fact |f1(x0)− f21 (x0)| ≤ B, we obtain that

{fλ(f1(x0)) | λ ∈ [0, 1]}

= {fλ(f1(x0)) | λ ∈ [0,
1

2
]} ∪ {fλ(f1(x0)) | λ ∈ [

1

2
, 1]}

⊂ {z ∈ C | |z − f1(x0)| ≤
1

2
|f1(x0)− f21 (x0)|} ∪ {fλ(f1(x0)) | λ ∈ C, |λ− 1| ≤ 1

2
}

⊂ {fλ(x0) | |λ ∈ C, |λ− 1| ≤ 1

2
} ∪ {fλ(f1(x0)) | λ ∈ C, |λ− 1| ≤ 1

2
} ⊂ L.

Moreover, since two different points f1(x0) and f
2
1 (x0) in L0 cannot belong to the same connected

component of F (f1), we have that {fλ(f1(x0)) | λ ∈ [0, 1]} ∩ J(f1) ̸= ∅. From these arguments, it
follows that L∩ J(⟨Γ0⟩) ̸= ∅. However, this contradicts the assumption that L is attracting for Γ0.
Thus we have proved Claim 2.

We now prove the following claim.
Claim 3. We have Min(⟨Γ⟩, Ĉ) = {{x} | x ∈ Qg} ∪ {{∞}}.

This claim is proved by combining Claims 1,2 and Lemma 3.71.
By using Claim 3, Lemma 4.3 and the arguments in the part from Claims 6, 7 and the last in

the proof of Theorem 3.76, we obtain that τ is weakly mean stable, τ satisfies the assumptions of
Theorem 3.80, and there is no L ∈ Min(Gτ , Ĉ) with L ⊂ C \Qg. By Theorem 3.80, it follows that
τ ∈ Aconv. Thus we have proved statement (vi) in our theorem.

Statement (vii) follows from statements (i), (ii), (iv), (v), (vi) and Theorem 3.65.
Thus we have proved our theorem.
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Remark 4.5. Let g be a non-constant polynomial. We say that g is normalized if the set
{z0 ∈ C | g(z0) = 0} is contained in D := {z ∈ C | |z| < 1}. Note that if g ∈ P is normalized, then
g′ is also a normalized polynomial (see [1, page 29]). Thus, for a normalized polynomial g ∈ P,
for a random relaxed Newton’s method scheme (Y,W) for g, if τ ∈ M1,c(Y,W) is an element
such that int(Γτ ) ⊃ {λ ∈ C | |λ − 1| ≤ 1

2} and τ is absolutely continuous with respect to the
2-dimensional Lebesgue measure on Y ∼= {λ ∈ C | |λ− 1| < 1}, then for any z0 ∈ C \ D, for τ̃ -a.e.
γ, γn,1(z0) converges to a root of g as n→ ∞.

5 Examples

In this section, we give some examples to which we can apply our main theorems.

Example 5.1. Let Y be a weakly nice subset of P with respect to some holomorphic families
{Wj}mj=1 of polynomial maps. Suppose that ∩m

j=1S(Wj) = {∞}. Then Y is nice with respect to
{Wj}mj=1 and (Y, {Wj}mj=1) satisfies the assumptions of Lemma 3.53. Thus by Lemma 3.53, the
set A := {τ ∈ M1,c(Y, {Wj}mj=1) | τ is mean stable} is open and dense in M1,c(Y, {Wj}mj=1) with
respect to the topology in O. In particular, all statements (i)–(xi) of Theorem 3.81 hold for any

τ ∈ A and the set Ωτ in Theorem 3.81 is equal to Ĉ.

We give some examples of Y which are mild, non-exceptional and strongly nice and satisfies
the assumptions in Theorem 3.81.

Example 5.2. For each q ∈ N with q ≥ 2, let Pq := {f ∈ P | deg(f) = q}. Let (q1, . . . , qm) ∈ Nm

with q1 < q2 < · · · < qm and let Wj = {f}f∈Pqj
, j = 1, . . . ,m and let Y = ∪m

j=1Pqj . In this case,

S(Wj) = {∞}. Thus by Example 5.1, the set A := {τ ∈ M1,c(Y, {Wj}mj=1) | τ is mean stable}
is open and dense in M1,c(Y, {Wj}mj=1) with respect to the topology in O and the set Ωτ in

Theorem 3.81 is equal to Ĉ.

Example 5.3. Let q ∈ N with q ≥ 2 and let W = {zq + c}c∈C. Let Y = {zq + c | c ∈ C}. In this
case, S(W) = {∞}. Thus by Example 5.1, the set A := {τ ∈ M1,c(Y,W) | τ is mean stable} is
open and dense in M1,c(Y,W) with respect to the topology in O and the set Ωτ in Theorem 3.81

is equal to Ĉ.

We now give an important example of Y to which we can apply Theorems 3.76 and 3.81 but
in which Ωτ ̸= Ĉ for any τ in an open subset of A, where A is the set in Theorems 3.76 and 3.81.

Example 5.4. Let W = {λz(1 − z)}λ∈C\{0} and let Y = {λz(1 − z) ∈ P2 | λ ∈ C \ {0}}. In
this case, S(W) = {0, 1,∞} and S(W) \ {∞} = {0, 1} ̸= ∅. It is easy to see that Y is a mild
subset of P and Y is non-exceptional and strongly nice with respect to holomorphic family W.
Thus the statements of Theorems 3.76, 3.81 hold. Let A be the largest open and dense subset of
(M1,c(Y,W),O) such that for each τ ∈ A, all statements (i)-(v) of Theorem 3.76 and all statements
(i)–(ix) of Theorem 3.81 hold. Since each element of Y is a quadratic polynomial, for each τ ∈ A,
exactly one of the followings holds.

• Type (I). Min(Gτ , Ĉ) = {{0}, {∞}}.

• Type (II). Min(Gτ , Ĉ) = {{0}, {∞}, Lτ}, where Lτ is an attracting minimal set with Lτ ̸=
{0}, {∞}.

If τ ∈ A is of type (I), then Theorem 3.76 (v) and Theorem 3.65 imply that

Mn
τ (φ)(y) → T0,τ (y)φ(0) + T∞,τ (y)φ(∞) as n→ ∞, for each y ∈ Ĉ, φ ∈ C(Ĉ) (76)

54



i.e., (M∗
τ )

n(δy) → T0,τ (y)δ0 + T∞,τ (y)δ∞ as n → ∞. If τ ∈ A is of type (II), then Theorem 3.76
(v) and Theorem 3.65 imply that

Mnrτ
τ (φ)(y) → T0,τ (y)φ(0) + T∞,τ (y)φ(∞) +

rτ∑
j=1

α((Lτ )j , y)

∫
φ dωLτ ,j as n→ ∞ (77)

for each y ∈ Ĉ and for each φ ∈ C(Ĉ), where rτ = dimC(Uτ,Lτ ) (the period of (τ, Lτ ), see
Lemma 3.60 and Definition 3.61), and {(Lτ )j}rτj=1, {ωLτ ,j}

rτ
j=1 are elements coming from Theo-

rem 3.65.
Note that there exists an element τ ∈ A of type (I). For example, let g0(z) = λ0z(1 − z) ∈ Y

where 0 < |λ0| < 1 and let τ0 = δg0 . Then any element τ ∈ A which is close enough to τ0 is of type
(I). Also, there exists an element τ ∈ A of type (II). For example, let g1 ∈ Y be an element which
has an attracting periodic cycle with period p ≥ 2. Let τ1 = δg1 . Then any element τ ∈ A which
is close enough to τ1 is of type (II) with rτ = p.

We now classify elements τ ∈ A of type (I) into the following three types.

• Type (Ia). 0 ∈ F (Gτ ) and {0} ∈ Min(Gτ , Ĉ) is attracting for τ.

• Type (Ib). 0 ∈ Jker(Gτ ) and χ(τ, {0}) < 0.

• Type (Ic). 0 ∈ Jker(Gτ ) and χ(τ, {0}) > 0.

We first remark that for each type (∗) above, there exists an element τ ∈ A of type (∗). In
fact, for the above τ0, any element τ ∈ A which is close enough to τ0 is of type (Ia). Also, let
g3(z) =

1
2z(1 − z) ∈ Y, g4(z) = 6z(1 − z) ∈ Y and let τ2 := p1δg3 + p2δg4 , where (p1, p2) ∈ (0, 1)2

with p1 + p2 = 1, p1 log
1
2 + p2 log 6 < 0. Then any element τ ∈ A which is close enough to

τ3 is of type (Ib). Moreover, let τ3 := q1δg3 + q2δg4 , where (q1, q2) ∈ (0, 1)2 with q1 + q2 = 1,
q1 log

1
2 + q2 log 6 > 0. Then any element τ ∈ A which is close enough to τ3 is of type (Ic). Hence

for each type (∗), there exists an element τ ∈ A of type (∗).
For each type (∗)=(Ia), (Ib), (Ic), (II), we set A∗ the set of element τ ∈ A of type (∗). We

show the folloing claim.
Claim 1. For each (∗)=(Ia), (Ib), (Ic), (II), the set A∗ is a non-empty open subset of A. Also,
A = ⨿∗A∗, where ⨿ denotes the disjoint union.

To show this claim, we first remark that we have already shown that each A∗ is non-empty and
A = ∪∗A∗. By [37, Lemma 5.2], the sets AIa,AII are open in A. Also, since χ(τ, {0}) is continuous
with respect to τ ∈ A, we see that AIc is open in A. Finally, since each τ ∈ A is weakly mean
stable, for each τ ∈ AIb, there exists an element g ∈ Γτ with |g′(0)| > 1. From this, we obtain that
AIb is open in A. Thus we have proved Claim 1.

We now show the following claim.
Claim 2. For each τ ∈ AII and for each g ∈ Γτ , we have |g′(0)| > 1. In particular, 0 ∈ Jker(Gτ )
and χ(τ, {0}) > 0.

To show this claim, let τ ∈ AII and g ∈ Γτ . Then g has an attracting periodic cycle in Lτ ,
which does not meet 0. Thus |g′(0)| > 1. Hence we have proved Claim 2.

For each τ ∈ A, we have that τ is weakly mean stable. We now show the following claim.
Claim 3. Each element τ ∈ AIa is mean stable. However, each element τ ∈ AIb ∪ AIc ∪ AII is
weakly mean stable but not mean stable.

To show this claim, let τ ∈ AIa. Since each minimal set is attracting, τ is mean stable. We now
let τ ∈ AIb ∪ AIc ∪ AII . Then 0 ∈ Jker(Gτ ). Thus τ is not mean stable. Hence we have proved
Claim 3.

For each τ ∈ AIa, the convergence in (76) is uniform on y ∈ Ĉ since τ is mean stable.
Let U := {τ ∈ A | χ(τ, {0}) > 0} = AIc ∪ AII . Then U is a non-empty open subset of A. We

now prove the following claim.
Claim 4. For each τ ∈ U , the set Ωτ (with ♯(Ĉ \ Ωτ ) ≤ ℵ0) in Theorem 3.81 is not equal to Ĉ. In

particular, ∅ ̸= J0
pt(τ) = Ĉ \ Ωτ .
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To prove this claim, let τ ∈ U . Then χ(τ, {0}) > 0. By the definition of Ωτ , we obtain that

0 ∈ Ĉ \Ωτ . Also, by Theorem 3.81 (vii), we have J0
pt(τ) = Ĉ \Ωτ . Hence we have proved Claim 4.

We now prove the following claim. Note that the set {τ ∈ U | ♯Γτ <∞} is dense in U .
Claim 5. Let τ ∈ U with ♯Γτ < ∞. Then we have J0

pt(τ) = J(Gτ ) and this is a perfect set.

Also, there exists an element L ∈ Min(Gτ , Ĉ) such that letting φL ∈ C(Ĉ) be any element such

that φL|L = 1 and φL|L′ = 0 for any L′ ∈ Min(Gτ , Ĉ) with L′ ̸= L, the convergence in (42) in

Theorem 3.65 for φ = φL is not uniform in any open subset V of Ĉ with V ∩ J(Gτ ) ̸= ∅.
This claim follows from Claim 4 and Corollary 3.84. We have proved Claim 5.
We now prove the following claim.

Claim 6. For each τ ∈ AIa, the functions T0,τ , T∞,τ are continuous on Ĉ and there exists a neigh-
borhood V of 0 such that T0,τ |V ≡ 1 and T∞,τ |V ≡ 0. Also, for each τ ∈ AIb, the functions T0,τ
and T∞,τ are continuous on Ĉ and T0.τ (0) = 1, T∞,τ (0) = 0, but for any neighborhood V of 0, we
have T0,τ |V ̸≡ 1 and T∞,τ |V ̸≡ 0.

To prove this claim, let τ ∈ AIa∪AIb. Then by Theorem 3.66 (or Theorem 3.81), the functions
T0,τ , T∞ are continuous. If τ ∈ AIa, then 0 ∈ F (Gτ ) and since the functions T0,τ and T∞,τ are
locally constant (see [36, Theorem 3.15] or Theorems 3.76 and 3.65 (vi)), there exists a neigh-
borhood V of 0 such that T0,τ |V ≡ 1 and T∞,τ |V ≡ 0. We now suppose τ ∈ AIb. Let F∞(Gτ )
be the connected component of F (Gτ ) with ∞ ∈ F∞(Gτ ). Then T∞,τ |F∞(Gτ ) ≡ 1. Let V be any
neighborhood of 0. Since 0 ∈ J(Gτ ), there exist an element z ∈ V and an element g ∈ Gτ such that
g(z) ∈ F∞(Gτ ). Let (γ1 . . . , γn) ∈ Γn

τ be an element such that g = γn ◦ · · · ◦ γ1. Then there exists a
neighborhood Λ of (γ1, . . . , γn) in Γn

τ such that for each (α1, . . . , αn) ∈ Λ, αn◦· · ·◦α1(z) ∈ F∞(Gτ ).
It implies that T∞,τ (z) ≥ (⊗n

j=1τ)(Λ) > 0. Therefore T∞,τ |V ̸≡ 0. Since T0,τ + T∞,τ = 1, it follows
that T0,τ |V ̸≡ 1. Thus we have proved Claim 6.

We now prove the following claim.
Claim 7. Let τ ∈ AIc. Then for each z ∈ Ωτ , where Ωτ is the subset of Ĉ defined in Theorem 3.81,
we have T∞,τ (z) = 1. Also, ♯(Ĉ \ Ωτ ) ≤ ℵ0.

To prove this claim, by Theorem 3.81, we have ♯(Ĉ \ Ωτ ) ≤ ℵ0. Also, by the definition of Ωτ ,

the result T0,τ + T∞ = 1 on Ĉ and Lemma 3.36, we see that T∞,τ (y) = 1 for each y ∈ Ωτ . Thus
we have proved Claim 7.

We now prove the following claim.
Claim 8. Let τ ∈ A. Then τ ∈ AIc if and only if for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Kγ) = 0, where
Kγ denotes the filled-in Julia set of γ, i.e., Kγ := {z ∈ C | {γn,1(z)}∞n=1 is bounded in C}.

To prove this claim, let τ ∈ AIc. Then by Claim 7 and the Fubini theorem, for τ̃ -a.e.γ ∈ Xτ ,
we have Leb2(Kγ) = 0. We now suppose that τ ∈ A and for τ̃ -a.e.γ ∈ Xτ , we have Leb2(Kγ) = 0.

Then by the Fubini theorem, we obtain that for Leb2-a.e. z ∈ Ĉ, we have T∞,τ (z) = 1. Therefore
by Claim 7, τ ̸∈ AIa ∪ AIb ∪ AII . Hence by Claim 1, we obtain τ ∈ AIc. Thus we have proved
Claim 8.

We also give some further examples to which we can apply Theorems 3.76 and 3.81.

Example 5.5. Let Q = {x1, . . . , xn} be any non-empty finite subset of C, where x1, . . . , xn are
mutually distinct points. Let f(z) = a

∏n
j=1(z − xj) ∈ P, where a ∈ C \ {0}. Then we have

{z0 ∈ C | f(z0) = 0} = Q and if z0 ∈ C, f(z0) = 0, then f ′(z0) ̸= 0. Let W = {z + λf(z)}λ∈C\{0}
and let Y = {z + λf(z) ∈ P | λ ∈ C \ {0}}. In this case, S(W) = Q ∪ {∞} and S(W) ∩ C =
{z0 ∈ C | f(z0) = 0} = Q ̸= ∅. By Lemma 4.2, we obtain that Y is a mild subset of P, the set
Y is strongly nice and non-exceptional with respect to holomorphic family W and (Y,W) satisfies
the assumptions of Theorems 3.76, 3.81. Thus there exists the largest open and dense subset A of
(M1,c(Y,W),O) such that for each τ ∈ A, all statements (i)–(x) in Theorem 3.81 hold for τ. In
particular, each τ ∈ A is weakly mean stable. Let fλ(z) = z + λf(z). Then we have

f ′λ(z) = 1 + λf ′(z). (78)
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Let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Q) s.t. χ(τ, L) > 0}. Also, let A+,all := {τ ∈ A | for all L ∈
Min(Gτ , Q) we have χ(τ, L) > 0}. Moreover, let Af := {τ ∈ A | ♯Γτ < ∞}, Af

+ := A+ ∩ Af , and

Af
+.all := A+,all ∩ Af .
We now show the following claim.

Claim 1. The sets A+ and A+,all are non-empty open subsets of A (and thus they are non-empty

open subsets of (M1,c(Y,W),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all.Moreover,

for each τ ∈ A+, we have ∅ ̸= ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ\Ωτ , where Ωτ and H+,τ are the sets defined

in Theorem 3.81, and for each τ ∈ A+,all, we have Q ⊂ J0
pt(τ). Furthermore, for each τ ∈ Af

+, we

have J0
pt(τ) = J(Gτ ) which is a perfect set.

To prove this claim, it is easy to see that A+ and A+.all are open in A. By (78) and the fact
f ′(x) ̸= 0 for each x ∈ Q, if |λ0| is large enough, then letting τ0 := δfλ0

, we have χ(τ0, {x}) > 0
for each x ∈ Q. Therefore for each τ ∈ A which is close enough to τ0 and for each x ∈ Q, we
have χ(τ, {x}) > 0. Thus A+ ⊃ A+,all ̸= ∅. The rest statements follow from Theorem 3.81 and
Corollary 3.84. Thus we have proved Claim 1.

Let A−,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have χ(τ, L) < 0}. We now prove the
following claim.
Claim 2. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.

To prove this claim, it is easy to see A−,all ∩ A+,all = ∅ and A−,all is open in A. For each
x ∈ Q, combining (78), the fact f ′(x) ̸= 0 and the method above, we see that there exists an
element λx ∈ C \ {0} such that f ′λx

(x) = 0. Let τ1 =
∑

x∈Q
1
nδfλx

. Then χ(τ1, {x}) = −∞ for each
x ∈ Q. Hence for each τ ∈ A which is close enough to τ1, we have χ(τ, {x}) < 0 for all x ∈ Q.
Thus A−,all ̸= ∅. Hence we have proved Claim 2.

We now prove the following claim.
Claim 3. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

This claim follows from Theorem 3.81, the fact τ is weakly mean stable and Theorem 3.66.

Example 5.6. Let n ∈ N with n ≥ 2 and let w = e2πi/n ∈ C. For each i = 1, . . . , n, let
Wi = {wi(z + λ(zn − 1))}λ∈C\{0}. Let i1, . . . , im ∈ {1, . . . , n} with i1 < i2 · · · < im. Let Y =
∪m
j=1{wij (z + λj(z

n − 1)) ∈ P | λj ∈ C \ {0}}. For each j = 1, . . . ,m, let Λj := C \ {0} and let

fj,λj (z) = wij (z+λj(z
n−1)) for each z ∈ Ĉ, λj ∈ Λj . Let Wj = {fj,λj}λj∈Λj for each j = 1, . . . ,m.

We show the following claim.
Claim 1. Y is a mild subset of P and Y is strongly nice and non-exceptional with respect to
holomorphic families {Wj}mj=1 of polynomial maps and (Y, {Wj}mj=1) satisfies the assumptions of
Theorem 3.81.

To prove this claim, we first note that S(Wj) = {wk | k = 1, . . . , n}∪{∞} for each j = 1, . . . ,m.
Hence we have ∩m

j=1S(Wj) ∩ C = {wk | k = 1, . . . , n} ̸= ∅. For each wk ∈ ∩m
j=1S(Wj) and

for each j = 1, . . . ,m and for each λj ∈ C \ {0}, we have fj,λj (w
k) = wk+ij ∈ ∩m

j=1S(Wj).
Thus for each τ ∈ M1,c(Y, {Wj}mj=1), we have Gτ (∩m

j=1S(Wj) ∩ C) ⊂ ∩m
j=1S(Wj) ∩ C. Let Q :=

∩m
j=1S(Wj) ∩ C = {wk | k = 1, . . . ,m}. For each j = 1, . . . ,m, let αj : Q→ Q be the map defined

by αj(z) = wij · z, z ∈ Q. Then for each j = 1, . . . ,m and for each λj ∈ Λj , we have fj,λj |Q = αj .
Since the semigroup {αn

j | n ∈ N} is a cyclic group generated by αj , there exists an element nj ∈ N
such that α−1

j = α
nj

j . Therefore we obtain that Q is equal to the union of minimal sets of the
semigroup generated by {α1, . . . , αm}. Thus Q = ∪L∈Min(Gτ ,Q)L for each τ ∈ M1,c(Y, {Wj}mj=1).
Hence there is no peripheral cycle for (Y, {Wj}). Moreover, for each z ∈ Q, for each j = 1, . . . ,m
and for each λj ∈ Λj , we have

f ′j,λj
(z) = wij (1 + λjnz

n−1). (79)

Hence Y is strongly nice with respect to holomorphic families {Wj}mj=1 of polynomial maps. More-

over, by the formula f ′j,λj
(z) = wij (1+λjnz

n−1). above, it is easy to see that Y is non-exceptional
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with respect to {Wj}mj=1. Thus we have proved Claim 1.
Let A be the open and dense subset of (M1,c(Y, {Wj}mj=1),O) given in Theorem 3.81. Then

for each τ ∈ A, all statements (i)–(xi) in Theorem 3.81 hold. In particular, any τ ∈ A is weakly
mean stable. Let A+ := {τ ∈ A | ∃L ∈ Min(Gτ , Q) s.t. χ(τ, L) > 0}. Also, let

A+,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have χ(τ, L) > 0}.

Moreover, let Af := {τ ∈ A | ♯Γτ <∞}, Af
+ := A+ ∩ Af , and Af

+.all := A+,all ∩ Af .
We now show the following claim.

Claim 2. The sets A+ and A+,all are non-empty open subsets of A (and thus they are non-empty

open subsets of (M1,c(Y, {Wj}mj=1),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all.

Moreover, for each τ ∈ A+, we have ∅ ̸= ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ \Ωτ , where Ωτ and H+,τ are the

sets defined in Theorem 3.81, and for each τ ∈ A+,all, we have Q ⊂ J0
pt(τ). Furthermore, for each

τ ∈ Af
+, we have J0

pt(τ) = J(Gτ ) which is a perfect set.
To prove this claim, by (79), we obtain that A+ and A+,all are non-empty. It is easy to see that

A+ and A+,all are open in A. The rest statements follow from Theorem 3.81 and Corollary 3.84.
Let A−,all := {τ ∈ A | for all L ∈ Min(Gτ , Q) we have. χ(τ, L) < 0}. We now prove the

following claims.
Claim 3. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.
Claim 4. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

These claims 3,4 can be shown by (79) and the method in Example 5.5.

Example 5.7. Let x1, . . . , xu ∈ C be mutually distinct points with u ≥ 2. Let a ∈ C \ {0}
and let g(z) = a

∏u
j=1(z − xj). Let Q = {x1, . . . , xu}. Let P1, . . . , Pm be mutually distinct non-

constant polynomials and suppose that Pj(Q) ⊂ Q for each j = 1, . . . .m. Also, suppose that
Q = ∪L∈Min(⟨P1,...,Pm⟩,Q)L. Note that we have the following claim.
Claim 1. For any finite subset Q of C, we can take such elements P1, . . . , Pm.

To prove this claim, we remark that for any map φ : Q→ Q, there exists a polynomial P such
that P |Q = φ on Q. This fact can be shown by using van der Monde determinant argument. Thus
the statement of Claim 1 holds.

For each j = 1, . . . ,m, let Λj := C \ {0} and for each λj ∈ Λj , let fj,λj (z) = Pj(z + λjg(z)).
Let Wj = {fj,λj}λj∈Λj and let Y = ∪m

j=1{fj,λj | λj ∈ Λj}. Then Y is a weakly nice subset of P
with respect to holomorphic families {Wj}mj=1 of polynomials. We now prove the following claim.
Claim 2. We have ∩m

j=1S(Wj) = Q ∪ {∞}. Moreover, Y is a mild subset of P and Y is non-
exceptional and strongly nice with respect to holomorphic families {Wj}mj=1 of polynomial maps.
Hence, there exists the largest open and dense subset A of (M1,c(Y, {Wj}mj=1),O) such that for
each τ ∈ A, all statements (i)–(xi) in Theorem 3.81 hold. In particular, any τ ∈ A is weakly mean
stable.

We give the proof of this claim. Since Y ⊂ P, the set Y is mild. For each x ∈ Q, for each
j = 1, . . . ,m and for each λj ∈ Λj , we have fj,λj (x) = Pj(x). Thus for each j = 1, . . . ,m, we have
S(Wj) = Q∪{∞}. Hence ∩m

j=1S(Wj) = Q∪{∞}. Also, by the property of {Pj}mj=1, we have that
for each τ ∈ M1,c(Y, {Wj}mj=1), we have Q = ∪L∈Min(Gτ ,Q)L. Hence there is no peripheral cycle
for (Y, {Wj}mj=1). Also, we have

f ′j,λj
(x) = P ′

j(x)(1 + λjg
′(x)) for all x ∈ Q, j = 1, . . . ,m, λj ∈ Λj . (80)

Therefore Y is strongly nice with respect to {Wj}mj=1. By (80), it is easy to see that Y is non-
exceptional with respect to {Wj}mj=1. By Theorem 3.81, the statement of Claim 2 holds. Thus we
have proved Claim 2.

We define subsets A+,A+,all,Af , Af
+,A

f
+,all,A−,all of A in the same way as that of Exam-

ple 5.6. Then by (80) and the arguments in Examples 5.6 and 5.5, we obtain the following claims.
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Claim 3. The set A−,all is a non-empty open subset of A and A−,all ∩ A+,all = ∅.
Claim 4. Let τ ∈ A−,all. Then for each L ∈ Min(Gτ , Jker(Gτ )), we have χ(τ, L) < 0, and each

L ∈ Min(Gτ , Ĉ) with L ̸⊂ Jker(Gτ ) is attracting τ. Thus τ satisfies all assumptions of Theorem 3.66

and all conclusions in Theorem 3.66 hold. In particular, J0
pt(τ) = ∅ and Fmeas(τ) = M1(Ĉ).

Claim 5. Suppose that P ′
j(x) ̸= 0 for any j = 1, . . . ,m and for any x ∈ Q. Then the sets A+

and A+,all are non-empty open subsets of A (and thus they are non-empty open subsets of

(M1,c(Y, {Wj}mj=1),O)). Also, Af
+ is dense in A+ and Af

+,all is dense in A+,all. Moreover, for

each τ ∈ A+, we have ∅ ≠ ∪L∈H+,τL ⊂ J0
pt(τ) = Ĉ \ Ωτ , where Ωτ and H+,τ are the sets defined

in Theorem 3.81, and for each τ ∈ A+,all, we have Q ⊂ J0
pt(τ). Furthermore, for each τ ∈ Af

+, we

have J0
pt(τ) = J(Gτ ) which is a perfect set.

Remark 5.8. As in Example 5.7, we can embed many finite Markov chains into C as weak
attractors (i.e. minimal sets with negative Lyapunov exponents) of one random complex polyno-
mial dynamical system generated by τ ∈ M1,c(P) which is weakly mean stable and satisfies all

statements in Theorem 3.66 (e.g. Fmeas(τ) = M1(Ĉ)).
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