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Abstract

We investigate i.i.d. random complex dynamical systems generated by probability measures
on finite unions of the loci of holomorphic families of rational maps on the Riemann sphere
C. We show that under certain conditions on the families, for a generic system, (especially,
for a generic random polynomial dynamical system,) for all but countably many initial values
z e @, for almost every sequence of maps v = (71,72, ...), the Lyapunov exponent of v at z
is negative. Also, we show that for a generic system, for every initial value z € C, the orbit of
the Dirac measure at z under the iteration of the dual map of the transition operator tends
to a periodic cycle of measures in the space of probability measures on C. Note that these
are new phenomena in random complex dynamics which cannot hold in deterministic complex
dynamical systems. We apply the above theory and results of random complex dynamical
systems to finding roots of any polynomial by random relaxed Newton’s methods and we show
that for any polynomial g, for any initial value z € C which is not a root of g’, the random
orbit starting with z tends to a root of g almost surely, which is the virtue of the effect of
randomness.

1 Introduction and the main results

In this paper, we investigate the independent and identically-distributed (i.i.d.) random dynamics
of rational maps on the Riemann sphere C and the dynamics of rational semigroups (i.e., semigroups
of non-constant rational maps where the semigroup operation is functional composition) on C.
One motivation for research in (complex) dynamical systems is to describe some mathematical
models in various fields to study nature and science. Since nature and any other environments
have a lot of random terms, it is very natural and important not only to consider the dynamics
of iteration, but also to consider random dynamics. Another motivation for research in complex
dynamics is Newton’s method to find roots of a complex polynomial, which often is expressed as
the dynamics of a rational map g on C with deg(g) > 2, where deg(g) denotes the degree of g. In
various fields, we have many mathematical models which are described by the dynamical systems
associated with polynomial or rational maps. For each model, it is natural and important to
consider a randomized model, since we always have some kind of noise or random terms. Regarding
random (complex) dynamics, many researchers in various fields (mathematics, physics, chemistry,
etc.) have found and investigated many kinds of new phenomena in random (complex) dynamics
which cannot hold in deterministic dynamics. These phenomena arise from the effect of randomness
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and they are called randomness-induced phenomena or noise-induced phenomena ([20]).
In fact, recently these topics are getting more and more attention in many fields.

The first study of random complex dynamics was given by J. E. Fornaess and N. Sibony ([10]).
For research on random complex dynamics of quadratic polynomials, see [3]-[7], [11]. For recent
research on random complex dynamics and the various randomness-induced phenomena, see the
author’s works [34]-[39].

In order to investigate random complex dynamics, it is very natural to study the dynamics of
associated rational semigroups. In fact, it is a very powerful tool to investigate random complex
dynamics, since random complex dynamics and the dynamics of rational semigroups are related
to each other very deeply. The first study of dynamics of rational semigroups was conducted
by A. Hinkkanen and G. J. Martin ([13]), who were interested in the role of the dynamics of
polynomial semigroups (i.e., semigroups of non-constant polynomial maps) while studying various
one-complex-dimensional moduli spaces for discrete groups, and by F. Ren’s group ([12]), who
studied such semigroups from the perspective of random dynamical systems. For recent work on
the dynamics of rational semigroups, see the author’s papers [30]-[39], and [28, 40, 41].

To introduce the main idea of this paper, we let G be a rational semigroup and denote by F(G)
the Fatou set of G, which is defined to be the maximal open subset of C where G is equicontinuous
with respect to the spherical distance on C. We call J(G) := C\ F(G) the Julia set of G. The
Julia set is backward invariant under each element h € G, but might not be forward invariant.
This is a difficulty of the theory of rational semigroups. Nevertheless, we utilize this as follows.
The key to investigating random complex dynamics is to consider the following kernel Julia set
of G, which is defined by Jier(G) =, g Y(J(Q)). This is the largest forward invariant subset
of J(G) under the action of G. Note that if G is a group or if G is a commutative semigroup, then
Jker(G) = J(G). However, for a general rational semigroup G generated by a family of rational
maps h with deg(h) > 2, it may happen that § = Jie:(G) # J(G).

Let Rat be the space of all non-constant rational maps on the Riemann sphere @, endowed with
the distance x which is defined by x(f,g) := sup, .z d(f(2),9(2)), where d denotes the spherical

distance on C. Let Rat be the space of all rational maps g with deg(g) > 2. Let P be the space of
all polynomial maps g with deg(g) > 2. Let 7 be a Borel probability measure on Rat with compact
support. We consider the i.i.d. random dynamics on C such that at every step we choose a map
h € Rat according to 7. Thus this determines a Markov process on the state space C such that for
each z € C and each Borel measurable subset A of @, the transition probability p(x, A) from x
to A is defined as p(x, A) = 7({g € Rat | g(x) € A}). Let G, be the rational semigroup generated
by the support of 7, i.e., G; ={hi1o---0h, | n €N, h; € suppr for all j}. Let C((@) be the space
of all complex-valued continuous functions on C endowed with the supremum norm || - ||o. Let M,
be the operator on C(C) defined by M, (¢)(2) = [ ¢(g(2))d7(g). This M, is called the transition
operator of the Markov process induced by 7. For a metric space X, let 9 (X) be the space
of all Borel probability measures on X endowed with the topology induced by weak convergence
(thus p, — p in My (X) if and only if [@du, — [ @dp for each bounded continuous function
¢ : X — R). Note that if X is a compact metric space, then 21;(X) is compact and metrizable.
For each 7 € M;(X), we denote by supp 7 the topological support of 7. Let 9t .(X) be the space
of all Borel probability measures 7 on X such that supp 7 is compact. Let M* : 0y (C) — 9, (C)
be the dual of M,. This M* can be regarded as the “averaged map” on the extension 9%, (C) of C
(see Remark 3.9). We define the “pointwise Fatou set” F)) (1) of the dynamics of M} as the set of

all elements y € C satisfying that {(M*)"o® : C — 90 (C)}nen is equicontinuous at the one point
y € C, where & : C — 9, (C) is the embedding map defined by ®(y) = dy (see Definition 3.10).
Also, we set J)(7) := C\ F2,(7). Moreover, Jier(G~) is called the kernel Julia set of 7.

For each sequence v = (71,72,...) € (Rat)Y, and for each n,m € N with n > m, we set
Yn,m = Yn O -0 7m and we denote by F., the set of points z € @ satisfying that there exists
an open neighborhood of z on which the sequence {7, 1}2%, is equicontinuous with respect to



the spherical distance on C. This F, is called the Fatou set of the sequence 7. Also, we set
J, := C\ F, and this J, is called the Julia set of ~. Let 7 := @22 7 € 9, ((Rat)Y). For a metric
space X, we denote by Cpt(X) the space of all non-empty compact subsets of X endowed with
the Hausdorff metric. For a rational semigroup G, we say that a non-empty compact subset L of
C is a minimal set for (G, Q) if L = Upea{h(z )} Moreover, we denote by Min(G, C) the sets
of all minimal sets for (G, C). For any 7 € 9 (Rat), for any L € Min(G,,C) and for any z € C,
we set Tr - (2) = 7({y = (71,72, ..) € (Rat)Y | d(yn.1(2), L) — 0 asn — oo}). If L = {z}, then
we set T1,» = T, .. For a 7 € My (Rat), let T'; := supp7(C Rat). Let 7 € M (Rat). We say
that a minimal set L € Min(G, C) is attracting for 7 if there exist two open subsets A, B of C
with #(C\ A) > 3 and an n € N such that B C A and such that for each (y1,...,7,) € ', w
have 7, o ---0~1(A) C B. In this case, we say that L is an attracting minimal set of 7. Let
Y be a subset of Rat endowed with the relative topology from Rat. We say that ) is mild if for
each 7 € My ()), there exists an attracting minimal set for 7. For example, any non-empty open
subset of P is a mild subset of Rat.

Let Y be a closed subset of an open subset of Rat, i.e., there exist an open subset V of Rat and
a closed subset C of Rat such that Y = VN C. Let W = {f\}aca be a holomorphic family of
rational maps (see Definition 3.38) such that A is a connected complex manifold and A — f) €
Rat is not constant. We say that ) is weakly nice with respect to W if ¥ = {f\ € Rat | A € A}
(for more general definition, see 3.41). In this case, for each n € N, we denote by S, (W) the set
of points z € C satisfying that (A1,...,\,) € A" = fx, 0---0 fi, (z) is constant on A™. Also, we
set SW) =N, S, (W). This S(W) is called the singular set of W. Note that #57(W) < co and
gS(W) < co. We say that Y is nice with respect to W if ) is weakly nice with respect to W and
for each 7 € My (), for each L € Min(G,,C) with L € S(W) and for each z € L, either (a) the
map A — D(fy), is non-constant on A or (b) D(fy), =0 for all A € A.

For any closed subset ) of an open subset of Rat, let O be the topology in Mt; .()) such that
the sequence {7, }72 in My (I) tends to an element 7 € M ()) with respect to the topology O
if and only if (a) for each bounded continuous function ¢ : ¥ — C, [¢ dr, — [ ¢ dr,, as n — o0,
and (b) 'y, — T'; as n — oo in Cpt(Y) with respect to the Hausdorff metric.

We now present the first main result of this paper.

Theorem 1.1 (For the detailed and more general version, see Theorems 3.76, 3.65). Let ) be a
mild subset of Raty and suppose that Y is nice with respect to a holomorphic family W of rational
maps. Then there exists an open and dense subset A of (M .(Y),O) such that for each T € A,
the following (1)—(III) hold.

(I) We have Jxer(Gr) C SOWV), t#Jker(Gr) < o0 and fMin(G,) < oo. Moreover, each L €
Min(G,,C) with L ¢ Jxer(G-) is attracting for .

(IT) There exist numbers l,r € N, probability measuresny,...,n. € My (@) and functions ay, ..., :
C — [0, 1] such that for each y € C and for each ¢ € C(C), we have

MM (o) (y) — Z a;(y /godm as n — 0o (pointwise convergence) , (1)

i.e., we have (M*)"(6,) — S27_, ai(y)mi as n — oo in My (C) with respect to the weak
convergence topology. Also, we have (M) (37 ci(y)mi) = i «i(y)ni. Moreover, for eachi =
1,...,7, suppn; is included in an element L € Min(G., C) and Uj_, suppn; = LeMin(GT’@)L.
Moreover, these functions aq,...,a, are locally constant on F(G;). Furthermore, for each
i =1,...,r and for each y € FJ (1), we have lim, ey, @i(w) = ai(y). Also, for each
L € Min(G,,C) and for each y € EY.(1), we have m, ey Tor(w) = Trr ().

(IIT) For each y € C, there exists a Borel subset Bﬂ, of (Raty)N with 7(B,,) = 1 such that for
each v = (v1,%2,...,) € Bry, we have d(y, 0--- 0oy (y),U LeMin(G C)L) — 0 as n — oo.



We remark that statements (I)—(III) in Theorem 1.1 cannot hold for deterministic iteration
dynamics of a single f € Rat,, since the dynamics of f : J(f) — J(f), where J(f) denotes the
Julia set of f, is chaotic. Thus Theorem 1.1 deals with a randomness-induced phenomenon.

To present the second main theorem, for each 7 € 9, .(Rat) and for each L € Min(G,, C) with
L < 0o, we define the Lyapunov exponent of (7, L) and denote it by x(7, L) (see Definition 3.29).
Also, if ) is a weakly nice subset of Rat with respect to a holomorphic family W of rational maps,
we say that ) is exceptional with respect to W if there exists a non-empty subset L of S(W)
such that for each 7 € My .(Y), we have L € Min(G-, C) and x(7, L) = 0. We say that Y is non-
exceptional with respect to W if ) is not exceptional with respect to W (For the definition
in more general setting, see Definition 3.54). For any g € Rat and z € C, we denote by 1Dyl
the norm of the derivative of g at z with respect to the spherical metric. Also, Lebs denotes the
2-dimensional Lebesgue measure on C and for any set B C C, we set diam(B) = sup, ,ep d(z,9).

We now present the second main theorem of this paper.

Theorem 1.2 (For the detailed and more general version, see Theorem 3.81). Let Y be a mild
subset of Raty and suppose that Y is nice and non-exceptional with respect to a holomorphic family
W = {fa}rea of rational maps. Then there exists an open and dense subset A of (M1 (V),O)
such that for each T € A, all of the following statements (I) and (IT) hold.

(I) Let Hyr = = {L € Min(G,,C) | L C Jxer(G,),x(1,L) > 0} and let Q, be the set of points
y € C for which 7({y € (Rat+)N | In € N s.t. v,1(y) € Uren, . L}) = 0. Then we have
Q = F(7), t(C\ Q) < Ng and for each z € Q,, 7({y € (Rat; )V | z € J,}) = 0. Moreover,
Leba(J,) = 0 for 7-a.e.y € (Raty)N. Also, Uren, L C Jgt(T) =C \ Q, and ﬁJgt(T) < No.

(I1) Let Q. be as in (I). Then #(C\ Q,) < g and there exist a constant ¢, < 0 and a constant
pr € (0,1) such that for each z € Q., there exists a Borel subset C; . of (Rat+)N with
7(C-2) = 1 satisfying that for each v = (71,72,...) € Cr, and for each m € NU {0}, we
have the following (a) and (b).

(a)

lim Sup IOg ||D('7n+m 1+m)’Ym 1(z)H <ecr <0.
n—oo
(b) There exist a constant § = 6(7,z,v,m) > 0, a constant { = {(1,z,v,m) > 0 and an
attracting minimal set L = L(7,z,7) of T such that

diam('yn-i-m,l-i-m(B('Ym,l(z)a5))) < (p} foralln €N,

and n
d(7n+m,1+m(7m,1(z))v L) < Cpr fO’I“ alln € N.
Remark 1.3. In Theorems 3.76, 3.81, we show more generalized results in which we deal with
random dynamical systems of 7 € 9 .(Rat) such that supp 7 is included in a finite union of loci
of holomorphic families {W; };”:1 of rational maps, and supp 7 meets the locus of each W;.

We remark that statements (I), (II) in Theorem 1.2 cannot hold for deterministic iteration
dynamics of a single f € Raty, since the dynamics of f : J(f) — J(f) is chaotic, and we have
Maiié’s result dimpy({z € C | liminf,_,o Llog |ID(f™).|ls > 0}) > 0, where dimy denotes the
Hausdorff dimension with respect to the spherical distance on C (see [21]). Thus Theorem 1.2 deals
with a randomness-induced phenomenon. As we see in Theorems 1.1, 1.2, under the assumptions of
Theorems 1.1, 1.2, regarding generic random complex dynamical systems (in particular,
regarding generic random polynomial dynamical systems), the chaoticity is much
weaker than that of deterministic complex dynamical systems. This arises from the effect
of randomness and Theorems 1.1, 1.2 deal with randomness-induced phenomena. Note that the
statements in Theorems 1.1, 1.2 are a kind of analogues of the conjecture of density
of hyperbolic maps ([23]) in deterministic complex dynamics.



We remark that in [10] and [36, 37], regarding random complex dynamical systems, results
on disappearance of chaos were shown. In [10], it was assumed that S(W) = 0 and the noise is
very small, which implies that the systems in the paper have empty kernel Julia sets Jye;(G) of
corresponding rational semigroups. In [37], it was also assumed that S(W) = @ (for a holomorphic
family W of polynomials, it was assumed S(W)\ {oo} = 0)) but the range of the noise could be big,
and it was shown that the generic systems have empty kernel Julia sets, which implies that the
chaoticity of the systems is much weaker than that of deterministic complex dynamical systems.
In this paper, it is important that in Theorems 1.1 and 1.2, the set A contains many 7
such that Ji,(G;) # 0. Once we have non-empty kernel Julia set, the analysis of the
system is much more difficult than the cases with empty kernel Julia sets, even if the
kernel Julia set is finite. We need a new framework and more technical arguments to study such
systems.

We apply the results and the methods in the above to finding roots of any polynomial by
random relaxed Newton’s method as we explained below. Let g € P. Let A:={A e C| [A—-1] <1}

and let f1(2) = 2 — A9 for cach A € A. Let W = {filxea. Let ¥ := {f, € Rat | A € A}. Then
Y is called the random relaxed Newton’s method set for g and W is called the random
relaxed Newton’s method family for g. Also, (¥, W) is called the random relaxed Newton’s
method scheme for g. Moreover, for each 7 € 9t .()), the random dynamical system on C
generated by 7 is called a random relaxed Newton’s method (or random relaxed Newton’s
method system) of (g, 7). Furthermore, let Q4 := {20 € C| g(20) = 0}.

We now present the third main theorem of this paper.

Theorem 1.4 (For the details, see Theorem 4.4). Let g € P. Let (¥, W) be the random relazed
Newton’s method scheme for g. Then Y is a mild subset of Raty, the set Y is nice and non-
exceptional with respect to W and (Y, W) satisfies the assumptions of Theorems 1.1, 1.2. Moreover,
there exists an open and dense subset A of (M4 (V) such that all of the following hold.

(I) Let 7 € A. Then all statements (I)~(III) in Theorem 1.1 and statements (I)~(III) in Theo-
rem 1.2 hold for T. Moreover, Min(G-,C) is equal to the union of {{z} | z € Qz} U {{co}}

and {L € Min(GT,@) | L € C\Qg, L is attracting for T}. Also, for each x € Q,, the minimal
set {x} is attracting for 7.

(I1) Let T € A. Let Q, be the set defined in Theorem 1.2. Then #(C\ Q,) < R¢ and
Q, ={yeC|7({y € (Rat )" | In €N s.t. v,1(y) = 00}) = 0}.

(IIT) Let 7 € My c(Y) and suppose that int(I'z) D {fx | A € C,|A — 1| < 3} with respect to the
topology in Y =2 A :={\ € C| |A—1| < 1} and 7 is absolutely continuous with respect to
the 2-dimensional Lebesque measure on Y = A (e.g., let T be the normalized 2-dimensional
Lebesgue measure on {fx | A € C,|A — 1| < r} where & < r < 1, under the identification
Y =A). Thent € A and all statements (1)—(111) in Theorem 1.1 and statements (I)—(III) in

Theorem 1.2 hold for 7. Moreover, we have
Qr =C\ {20 € C | g'(20) = 0,9(20) # 0} and §(C\ Q) < deg(g) — 1.

Moreover, we have max,cq, eX(mdz) < 1. Moreover, for each o € (maxzeq, ex(miz}) 1), and
for each z € th(r) = Q,, there exists a Borel subset C, , o of (Raty)N with 7(Cr..0) = 1
satisfying that for each v € C; o, there exist an element © = z(T,z,a,7) € Q4 and a
constant & = &(T, z,,v) > 0 such that

d(yn1(z),z) <€a™ forallneN and ~,1(2) > as n— oo. (2)

Also, for 7-a.e. v € (Raty)N, we have Lebs(J,) = 0 and for each z € F,, there exists an
element x = x(7,7, 2) € Qg such that

Yni(2) = © as n — oo. (3)



Moreover, for each x € Qg and for each z € Q., we have lim, ¢ Ty (w) = Ty 7(2).
Moreover, for any subset B of C with §B > deg(g), there exists an element z € B such that

Z Tw,T(z) =1 (4)
TEQ

Furthermore, for each ¢ € C(C) and for each z € Qr, we have M7 (9)(2) = >,cq, Tor(2)o(x)
as n — 0o and this convergence is uniform on any compact subsets of 2.

Also, there exists an neighborhoodU of T in A such that for eachn € U, we have ﬂ(@\ﬂn) < Ng
and for each z € Q,, there exists a Borel subset C,, , of (Rat+)N with 7j(C, .) = 1 such that
for each v € C, ., there exists an element x = x(n,z,7) € Qg such that v,1(z) — = as
n — OQ.

We say that a non-constant polynomial g is normalized if {zy € C | g(29) = 0} is included in
D := {z € C| |z| < 1}. For a given polynomial g, sometimes it is not difficult for us to find an
element a € R with a > 0 such that g(az) is a normalized polynomial of z. It is well-known that if
g € P is a normalized polynomial, then so is ¢’ (see [1]). Thus, we obtain the following corollary.

Corollary 1.5. Let g € P be a normalized polynomial. Let A = {A € C | A —1] < 1}. Let
zg € C\'D. Let n € My o(A) be an element such that int(suppn) > {A € C | [\ —=1| < i} and
n is absolutely continuous with respect to the 2-dimensional Lebesque measure on A. Under the
identification Y = A, we regard 1 as an element of My (V1). Then for fj-a.e. v € (Raty)Y,
Yn,1(20) tends to a root x = x(7y) of g. Moreover, if, in addition to the assumptions of our theorem,
we know the coefficients of g explicitly, then by the following algorithm in which we consider d-
random orbits of zg under d-different random relaxed Newton’s methods, we can find all Toots of g
almost surely with arbitrarily small errors.

(1) We first consider the random relaxed Newton’s method scheme (Y1, Wy) for g1 = g. By
Theorem 1.4, for f-a.e. v € Rat", 4, 1(20) tends to a root x = x(v) of g. Let x1 be one of
such x(y) (with arbitrarily small error).

(2) Let go(2) = g(2)/(z — x1). By using synthetic division, we regard gs as a polynomial which
divides g1 (with arbitrarily small error). Note that go is also a normalized polynomial. We
consider the random relazed Newton’s method scheme (Yo, Wa) for go. As in the first step
(replacing g1 by g2), we find a root x5 of g2, which is also a root of g (with arbitrarily small
error).

(3) Let g3(2) = g2(2)/(z — x2) and as in the above, we find a root x3 of g with arbitrarily small
error. Continue this method.

We remark that in Theorem 1.4 and Corollary 1.5, any system has non-empty kernel Julia set
of the corresponding rational semigroup (in fact, {zo € C | ¢'(20) = 0, g(20) # 0} U{o0} is included
in the kernel Julia set), and in order to analyze such systems we need a new framework and much
more technical arguments than those of [36], [37]. See the second remark after Remark 1.3.

Remark 1.6. (I) Regarding the original Newton’s method, M. Hurley showed in [15] that for
any k € N with k > 3, there exists a polynomial g of deg(g) = k such that the Newton’s method
map Ny(z) = z — g(2)/¢'(z) for g has 2k — 2 different attracting cycles. Thus this N, has k — 2
attracting cycles which are not zeros of g. Since attracting cycles are stable under perturbations, it
follows that for any k& > 3, the set of elements g for which the Newton’s map has attracting cycles
which are not zeros of g is a non-empty open subset of Py, := {g € P | deg(g) = k}.

(IT) C. McMullen showed in [22] that for any k € N,k > 4 and for any [ € N, there exists no
rational map N : P, — Rat; := {f € Rat | deg(f) = [} such that for any ¢ in an open dense subset
of Py, for any z in an open dense subset of C, N(g)"(z) tends to a root of g as n — oo.



(IIT) The essential assumptions on 7 in Theorem 1.4 (IIT) and Corollary 1.5 of this
paper do not depend on g € P. By (I)(II), it follows that the statements of Theorem 1.4
and Corollary 1.5 cannot hold in the deterministic relaxed Newton’s method and any
other deterministic complex analytic iterative schemes to find roots of polynomials.
Thus Theorem 1.4 and Corollary 1.5 deal with randomness-induced phenomena.

(IV) J. Hubbard, D. Schleicher and S. Sutherland showed in [16] that for each d € N, there
exists a finite subset B of C with $B < 1.1d(logd)? such that for any normalized polynomial g
with deg(g) = d and for every root of g, at least one of the points in B converges to this root under
the iteration of the same Newton’s method map N, for g.

Note that this is the first paper to investigate random relaxed Newton’s method systematically.
It is important that in Theorem 1.4 (III) and Corollary 1.5, the size of the noise is big which
enables the system to make the minimal set with period greater than 1 collapse. However, since
the size of the noise is big, it is not enough for us to consider the arguments which are similar to
those of deterministic dynamics of one map, thus we have to develop the theory of random complex
dynamical systems with noise or randomness of any size as in Theorems 1.1, 1.2.

As we see before, in Theorems 1.1 and 1.2, the chaoticity of random complex dynamical systems
is much weaker than that of deterministic dynamical systems. However, the random systems may
have still a kind of complexity or chaoticity. For example, when we consider the function 77, ,
of probability of tending to one L € Min(G, @), then under certain conditions, this function is
continuous on C and even more, this is a-Holder continuous on C for some o € (0,1) but there
exists an element 8 € (0,1) such that 77, , cannot S-Holder continuous on C. This implies that
the system generated by 7 does not act mildly (i.e., the transition operator M, of 7 does not act
mildly) on the Banach space C#(C) of S-Hélder continuous functions on C endowed with S-Hélder
norm || - || (e.g., there exists a ¢ € C#(C) such that || M (¢)||z — co as n — oc). Thus regarding
the random (complex) dynamical systems, we have the gradations between chaos and order
(see [36, 37, 17, 18, 39]).

In Theorems 3.79 and 3.82, we show the results on random dynamical systems generated by
measures 7 on Y without assuming Y is mild. We show that considering the mild part 9% ¢ mid())
(the set of elements 7 which has an attractor, see Definition 3.77), there exists an open and dense
subset A of My ¢ mia(Y) such that for each 7 € A, statements (I)—(IIT) in Theorem 1.1 and
statements (I)(II) in 1.2 hold. Also, denoting by 9 . jr(Y) the set of elements 7 € My (V) for
which J(G,) = C and either Min(G,,C) = {C} or Uremin(a, &L € S(W), we show that the union
of A and My . yr () is dense in My ()) (Theorems 3.79 and 3.82).

Example 1.7. We give some examples of ) satisfying the assumptions in Theorem 1.2 or the
generalized version Theorem 3.81. For the details, see Section 5. In the following, A denotes the
open and dense subset of (9 .(Y),0) or (M (Y, {W;}jL,),0) (for the notation, see Defini-
tion 3.41) in Theorem 1.2 or Theorem 3.81. As mentioned before, if Jio (G,) # 0, it is much
more difficult to show the statements on convergence of measures and negativity of
Lyapunov exponents in Theorems 1.1, 1.2, 3.76, 3.81 than the cases with Ji..(G,) = 0.

(i) For each ¢ € N with ¢ > 2, let P, := {f € P | deg(f) = q}. Let (q1,-..,q¢m) € N with
@ <@ < <@gy andlet W; = {f}fequ,j =1,...,mand let Y = UL, P,,. In this case,

S(W;j) \ {oc} = 0 for each j and the set Q, in Theorem 3.81 is equal to C. (Note that this
result has been already obtained in [37].)

(ii) Let ¢ € N with ¢ > 2 and let W = {29 + c}eec. Let Y = {27 + ¢ | ¢ € C}. In this case,
SW)\ {00} = 0 and the set 2, in Theorem 1.2 is equal to C. (Note that this result has been
already obtained in [37].)

(iii) Let W = {Az(1 = 2)}rec\qoy and let ¥ = {Az(1 —2) € P, | A € C\ {0}}. In this case,
S(W) = {0,1} U {oc} and S(W) \ {oo} # (. There exists a non-empty open subset A’ of A
such that for each 7 € A’, we have th(r) =Q, # C and Jier (G-) # 0.



(iv) Let f € P such that if 2o € C and f(z0) = 0, then f’(z0) # 0. Let W = {z + A f(2) }xec\{0}
and let Y = {z+ Af(z) € P | A € C\ {0}}. In this case, SOW) = {20 € C| f(20) =0} U {o0}
and S(W) \ {co} # (). Then there exists a non-empty open subset A’ of A such that for each
T € A, we have th(T) =, #C and Jier (Gr) # 0.

(v) Let n € N with n > 2 and let w = €2™/™ € C. Let W; = {w'(z + A\(z" — 1)) }rec\ (0} for
each i =1,...,n. Let i1,...,4, € {1,...,n} with i; <ig--- < iy,. For these i1,...,%n, let
Y =U {w'(z4+A(z" — 1)) € P | X € C\ {0}}. Then there exists a non-empty open subset
A’ of A such that for each 7 € A’, we have FY) (1) = Q, # C and Jier (G) # 0.

The strategy to prove Theorems 1.1, 1.2, 3.76, 3.81 is as follows. Let ) be a mild subset of Rat
and suppose that ) is nice with respect to a holomorphic family W = {fy}rea of rational maps.
Let 79 € 9 ¢(Y). Then there exists an element 7 which is arbitrarily close to 79 and int(I';) # 0.
We show that for such 7, we have Jio (G,) C S(W) and hence §J(G,) < oo, by using Montel’s
theorem (Lemmas 3.44, 3.45). In Proposition 3.63, we develop a theory on the systems with
finite kernel Julia sets based on careful observations on limit functions on the Fatou sets by
using the hyperbolic metrics on the Fatou components (Lemma 3.60), and we obtain that

for each L € Min(G,,C) with LNF(G;) # 0, the dynamics in Fatou components which meet L are
locally contracting and fMin(G., C) < 00. Also, we develop a theory on bifurcation of minimal
sets under perturbation which was initiated by the author of this paper in [37] in Lemma 3.71,
and applying it and enlarging the support of 7 a little bit, we obtain that any L € Min(GT,C)
with LN F(G,) # 0 is attracting for 7. By the theory of finite Markov chains ([9]), we see that for
such 7 and for each L € Min(G, @) with L C Jker (G ), there exists a canonical invariant measure
on L (Lemmas 3.25, 3.26, Definition 3.29). It is very important and useful to show that for any

y € C, letting B, := {y € (Rat)" | y € N3, 1 (J(G:)},
for 7 -a.e. v € Ey, we have d(Vn,1(¥), Jker(Gr)) = 0 as n — oo,

by using careful observations on random dynamical systems on general compact metric spaces
(Lemma 3.15).

We next observe the local dynamics of G at each point of S(W). By enlarging the support of 7
a little bit, by some careful arguments, it turns out that we may assume that each L € Min(G-, @)
with L C S(WW) satisfies one of the following conditions (I)—(IV). (I) “Uniformly expanding”.
(IT) “Attracting”. (III) “There exist a point z; € L and elements g¢1,¢2,935 € G, such that
91(21) = 21,[|D(g1)z [[s > 1, g2(21) = 21, |D(g2)z[ls < 1, g3(21) = 21, and g3 has a Siegel disk
with center z;”. (IV) “There exists a point z; € L such that for each A\ € A, we have D(f)),, = 0.
Moreover, there exist a point z; € L and an element g € G such that g(z2) = 22 and || Dg.,||s > 17.
By using some results on rational semigroups from [13], it turns out that if L is of type (III) or
(IV), then L C int(J(G;)). In particular, for each z € F(G;), we have G(z) N L = (). It turns out
that for each z € F(G,), if G(z) does not meet any attracting minimal set of 7, then G(z) meets a
minimal set L which is uniformly expanding. Thus G(z) meets a backward image of L under some
element of G, which is included in a compact subset of J(G,)\ S(W). By enlarging the support of
7 a little bit again, we obtain that for each z € F(G;), G(z) meets an attracting minimal set of 7.
From these arguments, we can show that this 7 is weakly mean stable, i.e., there exist a positive
integer n and two non-empty open subsets Vi ,, V2, of C with Vi C Vo, and ﬁ((@ \ Vo) >3
such that (a) for each (y1,...,,7,) € I'?, we have v, ---71(Va,r) C V17, (b) we have D, < oo,
where D, == Nyeq, g~ (C\ Vo), and (c) for each L € Min(G,,C) with L C D,, there exist an
element z € L and an element g, € G, such that z is a repelling fixed point of g,. From this fact,
we can prove the existence of an open and dense subset 4 in Theorems 1.1, 3.76. If we assume
further that ) is non-exceptional with respect to W, then we can show that there exists an open
and dense subset A’ of A such that for each 7 € A’, (1) for each L € Min(G,,C) with L ¢ S(W),
we have x(7,L) # 0, and (2) for each L € Min(G,,C) with L ¢ S(W), if x(r,L) > 0, then for




each z € L and for each g € I';, we have Dg, # 0. Combining this fact and the observations
on the local behavior of the systems around the minimal sets with non-zero Lyapunov exponents
(Lemmas 3.30-3.36), we can prove that each element of 7 € A’ satisfies statements (I)—(III) in
Theorem 1.2.

By the above arguments, we obtain the following.

Corollary 1.8 (For more generalized result, see Theorem 3.76). Under the assumptions of Theo-
rem 1.1, the set of weakly mean stable elements T € (M4 (), O) is open and dense in (M (V), 0),

Note that weak mean stability is a new concept introduced by the author of this paper, and it
is crucial to consider the density of weakly mean stable elements to prove Theorems 1.1, 1.2, 3.76,
3.81. We emphasize that weakly mean stability implies many interesting properties (Lemma 3.73,
Theorem 3.80). We remark that in [36], the notion mean stability (i.e., every minimal set is
attracting) was introduced by the author of this paper and it was proved in [37] that the set
of mean stable elements of 7 € My (P) is open and dense in My (P). Mean stability implies
weak mean stability, but the converse is not true. In fact, there are many examples of mild
and nice sets ) for which there exists a non-empty open subset A" of A (where A is the set in
Theorems 1.1, 1.2) such that each 7 € A” is not mean stable (but is weakly mean stable).
For such examples, see Theorems 1.4, 4.4, Example 1.7 (iii)—(v) and Examples 5.4-5.7.

In Section 2, we give some fundamental notations and definitions, and present some basic facts
on rational semigroups. In Section 3, we develope the theory of random complex dynamical systems
and prove several theorems including Theorems 1.1, 1.2 and the detailed versions Theorems 3.76,
3.81 of them. In Section 4, we apply Theorems 1.1, 1.2, 3.76, 3.81 and the other results in Section 3
to random relaxed Newton’s methods in which we find roots of given polynomials, and we show
Theorem 1.4 and the detailed version Theorem 4.4. In Section 5, we give some examples to which
we can apply the main theorems.

2 Preliminaries

In this section, we give some fundamental notations and definitions.

Notation. Let (X,d) be a metric space, A a subset of X, and r > 0. We set B(A,r) =
{z € X | d(#,A) < r}. Moreover, for a subset C of C, we set D(C,r) := {2z € C | inf,ec |z—a| < r}.
Moreover, for any topological space Y and for any subset A of Y, we denote by int(A) the set of
all interior points of A. We denote by Con(A) the set of all connected components of A.

Definition 2.1. Let Y be a metric space. We set CM(Y) := {f : Y — Y | f is continuous} en-
dowed with the compact-open topology. Also, we set OCM(Y) := {f € CM(Y) | f is an open map}
endowed with the relative topology from CM(Y'). Moreover, we denote by C(Y') the space of all
continuous functions ¢ : ¥ — C. When Y is compact, we endow C(Y) with the supremum norm

Remark 2.2. CM(Y) and OCM(Y), are semigroups with the semigroup operation being functional
composition. If Y is a compact metric space, then CM(Y") is a complete separable metric space.

Definition 2.3. A rational semigroup is a semigroup generated by a family of non-constant
rational maps on C with the semigroup operation being functional composition([13, 12]). A poly-
nomial semigroup is a semigroup generated by a family of non-constant polynomial maps. We
set Rat : = {h: C — C | h is a non-constant rational map} endowed with the distance s which is
defined by s(f, g) := sup_ ¢ d(f(2),g(2)), where d denotes the spherical distance on C. Moreover,
we set Raty := {h € Rat | deg(h) > 2} endowed with the relative topology from Rat. Also, we set
P:={g: C—>¢C | g is a polynomial, deg(g) > 2} endowed with the relative topology from Rat.

Remark 2.4. ([2, Theorem 2.8.2, Corollary 2.8.3]) Let Rat,, := {g € Rat | deg(g) = m} for each
m € N and let Py, := {g € P | deg(g) = m} for each m € N with m > 2. Then for each m, Rat,,



(resp. Pp,) is a connected component of Rat (resp. P). Moreover, Rat,, (resp. P,,) is open and
closed in Rat (resp. P) and is a finite dimensional complex manifold. Also, h, — h in P if and
only if deg(h,,) = deg(h) for each large n and the coefficients of h,, tend to the coefficients of h
appropriately as n — oo.

Definition 2.5. Let Y be a compact metric space and let G be a subsemigroup of CM(Y"). The
Fatou set of G is defined to be

F(G) := {z € Y | 3 neighborhood U of z s.t.{g|ly : U — C},eq is equicontinuous on U}.

(For the definition of equicontinuity, see [2].) The Julia set of G is defined to be J(G) := C\ F(Q).
If G is generated by {¢;}7, (ie, G={gy o -0¢g;, | n€Nyiy,...,i, €{1,...,m}}), then we
write G = (g1, 92,...9m). If G is generated by a subset I' of CM(Y) (i.e., G is equal to the set
{hio---oh, | n€Nhy...,h, €A}), then we write G = (I'). For a subset A of Y, we set
G(A) = Uyeg 9(4) and G71(A) = Ugea g H(A). We set G* := G U {Id}, where Id denotes the
identity map.

Lemma 2.6 ([13, 12]). Let Y be a compact metric space and let G be a subsemigroup of OCM(Y).
Then, for each h € G, NF(G)) C F(G) and h=1(J(G)) C J(G). Note that the equality does not
hold in general.

Regarding the dynamics of rational semigroups G, we have the following. F(G) is G-forward
invariant and J(G) is G-backward invariant. Here, we say that a set A C C is G-backward
invariant, if g71(A4) C A for each g € G, and we say that A is G-forward invariant, if g(A) C A,
for each g € G. If §(J(G)) > 3, then J(G) is a perfect set and #(E(G)) < 2, where E(G) :=
{z € C | #G71(2) < oc}. (E(G) is called exceptional set of G.) Moreover, if £.J(G) > 3 and if
z € C\ E(G), then J(G) ¢ G—1(z). In particular, if $J(G) > 3 and z € J(G) \ E(G), then
G-1(z) = J(G). Also, if #(J(G)) > 3, then J(G) is the smallest closed subset of C containing
at least three points which is G-backward invariant. Furthermore, if §(J(G)) > 3, then we have

J(G) = {z € C| z is a repelling fixed point of some g € G} = UyeqJ(g). For the proofs of these
results, see [13] and [27]. We remark that [27] is a very nice introductory article of rational
semigroups.

The following is the key to investigating random complex dynamics.

Definition 2.7. Let Y be a compact metric space and let G be a subsemigroup of CM(Y"). We
set Jier(G) 1= Nyeq g 1(J(G)). This is called the kernel Julia set of G.

Remark 2.8. Let Y be a compact metric space and let G be a subsemigroup of CM(Y). (1)
Jrer(G) is a compact subset of J(G). (2) For each h € G, h(Jyer(G)) C Jker(G). (3) If G is a
rational semigroup and if F'(G) # 0, then int(Jye; (G)) = 0. (4) If G is generated by a single map or
if G is a group, then Jie,(G) = J(G). However, for a general rational semigroup G, it may happen
that 0 = Jier(G) # J(G) (see [36]).

In the rest of this paper we sometimes need some results of random complex dynamical systems
from [36, 37].

3 Random complex dynamical systems

In this section, we develope the theory of random complex dynamical systems and prove several
theorems including Theorems 1.1, 1.2 and the detailed versions Theorems 3.76, 3.81 of them.
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3.1 Random dynamical systems on general compact metric spaces

In this subsection we show some results on random dynamical systems on general compact metric
spaces. It is sometimes important to investigate the dynamics of sequences of maps.

Definition 3.1. Let Y be a compact metric space. For each v = (v1,72,...) € (CM(Y))N and
each m,n € N with m > n, we set Y. n = Ym © - - 07, and we set vp,1 = Id. Also, we set
Fyo:={2€Y [ {vm1}n2; is equicontinuous at the one point z},
F, :={z € Y | 3 neighborhood U of z s.t. {Vn,1}nen is equicontinuous on U},

Jyo =Y\ F,o and J, := Y \ F,. The set F, is called the Fatou set of the sequence vy and
the set .J, is called the Julia set of the sequence ~. Moreover, we set F70 := {y} x F, o(C
(CM(Y)N¥ x Y), F7 == {v} x F, (C (CM(Y))N x V), J"0 := {4} x J, o(C (CM(Y))Y x V) and
JV = {y} x J, (C (CM(Y))N x Y).

Remark 3.2. Let v € (Rat)Y. Then by Montel’s theorem, .J, o = J,. Also, if v € (Rat)", then

by [2, Theorem 2.8.2], J., # (. Moreover, if I is a non-empty compact subset of Rat, and v € 'Y,
then by [31], J, is a perfect set and J, has uncountably many points.

Lemma 3.3. Let Y be a compact metric space. Let I' be a mon-empty closed subset of an open
subset of CM(Y'). Then U, cpn F0, Uyern 7 U, epn J0 and U, erw J7 are Borel measurable
subsets of TN x Y and

1
U F° ={(v.9) €T x Y | lim_supdiamy,1(B(y, —)) = 0}, (5)
~ern m—=00n>1 m
1
U F7 = U{ (v,9) eTN xY | lim sup sup diamy, (B(y, —)) = 0}. (6)
vers peN T n21y ey, ) m

Proof. By the definition of F"7, we obtain (5) and (6). From (5) and (6), it follows that [J,cpw F0
and |, cpn F7 are Borel subsets of '™ x Y. Thus U,epn J70 and U, cpw J7 are also Borel subsets
of TN x Y. O

We now give some notations on random dynamics.

Definition 3.4. For a metric space Y, we denote by 211 (Y") the space of all Borel probability mea-
sures on Y endowed with the topology such that p,, — w in 9% (Y) if and only if for each bounded
continuous function ¢ : Y — C, [ ¢ du,, — [ ¢ dp. Note that if Y is a compact metric space, then
S 1 [ ¢idum—[ ¢;dpsl
J=1 27 14| [ ¢jdu1— [ djduz|’
{#;};en is a dense subset of C'(Y"). Furthermore, for each 7 € 9, (Y"), the topological support supp 7
of 7 is defined as supp 7 := {# € Y | V neighborhood U of z, 7(U) > 0}. Note that supp 7 is a closed
subset of Y. Furthermore, we set My (V) := {7 € M1 (Y) | supp 7 is a compact subset of Y'}.
For a complex Banach space B, we denote by B* the space of all continuous complex linear

functionals p : B — C, endowed with the weak* topology.

where

My (Y) is a compact metric space with the metric do(u1, p2) :=

For any 7 € 9 (CM(Y)), we will consider the i.i.d. random dynamics on Y such that at every
step we choose a map g € CM(Y) according to 7 (thus this determines a time-discrete Markov
process with time-homogeneous transition probabilities on the state space Y such that for each
z € Y and each Borel measurable subset A of Y, the transition probability p(z, A) from = to A is
defined as p(z, A) = 7({g € CM(Y) | g(z) € A})).

Definition 3.5. Let Y be a compact metric space. Let 7 € 9t (CM(Y)).

1. We set I'; := supp 7 (thus I'; is a closed subset of CM(Y')). Moreover, we set X, := (I'; )Y
(={y = (n,7,--) | v € T+ (Vj)}) endowed with the product topology. Furthermore,
we set 7 := ®j2,7. This is the unique Borel probability measure on X; such that for each
cylinder set A Ay xooox Ay xTo xTp x -+ in X, 7(A) =[]}, 7(A4;). We denote by G,

the subsemigroup of CM( ) generated by the subset I'; of CM(jY

11



2. Let M., be the operator on C(Y') defined by M, ( = Jr. (g dr(g). M, is called
the transition operator of the Markov process 1nduced by T. Moreover let M*:C(Y)* —
C(Y)* be the dual of M., which is defined as M*(u)(¢) = (M- (p)) for each p € C(Y)*
and each ¢ € C(Y). Remark: we have M*(Sﬁl( ) C zml( ) and for each p € M4 (Y) and
each open subset V of Y, we have M*( fr )) dr(g).

3. We denote by Fpeqs(7) the set of € 9 (V) satisfying that there exists a neighborhood B
of 1 in My (Y") such that the sequence {(M?)"|5 : B — M1 (Y )}nen is equicontinuous on B.
We set Jmeas(7) := IM1(Y) \ Freas(7)-

4. We denote by F? (1) the set of u € My (V) satisfying that {(M*)™ : M1 (V) — M1(Y) bnen
is equicontinuous at the one point . Note that Fyeqs(T) C FO .o (7).

5. We set Jmeaa( ) ( )\ meas( )

Remark 3.6. We have F),.qs(7) C F°

meas ( )

and Jmeas( ) C Jmeas(T)-

Remark 3.7. Let I be a closed subset of an open subset U of Rat. Then there exists a 7 € My (U)
such that supp7 (in the sense of Definition 3.4) is equal to I'. By using this fact, we sometimes
apply the results on random complex dynamics to the study of the dynamics of rational semigroups.

Definition 3.8. Let Y be a compact metric space. Let ® : ¥ — 9 (Y) be the topological
embedding defined by: ®(z) := 4., where 0, denotes the Dirac measure at z. Using this topological
embedding ® : Y — 9 (Y), we regard Y as a compact subset of M (V).

Remark 3.9. If h 6 Rat and ’7' = 5;“ then we have Mo ® = ®oh on C. Moreover, for a general
7 € My (Rat), = [h(p ) for each p € MYy ((C) Therefore, for a general 7 € 9t (Rat),
the map M* : £m1 ((C) — 93”(1(((:) can be regarded as the “averaged map” on the extension 9 (C)
of C.

Definition 3.10. Let Y be a compact metric space. Let 7 € 9 (CM(Y)). Regarding YV as a
compact subset of M (Y') as in Definition 3.8, we use the following notation.

1. We denote by Fp.(7) the set of z € Y satisfying that there exists a neighborhood B of z
in Y such that the sequence{(M*)"|g : B — MM1(Y)}nen is equicontinuous on B. We set

Ipt(7) =Y\ Fpi (7).

2. Similarly, we denote by FJ,(7) the set of z € ¥ such that the sequence {(M})"]y : YV —
My (Y)}nen is equicontinuous at the one point z € Y. We set Jo,(7) := Y \ FJ} ( ).

Also, the set Jier(G) is called the kernel Julia set of 7.

Remark 3.11. We have F, (1) C Fy(7) and J,(7) C Jpe(7)N T eqs(T) (regarding Y as a compact

subset of 9 (Y') by using the topological embedding ® : Y — 9t (Y)).

Remark 3.12. If 7 = §;, € 91 (Rat) with A € Rat, then Jgt (1) and Jyneqs(T) are uncountable.
In fact, we have 0 # J(h) C JJ;(7) and J(h) is uncountable.

Lemma 3.13. Let Y be a compact metric space. Let 7 € M (CM(Y)). Let y € Y. Suppose
T({y € (CM(Y))N |y € Jy0}) = 0. Then y € Ff(7).

Proof. By (6) in Lemma 3.3 and the assumption of our lemma, we obtain that for 7-a.e.y €
(CM(Y))N, limy—e0 SUP,,>; diam(yn,1(B(y, &))) = 0. Let € > 0. By Egoroff’s theorem, there
exists a Borel subset Ay of X, with 7(X, \ A1) < e such that

sup diamn(,,1(B(y: 7)) = 0 ™
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as m — oo uniformly on A;. Let ¢ € C(Y). Then there exists a §; > 0 such that if d(z1,22) < &3
then |¢p(z1) — ¢(22)| < €. By (7), there exists a d; > 0 such that for each z € Y with d(z,y) < Ja,
for each v € A;, and for each n € N, we have d(v,,1(2),Vn,1(y)) < 01. Therefore for each z € Y’
with d(z,y) < 02, we have

[MI(p)(2) = M () (y)] < /A [p(1n,1(2) = ©(ym,1 (W))1dT(7) + /X 9 le(Yn.1(2)) = (Y1 ()17 (7)
1 T 1
< 7(Ay) - e+ 2¢e-sup|p(a)l
acC
< e(1+2flelloo)-
It follows that y € F))(7). Thus we have proved our lemma. O
For a smooth Riemannian real manifold ¥ with dimY = p, we denote by Leb, the (p-

dimensional) Lebesgue measure on Y.

Corollary 3.14. Let Y be a compact smooth manifold with dim(Y') = p and let 7 € M1 (CM(Y)).
Suppose that for 7-a.e.y € (CM(Y))N, Leby(Jy,0) = 0. Then Leby(J3,(7)) = 0.

Proof. Under the assumptions of our corollary, Lemma 3.3 and Fubini’s theorem imply that for
Leb,-a.e.y € Y, we have 7({y € (CM(Y))" | y € J,0}) = 0. By Lemma 3.13, it follows that for
Leby-a.e.y € Y, y € F(7). Thus we have proved our corollary. O

The following lemma is very important and useful to prove many results.

Lemma 3.15. Let Y be a compact metric space. Let 7 € MMy (CM(Y)). Let V' be a non-empty open
subset of Y. Suppose that for each g € 'y, g(V) C V. Let Lyey := Ngeg.g *(Y \V). Lety €Y
and let E:={ye X, |y € ﬂjzl'yjjll(Y \V)}. Then for T-a.ery € E, we have d(¥n1(y), Lier) — 0
as n — oo.

Proof. For each § > 0 and n € N, let A(0,n) :={y € E | mp1(y) € (Y \ V) \ B(Lker,0)} and
C) :={y € E|3Ing € Ns.t. V¥ > ng,¥,1(y) € B(Lker,0)}. In order to prove our lemma, it
suffices to show that

T(E\ C(6)) =0 for each 6 > 0. (8)

Since E'\ C(6) = NF_; U v A(4,n), we have

o0

FB\C() = Jim F(URyA(,n) < Jim S F(AEG,n)).

Thus, in order to show (8), it suffices to prove that
Z 7(A(d,n)) < oo for each § > 0. 9)
n=1

In order to prove (9), let § > 0. Then for each z € (Y \ V) \ B(Lyer, d), there exists an element
g- € G and a neighborhood U, of z in Y such that g,(U,) C V. Since H := (Y \ V) \ B(Lxer, 6) is
compact, there exist finitely many points z1,..., 2, € Y such that H C U;_,U,;. Since gV)ycVv
for each g € I';, we may assume that there exists an I € N such that for each j = 1,...,r, there
exists an element 7/ = (v{,...,7{) € 'Y with g., =~ o---0~{. Then for each j =1,...,r, there

exists a neighborhood W; of 47 in 'L such that for each o = (a1, ..., qq) € W, o001 (U,,) C V.

J

Let 8o := minj_, 7/(W;), where 7/ = @, _,7 € M ((CM(Y))"). For each i = 0,1,...,1 — 1 and for
each n € N, let

H(S,i,n) = {7y € T [ Yign1,1(y) € Y\ V) \ B(Lker: 8), Vit (ns1y,1(y) € V}
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and

1(6,i,n) :=={v €T | Yitnia(y) € Y\ V) \ B(Lier, 8)}.
Note that if n # m then H(d,i,n) N H(5,i,m) = @. Let Q1,...,Qs be mutually disjoint Borel
subsets of (Y \ V) \ B(Lker,d) such that (Y \ V) \ B(Lker,é) = U;_1Q, and such that for each

p=1,...s there exists a j(p) € {1,...,r} with Q, C U, . Then for each i =0,1...,1 -1, we

have
T(H(d,i,n)) = Ti+(n+1)l(H{7 e T i ua(y) € Qp: Vit (nt1)11(y) € V})
p=1
S . .
= ZTH(”H)I({V € FZTJr(nH)l | Yitnt,1(y) € Qp, Vit (nt1),1(y) €V}
p=1
> ZT”("JFW({’Y e T i1 (y) € Qpy (Vigmiga - - - Vit (ntt) € Wi })
p=1
= > Y €TEM [ igna (y) € Qp}) - T (W)
p:l

> So7(1(d,i,m)),

where ]| denotes the disjoint union. Therefore

1 > #F(Jverl [ mily) eV}
neN
> #(|J H(5i.n)) Z H(5,in) = Y 807(1(3,1.n))
n=1 n=1

Thus Y7, 7(1(8,4,n)) < oo for each i =0,1,...,l — 1. Hence

0 -1 oo
5" A ) = Y 3 A1 ) < .
n=1 =0 n=1
Therefore (9) holds. Thus we have proved our lemma. O

3.2 Systems with hyperbolic kernel Julia sets

In this subsection, we show a result on random complex dynamical systems with hyperbolic kernel
Julia sets.

For a holomorphic map ¢ : U — C defined on an open subset U of C and for any z € U, we
denote by Dy, : T, U — Tw(z)@ the complex differential map of ¢ at z, where T,U denotes the
complex tangential space of U at z and T@(Z)C denotes the complex tangential space of C at o(2).
Also, we denote by [|De.||s the norm of Dy, with respect to the spherical metric on C.

Definition 3.16. Let Y be a compact metric space and let T be a non-empty subset of CM(Y).
We endow I' with the relative topology from CM(Y). We define a map f : TN xY — I'N x Y as
follows: For a point (7,y) € I'N x Y where v = (71,72, ...), we set f(7,9) := (o(7),71(y)), where
o : TN — TV is the shift map, that is, o(v1,72,...) = (72,73,...). Themap f: TN xY - TN x Y
is called the skew product associated with the generator system I'. Moreover, we use the
following notation.

1. Let m: TNxC — I'N and 7y : TN x Y — Y be the canonical projections. For each v € TN and
neN,weset fI' := f*|—104y 7 H{y} = 77 {0™(7)}. Moreover, we set f,, :=y,0---01.
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2. We set j(f) = UVEFN J7, where the closure is taken in the product space I'N x Y. Furthermore,
we set F(f) := (TN x Y)\ J(f).

3. For each v € TV, we set J¥T := 7=} N J(f), E¥T =2 ({4 )\ JT, Jyr = 7y (1),
and F, p := Y \ J, r. Note that .J, C J, .

4. When T C Rat, for each z = (v,y) € IN x C, we set Df, := D(71)y.

Remark 3.17. Under the above notation, let G = (T'). Then 7y (J(f)) C J(G) and 7o f =com

on I'N x Y. Moreover, for each v € TN, 71(J,) C Jy(4), 71(Jy,r) C Joy),rs and f(J(f)) C J(f).
Furthermore, if I' € Cpt(Rat), then for each v € I, y1(J,) = Jo(4), fyfl(Jc,(V)) =J,, ’7]_(JA%1") =

Jooyts - Joiyyr) =y, FUF) = J(f) = F7HI(f)), and f(F(f)) = F(f) = f~HF(f)) (see
[31, Lemma 2.4]).

Definition 3.18. Let I" be a subset of Rat. Let G = (I'). We say that a subset A of J(G) is a
hyperbolic set for I if there are constants C' > 0 and A > 1 such that for each n € N, for each
z € A, and for each v € IV, we have || D(y,.1):|ls > CA™.

We now show a result on the case that Jie,(G,) is a hyperbolic set for T';.

Proposition 3.19. Let 7 € My o(Rat). Suppose that F(G;) # 0 and Jyer(G+) is a hyperbolic set
for Ty. Then for 7-a.e.y € (Rat)N, we have Leba(J, 1) = 0, where Lebs denotes the 2-dimensional
Lebesgue measure on C. Moreover, Leby(J0;(1)) = 0.

Proof. Suppose that the statement “for 7-a.e.y € (Rat)V, Leby(J,r,) = 07 is not true. Then
since (o, 7) is ergodic, we have for 7-a.e.y € (Rat)Y, Leby(J, ) > 0. Let V = F(G,). Applying
Lemma 3.15, we obtain that

(7 ® Leb2)({(7,9) € J(f) | d(yn1(y), Jrer(G7)) # 0} as n — oo}) = 0.

Therefore for 7-a.e.y € (Rat)Y, for Lebg-a.e.y € J, 1. ,we have d(v,.1(y), Jrer(G7)) = 0 as n — oc.

Thus for 7-a.e.7y, there exists a Lebesgue point y of J, . such that d(y,,1(y), Jker(Gr)) — 0 as
n — oo. Let (7, y) be such an element. We may assume that D(v, 1), # 0 for each n € N. Since
Jker (G+) 1s a hyperbolic set for I';, we obtain that

Yy € Jy. (10)

Moreover, since Jie;(G) is a hyperbolic set for I'; and I'; is compact, we have that there exists a
constant 0 > 0 such that for each z € Jye:(G;) and for each g € I';, g : B(2,2d) — C is injective.
Let ng € N be an element such that

Yn1(y) € B(Jker(Gr),0) for each n with n > ng. (11)

Combing (10), (11), that y is a Lebesgue point of j%pT, the assumption that Jye,(G,) is a hyperbolic
set for I'; and Koebe’s distortion theorem, we obtain that there exists an r > 0 such that

Leba(Jon(y),r, N B(vn,1(y),7))
Lebs (B('Yn,l (y)’ T))

—1asn — oo.

Therefore there exist a point z € Jie;(G,) and an element o € TY such that B(z,r) C JAa,pT. It
follows that a, 1(B(z,7)) C J(G,) for each n € N. Since we are assuming F(G,) # ), we obtain
that B(z,r) C F,. However, it contradicts that Jie;(G-) is a hyperbolic set for T';. Thus we have
proved our proposition. O
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3.3 Minimal sets with finite cardinality and related lemmas

In this subsection, we show some lemmas regarding random dynamical systems having minimal
sets with finite cardinality.

Definition 3.20. For a topological space Y, we denote by Cpt(Y) the space of all non-empty
compact subsets of Y. If Y is a metric space, we endow Cpt(Y') with the Hausdorff metric.

Definition 3.21. Let G be a rational semigroup. Let ¥ € Cpt(C) be such that G(Y) C Y. Let
K € Cpt(@). We say that K is a minimal set for (G,Y) if K is minimal among the space
{L € Cpt(Y) | G(L) C L} with respect to inclusion. Moreover, we denote by Min(G,Y") the set of

all minimal sets for (G,Y).

Remark 3.22. Let G be a rational semigroup. By Zorn’s lemma, it is easy to see that if K7 €
Cpt(C) and G(K,) C K, then there exists a K € Min(G, C) with K C K. Moreover, it is easy to
see that for each K € Min(G, C) and each z € K, G(z) = K. In particular, if K1, K, € Min(G7(AC)
with Ky # Ky, then K3 N Ky = (). Moreover, by the formula G(z) = K, we obtain that for each
K e Min(G, C), either (1) K < oo or (2) K is perfect and $K > Rg. Furthermore, it is easy to see
that if I' € Cpt(Rat), G = (I'), and K € Min(G, C), then K = J, . h(K).

Remark 3.23. In [36, Remark 3.9], for the statement “for each K € Min(G,Y), either (1) K < oo
or (2) K is perfect”, we should assume that each element g € G is a finite-to-one map.

We now show some lemmas on the minimal sets whose cardinalities are finite (Lemmas 3.25,
3.26).

Definition 3.24. Let Y be a compact metric space. Let 7 € 9ty .(CM(Y)). For each r € N, we
set G: = <{91 O-+-0gr | gis---,9r € FT}>

Lemma 3.25. Let Y be a compact metric space. Let 7 € My (CM(Y)). Let K be a nonempty
finite subset of Y. Suppose that G.(K) C K. Let {K;}!_, = Min(G,, K) where ¢ = tMin(G,, K).
For eachi=1,...q, let p; € N be the period of the finite Markov chain with state space K; induced
by T (i.e. the finite Markov chain with state space K; whose transition probability p(x, A) from
z € K; to A C K; satisfies p(x, A) =7({g € Ty | g(x) € A})). (For the definition of “period”, see
[9, p308]). Let m = [[{_ pi € N. Let {H;}’_, = Min(G7", K) where r = §(Min(G7", K)). Then all
of the following hold.

(1) Leti=1,...,q. Then §(Min(G?, K;)) = p;. Moreover, there exist K; 1, ... K, p, € Min(G?¢, K;)
such that {Ki,k},?:l = Min(G?, K;), K; = U} K1, and h(K; ) C K; 11 for each h € T'r,
where K; p, 41 := K; 1. Also, for each k = 1,...,p; there exists a unique element w;} €
My (K k) such that (M*)Pi(w;r) = wik. Also, M () = ([ ¢ dw;k)lk,, i C(K;y) as
n — oo for each ¢ € C(K; ), suppw;x = K;p and Miw;, = wik+1 in M (K;) for each
k=1,...,p; where w;p, 11 := wj1.

(2) We haver =% 1_, p; and Ui Hj = U, K;. Moreover, we have that {H; | j =1,...,r} =
{Kixli=1,...,q,k =1,...,p;} = Min(G}™, K) for each n € N. Moreover, for each j =
1,...,r, there exists a unique Borel probability measure n; on H; such that (M™)*(n;) = n;.
Also, M (@) = ([ ¢ dn;)-1g, in C(H;) asn — oo for each ¢ € C(H;). Also, suppn; = H;
for each j =1,...,7. Moreover, if H; = K; 1, then n; = w; j.

(3) Lety € Y and let Q be a Borel subset of X,. Let A:={y € Q| d(vn1(y), K) =0 (n = 00)}
and Aj == {y € Q| d(Yam,1(y),H;) = 0 (n — o0)} for each j = 1,...,r. Then for each
w € C(Y), we have fA ©(Ynm,1(y))d7(v) — Z§=1 7(A)) [ edn; as n — oc.

16



Proof. By [9, Theorem 6.6.4 and Lemma 6.7.1], it is easy to see that statements (1)(2) hold. In
order to prove statement (3), let ¢ € C(Y) and let j € {1,...,r}. Let € > 0. Then there exists a
61 > 0 with &; < 2 min{d(a,d) | a,b € H;,a # b} such that

if d(z1,22) < 01 then |p(z1) — p(22)] < €. (12)

Let ¢ € (0,1) such that for each j =1,...,r, for each z € H;, for each w € C with d(w, z) < ¢dy
and for each (g1,...,9m) € I'"", we have

d(glO"'Ogm(w)vglo"'ogm(z)) < 0. (13)

By Egorov’s theorem, there exist a Borel measurable subset A;. of A; and a positive integer ng
such that

7(A; \ Aj.) < e and for each v € A, ., for each n with n > ng, we have v,m 1(y) € B(H;,cd).
(14)
For each z € B(H;,61), let a(z) € H; be the point such that d(z, H;) = d(z,a(z)). Since I'; is
compact, there exists a compact subset E; ¢ of A; . such that

T(Aj e\ Ej.) <e (15)
For each s € N, we set
Ej7€75 = {"}/ S XT ‘ 3(0é5+17015+2, .. ) € XT s.t. (")/1, ey Vs Qg 1y g2, - - ) € Ej7€}.

Note that denoting by 75 : X, — I'S the canonical projection, we have Ej s = m; ' (ms(Eje))-
Moreover, E; ., is a Borel measurable subset of X, and we have E; ., D Ej. 11 for each s € N.
Furthermore, F; . = N2, F; . .. Hence there exists an so € N such that

for each s € N with s > sg, we have 7(Ej s\ Ej¢) <e. (16)
By (14), we have
] @mma @) = [ olmmadF )| < el for cachn = mo. (17)
j Jie

Moreover, by (12) and (14), we have
|, om0~ [ plaluma )] < for eachnz o (18)
By (13) and (14), for each v € A, . and for each | € N, we have
A(Yno+ym.1 (¥)) = Vno+ym.mom+1(a(Yngm1(¥)))- (19)

Let ny := max{nog, so}. By (15) and (16), we obtain that for each s > n; and [ € N,

| / Vo syt (@(hmam 1 (1)) ()~ /E e tmmm 1@ )] < 2ellle.
e sm (20)

Moreover, for each [ € N, we have

S g €0 m 1 (@ ()7 ()
= LByt PO s D1 @ 1 (1))

- Sy M) (@i 1 ()™ ().
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Since MY () (a(Ynym.1(y))) = nj(p) as | — oo for each v € mp,m(Ej.c), it follows that

/E (p(fy(n1+l)m7n1m+1(a(’}’nﬂml(y))))d%('y) — Tmm(ﬂ'mm(ij)) "5 () = 7~'(EJ}G,MM) “ 15 (‘P)
j,e,myim (21)

as [ — 0o. Moreover, we have
FA\Uj_;4;) =0. (22)
Combining (14)-(22), we obtain that [, ©(Ynm,1(y))d7(y) — 22:1 7(A;)n(p) as n — oo. O

Lemma 3.26. Let Y be a compact metric space. Let 7 € My (CM(Y)). Let V be a non-empty
open subset of Y. Suppose that for each g € 'y, g(V) C V. Let Lyer := Ngec, 9 (Y \ V). Suppose
that 1 < §Lyer < 00. Let {K;}!_; = Min(G, Lyer) where ¢ = $Min(Gy, Lyer). For each i =1,...q,
let p; € N be the period of the finite Markov chain with state space K; induced by 7. Let m =

©_pi € N. Let {H;}i_) = Min(GY", Lyer) where r = §(Min(G7", Lier)). Then all of the following
hold.

(1) Leti=1,...,q. Then {(Min(G?, K;)) = p;. Moreover, there exist K; 1, ... K, p, € Min(G?i, K;)
such that {K; ;}7o, = Min(GPi, K;), K; = WY | K, and h(K; ) C K; k41 for each h € Ty,
where K; p, 41 = K;1. Also, for each k = 1,...,p; there exists a unique element w; ) €
My (K k) such that (MF)Pi(wi k) = wik. Also, M™i(p) = ([ ¢ dw;k)lk,, n C(K;y) as
n — oo for each ¢ € C(K, 1), suppwip = K and Miw; = w; 11 in M (K;) for each
k=1,...,p;, where w; p,+1 = wj 1.

(2) We have r =327 pi and Ui_ H; = U]_ K;. Moreover, we have that {H; | j =1,...,1} =
{Kix|i=1,...,¢,k=1,...,p;} = Min(G™, K) for each n € N. Moreover, for each j =
1,...,7, there exists a unique Borel probability measure n; on H; such that (M™)*(n;) = n;.
Also, M2 () — ([ ¢ dn;)-1g, in C(H;) asn — oo for each ¢ € C(H;). Also, suppn; = H;
foreach j =1,...,r. Moreover, if H; = K; 1, then 1; = w; k.

(3) Let y € Y. and let Q be a Borel subset of X;. Let A :={y € Q |y € ﬁ;’iﬂjfll(Y \V)}
and A; == {y € A | dYam1(y),Hj) = 0 (n — o0)} for each j = 1,...,r. Then for each
@ € C(Y), we have [, o(Ynm,1(y))d7(v) = 2201 T(A;) [ pdn; as n — occ.

Proof. By Lemmas 3.15 and 3.25, the statement of our lemma holds. O

3.4 Invariant measures and Lyapunov exponents

In this subsection, we define invariant measures and the Lyapunov exponents for random dynam-
ical systems generated by elements of 9t (Rat). Also, We show some results on random complex
dynamical systems having minimal sets with non-zero Lyapunov exponents.

We now define 7-invariant measures, T-ergodic measures and the Lyapunov exponents for 7 €
gﬁl (Rat) .

Definition 3.27. Let 7 € 9t (Rat). Let p € M1 (C). We say that p is r-invariant if M*(p) = p.
Moreover, we say that a 7T-invariant measusure p is 7-ergodic if A is a Borel subset of C with
p(A) > 0 and M,(14)(z) = 14(2) for p-a.e.z € C, then p(4) = 1. For a m-ergodic measure p, we
set x(7,p) := [log||Df.|lsd(7 ® p)(z), where f : X, x C — X, x C denotes the skew product map
associated with I'; (see Definition 3.16). This is called the Lyapunov exponent of (7, p).

Remark 3.28. Let 7 € 9 (Rat). Let p € 9 (C) be a -invariant measure. Let f : X, x C —
X, x C be the skew product map associated with I';. Then by [25, Lemma 3.1], the measure
TRp € M(X, X C) is f-invariant. Also, by [25, Theorem 4.1}, if p is 7-ergodic, then 7 ® p is
ergodic with respect to f.
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Definition 3.29. Let 7 € M (Rat). Let L € Min(G,, @) with #L < oo. Let m € N be the period
of the finite Markov chain with state space L induced by 7 (see [9, p. 300]). Then by [9, Theorem
6.6.4 and Lemma 6.7.1] we have the following.

e tMin(G7, L) = m and denoting by {L;}7; = Min(G7", L) we have L = UT" | L;.

e Renumbering Li,..., L., for each j = 1,...,m there exists a unique wy ; € M;(L;) such
that M (o) — (wr,j(v)) - 1z, in C(L;) as n — oo for each ¢ € C(L;), (M")*(wL,;) =
wr. j,suppwr, j = Lj and Mwy, ; = wp j+1 where wp ymy1 :=wr 1.

o wp = > wrj is T-ergodic.

We call wy, the canonical 7-ergodic measure on L. By [25, Lemma 3.1, Theorem 4.1], T®wy, €
My (X, x C) is f-invariant and ergodic with respect to f, where f: X; x C — X, x C is the skew
product map associated with I'-. We set x(7,L) := [log||Df.||sd(7 ® wr)(z). This is called the
Lyapunov exponent of (7, L).

We now show a lemma and its corollary on 7-invariant and 7-ergodic measures p with negative
Lyapunov exponents (Lemma 3.30 and Corollary 3.31).
Lemma 3.30. Let 7 € 9 .(Rat). Let u € My (C) be a T-invariant and T-ergodic measure. Suppose
x(T, 1) < 0. Then for (7 ® p)-a.e. (v,z0) € (Rat)N x C, we have 29 € F,. Moreover, for ji-a.e.
z0 € C, we have z9 € FJ)(7).

Proof. For each r € N| let ¥, : '} X C = R be the function defined by

log || Dhy||s if log || Dhy||s >
ol y) = [ Dhy | . [ Dhy |
—r if log || Dhylls <

Let ¢, : X, x C — R be the function defined by or(v,y) = ¥r(1,y). Since x(7,p) < 0, there
exists an r € N such that [ ¢, (2)d(F®@p)(z) < 0. Let co = — [ ¢,(2)d(7 @ p)(2) > 0. By Birkhoff’s
ergodic theorem there exists a Borel subset A of X, x C with (7 ® u)(A) = 1 such that for each
(v,20) € A, L >0 o (fi(7,20)) = —co as n — oo. Let ¢ € (0,1cp). Let (v,20) € A. There
exists an ng € N such that for each n € N with n > ng,

n—1

- Z ,(/)T‘ Yi+15 V5,1 ZO Z @r '7/’ ZO < —¢p + €,
j =0
where vp,1 = Id. Let ¢ € R with 0 < ¢ < ZCO' Since I'; is compact, there exists a 6 > 0 such that
for each w € C, for each h € I'; and for each z € B(w,d), we have

log || Dh.|ls < ¢r(h,w) + €1, thus || Dh.|ls < exp(.(h,w) + €1).

There exists a 61 > 0 with §; < % such that for each j =1,...,n0, v;,1(B(20,61)) C B(7v;,1(20), g)
Therefore we obtain
no—l

Yno,1(B(20,01)) C B(%o,1(zo)75lexp((z e (¥j415 75,1 (20))) + no€r))

C  B(vmo,1(20), 01 exp((—co + €0 + €1)no)).
Hence we can show that for each m € NU {0},

no+m—1
Ynotm1(B(20,61)) € B(Ynp4m1(20),01exp( > (Wr(Yi41,751(20)) + (n0 + m)er))
=0
C  B(Yng+m.1(20), 61exp((—co + €o + €1)(no +m)))
1)
C B(7n0+m,l(20)7§)
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by induction on m € N U {0}. Therefore zg € F,. Thus for p-a.e. 2o € C, we obtain that
F({y eV | 2 € J,}) = 0. By Lemma 3.13, it follows that for p-a.e.2o € C, 2y € F(7). Hence we
have proved our lemma. O

Corollary 3.31. Let 7 € M, (Rat) and let L € Min(G,,C) with L < co. Suppose x(t,L) < 0.
Then for each zy € L, for 7-a.e.y € (Rat)N, we have zy € F.,. Moreover, L C Fpot(T).

Proof. Since suppwy, = L, Lemma 3.30 implies the statement of our corollary. O

We now show some lemmas on minimal sets of G, with positive Lyapunov exponents (Lem-
mas 3.32-3.36).

Lemma 3.32. Let 7 € My (Rat). Let L € Min(GT,(@) with $L < oco. Suppose x(7, L) > 0. Suppose
also that for each zp € L and for each g € I'+, Dg,, # 0. Let a« > 0. Then there ezist 61 > 0,2 > 0
with 62 < «, and a Borel subset A of I'N with 7(A) = 1, where §; and A do not depend on «,
such that for each zy € L, for each z € B(zp,02) \ {z0} and for each v € A, there exists an
n1 = n1(7,2) € N with v,, 1(2) € B(L,1). In particular, for each zy € L, for 7-a.e.y € I\, we
have zy € J,.

Proof. Since I'; is compact, there exists a > 0 such that for each wg € L and for each g € T';,
g : B(wo,50) — C is injective. Let s := min{d(a,b) | a,b € L,a # b} > 0. Let 0 < € < 1x(r, L).
Then there exists a 6; > 0 with §; < min{35,d} such that

(i) for each wg € L and for each g € I'+, we have g(B(wo,01)) C B(g(wo), 5), and

(ii) for each wy € L and for each g € T';, there exists an inverse branch g, ! : B(g(wo),261) —
B(wo,d) of g with g, }(g(wo)) = wo such that for each w € B(g(wp),261), we have

IOg”D(g;Ol)st < IOgHD(g;ol)g(wo)HS + €. (23)

By Birkhoff’s ergodic theorem, there exists a Borel subset A of X, with 7(A) = 1 such that for
each (v,29) € A x L, there exists an ng = ng(7, z0) € N such that for each n € N with n > ng we
have
n—1
1
3 B0 D)oyl = X(7 L] < 6, thus € CEEI=) < [D(5,1)., | < " OCE. (21
§=0
Let &, := $min{a,d1} > 0. Let 2o € L. Let z € B(z20,02) \ {20}. Let v € A. We now prove the
following claim.
Claim 1. There exists an n € N such that v, 1(z) € B(L, d1).
To prove this claim, suppose that for each n € N, v, 1(2) € B(L,81). Let ng = no(y,20) be
the number defined above. Let m € N with m > ng. Then we have v, (Ym-1,1(2)) = Ym1(2),

Vm(('ym)ym ll(zO)(’Ym,l(Z))) = Ym,1(2), Ym-1,1(2) € B(ym-1,1(20),59), (Vm);ifl’l(zo)('ym,l(z)) €
B(¥m-1,1(20),59), and vy, : B(Ym—-1,1(%0),59) — C is injective. Hence
Tne11(2) = ()32 oy (Y ().
Similarly, it is easy to see that for each j =1,...,m,
Y3 1(2) = (hm—jr )5 | () Vm—it1,1(2))- (25)
Combining (23), (24), (25), we obtain that

d(z.20) < Srexp(= 3 10g]1D()s, (oo lls +mer)
j=1

1 D(m1)zll5 - €™
5lefm(x('r,L)fe) . e

IN

6le—m(X(‘r,L)—25) )
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Since the above inequality holds for any m € N, it follows that z = zy. However, this is a contra-
diction. Therefore Claim 1 holds.
By Claim 1, the statement of our lemma holds. O

Lemma 3.33. Let 7 € My (Rat). Let L € Min(G,,C) with §L. < co. Suppose x(r,L) > 0.
Suppose also that for each x € L and for each g € I';, we have Dg, # 0. Let y € C. Let
B={ye X, | dvmi(y),L) = 0 asn — oo}. Then for T-a.e. v € B, there exists a number
no = no(7,y) € N such that for each n € N with n > ng, we have v,1(y) € L.

Proof. Suppose that there exists a Borel subset By of B with 7(Bp) > 0 such that for each
v € By and for each n € N, 7, 1(y) € L. Since 7 is invariant under the shift map o : X; — X,
Lemma 3.32 implies that for 7-a.e. v € By, limsup,_ ., d(7n1(y), L) > 0. However, this is a
contradiction. Hence the statement of our lemma holds. O

Lemma 3.34. Let 7 € M, (Rat). Lety € C. Then there exists a subset A of C with #(C\ A) < Ry
such that for each x € A, 7({g € Rat | g(z) = y}) = 0.

Proof. For each finite subset F' = {x1,...,x,} of C such that z1,...,, are mutually distinct, let
B :={g € Rat | g(z;) =y, for each ¢ =1,...,n}. Since supp 7 is compact, there exists an N € N
such that for each g € T';, deg(g) < N. Hence, if §F > N, then 7(Bp) = 7(Bp NT;) = 7(0) = 0.
For each k € Z with 0 < k < N, let F, = {F c C | #F = N + 1 — k,7(Bp) > 0}. We now prove
the following claim.

Claim 1. Let k € Z with 0 < k < N. If #F < No, then #Fj.1 < Ro.

To prove this claim, let 0 < & < N and suppose we have that §F, < Ng. Let H be the set
{H € Fiy1 | AF € Fy, such that H C F'}. Then fH < Xg. Moreover, for each Hy, Hy € Fp11 \ H
with Hy # Hs, we have

T(BHlﬂBH2):0. (26)
For, let * € Hy \ Hy and let F = Hy U {z}. Then $F = N +1—k and Hy C F. Since Hy ¢ H, we
have F' ¢ Fj,. Hence 7(Bp) = 0. Since By, N By, C B, (26) holds. By (26), #(Fr+1 \ H) < No.
Therefore §F;+1 < Ng. Thus we have prove Claim 1.

By Claim 1, we obtain that #{H c C | H = 1,7(By) > 0} < Ry. Hence the statement of our
lemma holds. O

Lemma 3.35. Let 7 € My (Rat). Let C' be a non-empty finite subset of C. Then there exists a
subset A of C with jj((f: \ A¢) < Vg such that for each x € A,

7({y € X; | 3n € N such that y,,1(x) € C}) =0.

Proof. Let Dy, = {z € C| 7"({(71,-+-,7m) €2 | yn---71(x) = y}) > 0} for each y € C and
each n € N, where 7" = ®7_;7 € 9M4,.(T'7). By using the argument in the proof of Lemma 3.34, we

can show that D, , < No. Let Ac = C \ (Uyec,nenDy,n). Then ﬁ(@ \ Ac) < Rg. For each = € Ag,
we have

7({y € X; | 3n € N such that v, 1(x) € C})

< 7~—<Un€N,y€C{7 € X, | Vn,l(x) = y})
< Y v eXr [ malz) =y}
neN,yeC
= Y o m) €T @) =y x J] Tr)
neN,yeC j=n+1
= Y U w) €T [ milz) = y}) =0,
neN,yeC
Thus the statement of our lemma holds. O
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Lemma 3.36. Let 7 € My (Rat). Let L € Min(GT,@) with §L < oco. Suppose that x(r,L) > 0
and for each x € L and for each g € I, Dg, # 0. Then for each y € C. we have

T{v e X | d(ym1(y),L) > 0 asn — oo}) = 7({y € X, | In € N such that v, 1(y) € L})

and
HyeC|7({ye X, | d(Yn1(y), L) = 0 as n — oo}) > 0} < Ry.

Proof. Lemma 3.33 implies that for each y € (@,
T({v e X, | d(yn1(y),L) > 0asn — oo}) = 7({y € X | In € N such that v, 1(y) € L}).
Hence

{y € Cl7({y € Xs [ d(1m(y), L) = 0 as n — oc}) > 0}
= {yeC|7({y € X, |3n e N such that v, ,(y) € L}) >0} c C\ Ay,

where Ay is the set for L coming from Lemma 3.35. Since #(C\ A7) < R, the statement of our
lemma holds. O

3.5 Systems with finite kernel Julia sets

In this subsection, we show a theorem on the random dynamical systems generated by elements
T € My (Rat) with Jyer (Gr) < 0.

Theorem 3.37. Let 7 € My (Rat). Suppose we have all of the following.
(i) #Jker(Gr) < 00.
(ii) For each L € Min(G, Jxer(G1)), we have x (7, L) # 0.

(ili) For each L € Min(Gr, Jxer(G+)) with x(7,L) > 0, for each g € Tz and for each v € L, we
have Dg, # 0.

Let Hy = {L € Min(G,, Juex(G-)) | x(1,L) > 0} and we denote by Q the set of points y € C
for which 7({y € X; | 3n € N s.t. y,1(y) € Uren, L}) = 0. Then, §(C\ Q) < Xg and for each
z€Q, 7({y € X; | 2 € J,}) = 0. Moreover, for 7-a.ey € (Rat)Y, Leba(J,) = 0. Furthermore,
T (1) € C\ Q and 4(J),(1)) < Rq.

Proof. By Lemma 3.36, we have ﬁ(@ \ Q) < Ny and for each y € Q,

T({v € X | d(vn1(y),Uren, L) = 0 asn — oco}) = 0. (27)
Let z € Q. Let C, = {y € X, | z € Jy}. Suppose 7(C.) > 0. Let H_ be the set of all L €
Min(Gr, Jker(G7)) with x(7, L) < 0. By Lemma 3.15, for 7-a.e.y € C., d(v5,1(2),Uren,un_L) = 0
as n — oo. Combining this with (27), we obtain that

for 7 -a.e. v € C,,d(yn1(2),Uren_ L) — 0 as n — oo. (28)

Let 0 < € < %?(Cz). By Corollary 3.31, for each zg € Uren_L. for 7-a.e. 7, we have zy € F.
Combining this with the argument in the proof of Lemma 3.13, we obtain that there exist a Borel
subset A; of X, with 7(41) > 1—€ and a 6 > 0 such that for each zp € Urey_L, for each v € Ay,

we have sup,,~; diamy, 1(B(20,0)) < Tl()diam(f:. In particular,

for each zp € Urepy L and for each v € Ay, B(20,0) C F,. (29)
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By (28) and Egoroff’s theorem, there exist a Borel subset Ay of C, with 7(A2) > 7(C.) — € and
an ng € N such that for each v € A,

7“0,1(z> € B(UL€H7L76)- (30)

By (29) and (30), we obtain Ay N o™ (A;) = 0. Therefore 7(42) < 7(X, \ 07™(41)) < e
Combining this with that 7(As) > 7(C,) — €, we obtain that 7(C,) < 2e. However, this is a
contradiction because € < 17(C.). Thus, we have proved that for each z € Q, 7(C.) = 0. By
Fubini’s theorem, it follows that for 7-a.e.y, Leba(J,) = 0. Moreover, by Lemma 3.13, we obtain

that J;(;)t (1) c C\ Q and jngt (1) < Ng. Thus we have proved our theorem. O

3.6 Random dynamical systems generated by measures on weakly nice
sets

In this subsection, we show several results (including Theorems 1.1, 1.2 and their detailed and more
generalized version Theorems 3.76, 3.81) regarding random complex dynamical systems generated
by measures on weakly nice subsets of Rat.

We now consider holomorphic families of rational maps.

Definition 3.38. Let A be a complex manifold. Let W = {f\}rca be a family of rational maps
on C. We say that W is a holomorphic family of rational maps if (z,A) € C x A — f(z) € C
is holomorphic on C x A. Throughout the paper, we always assume that A is connected.
If W = {fr}rea is a holomorphic family of rational maps and each fy is a polynomial, then we
say that V¥ is a holomorphic family of polynomial maps. We say that a holomorphic family
W = {fa}rea of rational maps is non-constant if A € A — f, € Rat is non-constant.

For each n € N, we set

S, W) ={zeC|(A1,...,A\n) € A" = fr, 0---0 fr,(2) is constant on A"}.

Moreover, we set S(W) := NS, S, (W). Each point of S(W) is called a singular point of W and

n=1

the set S(W) is called the singular set of W.

Lemma 3.39. Let W = {fi}xea be a holomorphic family of rational maps. Then S, 11 (W) =
ﬂ)\n+1EAf,\_n1+l(Sn(W)) and SW) = M52 Niag,oanyenn (fa, 000 ) "H(S1(W)). Moreover, if,
in addition to the assumption, W is non-constant, then §51(W) < oo and 4S,(W) < oo for each

n € N.

Proof. We may assume that W is non-constant. We first show that 57 (W) < oo. Suppose that
£51(W) = oo. Then there exist a sequence {z,} in S1 (W) and a point z € C such that z, — zoo
and z, # 2 for each n € N. By conjugating the family W by an element of Aut((AC)7 we may
assume that 2z, € C. Let b € A. Then there exist an open connected neighborhood Ay of b in A
and an open connected neighborhood U of zs in C such that fy(z) € C for all A € Ag and all
z € U. We may suppose that Ag C C" where r =dim A € N. Let n € N, (iq,...,i,) € ({1,...,7})"

and z € U. Let g(z) = Mh:b for each z € U. Then g : U — C is holomorphic in U and
i1 in

g(z;) = 0 for each large j. Hence g(z) = 0 for all z € U. Therefore for each z € U, the function

A = fa(z) € C is constant on Ag. Thus, for each z € U, the function A — f(z) € C is constant

on A. Hence U C S;(W). Therefore
Zoo € Int(S1(W)). (31)
In particular, int(S;(W)) # 0. We now suppose that C # int(S;(W)). Then d(int(S;(W))) #

(. If we take any wy € 9(int(S1(W))), then by the argument of the proof of (31), we obtain
wp € int(S1(W)). However, this contradicts wy € 9(int(S1(W))). Therefore, we must have that
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C = int(S1(W)). Hence, the function A — f € Rat is constant on A. However, this contradicts to
the assumption that W is non-constant. Thus, we have that #51 (W) < co.

It is easy to see that S, 1 (W) C ﬂAnHEAf/\_nlﬂ(Sn(W)). Since £51(W) < oo. it follows that

ﬁSn(W) < 00. We now prove m)\n+1€Af>Tn1+1 (Sn(W)) - Sn+1(W) Let z € mAn+1€Af)Tn1+1 (S’I'L(W))
Then for each A\,11 € A, we have fy, ., (2) € S,(W). Since £5,(W) < oo and A is connected, it
follows that #{fx,,,(2) € Sp(W) | Any1 € A} = 1. Therefore we obtain that the cardinality of the
set {f, 0 -0 fa 1 (2) | (A1, Ang1) € A"} s equal to 1. In particular, z € S,41(W). Thus

we have proved our lemma. O

Corollary 3.40. Let W = {fa}xca be a holomorphic family of rational maps. Then f(S(W)) C
S(W) for all X € A.

We now define weakly nice subsets of Rat.

Definition 3.41. We say that a subset ) of Rat is weakly nice (with respect to holomorphic
families {WV;}72, of rational maps) if there exist an open subset U of Rat and finitely many non-
constant holomorphic families W; = {fj x}xea,,J = 1,...,m, of rational maps such that for each
J=1...,m, {fjx [ A€ A;}is aclosed subset of U and Y = U7, {f;j\ | A € A;}.

Moreover, for a weakly nice set ) with respect to holomorphic families {W;}72; of rational
maps, we set

MiV WS L) = {m € DY) [suppT N{fin [ A€ A} #D (Vi=1,...,m)}

and
M (VAW 1) =M (V) N M (Y, {W;}L).

Here, for the notation “supp 7", see Definition 3.4 (setting Y = ). (Thus supp 7 is a closed subset
of Y.) Also, each point of N2, S(W;) is called a singular point of (), {W;}7.,) and the set
N7, S(W;) is called the singular set of (¥, {W;}7.,).

Definition 3.42. Let ) be a closed subset of an open subset of Rat. Let O be the topology in
M1,(Y) such that the sequence {7, }22; in My (Y) tends to an element 7 € My () with respect
to the topology O if and only if (a) for each bounded ¢ € C(Y), [ ¢dr, — [ @dr as n — oo, and
(b) supp 7, — supp 7 as n — oo in Cpt()Y) with respect to the Hausdorff topology.

By the definition of weakly nice subsets, it is easy to see the following lemma.

Lemma 3.43. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{Wj;}IL, of rational maps. Then My (Y, {W;}L,) is closed in My (V) with respect to the topology
0.

The following lemma is easy to show but it is one of the keys to proving many results.

Lemma 3.44. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{W;Yi, of rational maps. Let 7 € My (Y, {W;}7,). Suppose that int(suppT) # ) with respect to
the topology in' Y and F(G;) # 0. Then Jxe:(Gr) C S(W;) for some j =1,...,m and §Jyer(G7) <

0.

Proof. Let W; = {fja}xea, for each j. Then there exists an element j € {1,...,m} such that
int(supp 7) N{fjx | A € A;} # 0. Suppose Jier (G-) \ S(W;) # 0. Let 29 € Jier(G7) \ S(W;). Then
there exists an element n € N such that the map (A1,...,An) € AT = fjx, 0---0 fj, (20) € Cis
non-constant on A”. It implies that int(Jie:(G)) # (). However, this contradicts to the assumption
F(G;) # 0 and Montel’s theorem. Thus we must have that Jie;(G,) C S(W;). Since §(S,(W;)) <
oo (see Lemma 3.39), it follows that fJxe;(Gr) < 00. O
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Lemma 3.45. Let Y be a weakly nice subset of Rat with respect to some holomorphic families
{W; L, of rational maps. Let T € 9 (Y, {W;}L,). Suppose that for each j =1,...,m, we have
int(suppTN{fjx | A € Aj}) # O with respect to the topology in {fj | A € A;}, and that F(G;) # 0.
Then chr(GT) C mTle(WJ)

Proof. By using the argument in the proof of Lemma 3.44, it is easy to see that our lemma
holds. O

Lemma 3.46. Let Y be a weakly nice subset of Rat with respect to some holomorphic fami-
lies {W;}jL, of rational maps. Let T € My (Y, {W;}L,). Let L € Min(G-,C) such that L C

N S(W;). Then for each p € My (Y, {W;}7L,), we have L € Min(GP,@).

Proof. Let z € L. Let W; = {fj }xen, for each j. Let p € My (V,{W;}L,). Let h € suppp.
Then there exist an ¢ € {1,...,m} and an element Ay € A; such that h = f; »,. Since we have
suppT N {fix | A € A;} # 0, there exists an element \; € A; such that f;\, € suppr. Since
L € Min(G,,C), we have f; x,(z) € L. Moreover, since L C S(W;), we have that h(z) = f;x,(z) =
fix (2) € L. Hence h(L) C L. Therefore L € Min(G,, C). O

Definition 3.47. Let ) be a weakly nice subset of Rat with respect to some holomorphic families
{W;}7e, of rational maps. Let 7 € My (Y, {W;}L;). Then we set

Smin ({Wj };'nzl) = ULeMin(GT,C),Lcm;.":ls(wj)L'

Note that this definition does not depend on the choice of 7 € My (Y, {W;}}L;) due to Lemma 3.46.

We now give the definition of attracting minimal sets which was introduced by the author in
[37].

Definition 3.48. Let I' € Cpt(Rat). We say that a minimal set L € Min((I'), C) is attracting
(for T) if there exist two open subsets A, B of C with #(C\ A) > 3 and an n € N such that B ¢ A
and such that for each (v1,...,7,) € ', we have 7, 0 --- 0y (A) C B. In this case, we say that L
is an attracting minimal set for I'. Also, for an element 7 € 9, .(Rat), if L € Min(G,,C) is
attracting for I'; then we say that L is attracting for 7, that L is an attracting minimal set
of I', and that L is an attracting minimal set of .

Definition 3.49. Let Y be a subset of Rat endowed with the relative topology from Rat. We say
that Y is mild if for each I" € Cpt()), there exists an attracting minimal set for I".

We give some examples of mild sets.
Example 3.50 (Examples of mild sets).

(a) Any non-empty open subset U of P is a mild set. For, for each T' € Cpt(Uf), the set {oo} is
an attracting minimal set for T'. Also, for any A € Cpt(P), there exists an open subset V of
Rat with ¥V D A such that V is mild.

(b) Let A € Cpt(Rat) such that A has a minimal set for ((A),C) which is attracting for A. Then
there exists an open subset I/ of Rat with &4/ D A such that U/ is mild.

(c) Let @ € C and let Y = {f € Rat | a is an attracting fixed point of f}. Then Y is a mild
subset of Rat.

We now give the definition of mean stability which is introduced by the author in [36].

Definition 3.51. Let I' € Cpt(Rat). Let G = (I'). We say that T' is mean stable if there exist
non-empty open subsets U and V of F(G) and a number n € N such that all of the following hold.

(a) V.CU and U C F(G).
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(b) For each v € TN, ,, 1 (U) C V.
(c) For each z € C, there exists an element g € G such that g(z) e U.

Also, if T is mean stable, we say that G is mean stable (this notion does not depend on the choice
of I' € Cpt(Rat) with (I') = G). Moreover, for an element 7 € 9 .(Rat), if I'; is mean stable,
then we say that 7 is mean stable.

Remark 3.52. If 7 € M, .(Rat) is mean stable, then the random dynamical system generated
by 7 has many nice properties (e.g. Jier(G-) = 0, stability of the limit state functions under the
perturbation, negativity of Lyapunov exponent for any point of z € C for 7-a.e. 7 etc., see [36, 37]).

We now give a result of the density of mean stable elements. Recall that an element g € Aut(C)
is called loxodromic if g has exactly two fixed points a,b € C and the modulus of multiplier of
(g, a) is strictly larger than 1 and the modulus of multiplier of (g, b) is strictly less than 1.

Lemma 3.53. Let Y be a mild subset of Rat and suppose that ) is weakly nice with respect to some
holomorphic families {WV;}]L, of rational maps. Suppose that for each T € My (Y, {W;}L;) and
for each L € Min(G,,C), we have L ¢ N7 SW;) N J(Gr). Then A= {1 € My (Y, {W;}]L) |
T is mean stable} is open and dense in My (Y, {W;}]L,) with respect to the topology O.

Proof. By [36, Lemma 3.62], A is open in 9 (¥, {W;}},) with respect to the topology O. To
prove the density of A, let p € 9 (¥, {W;}J,). Then there exists an element po € My (Y, {W;}7,)
which is arbitrarily close to p with respect to O such that for each j € {1,...,m}, int(supp po N
{fia | A€ Aj}) # 0 with respect to the topology in {fjx | A € A;}, where W; = {fj x}xrea,- By
Lemma 3.45 and the assumption of our lemma, we obtain Jie(G,,) = (). Since Y is mild, each
gel, N Aut(C) is loxodromic. By [37, Theorem 1.8] and its proof, if we enlarge supppo a little
bit, and take an element p; € 9 (Y, {W;}72;) which is close to po, then p; is mean stable. Thus
A is dense in My (Y, {W;}7L,). O
Definition 3.54. Let ) be a weakly nice subset of Rat with respect to some holomorphic families
{W;}iL, of rational maps. We say that ) is exceptional with respect to {W;}., if there
exists a non-empty subset L of N2, S(W;) such that for each 7 € 9y (¥, {W;}7L,), we have that
L € Min(G,,C) and x(r, L) = 0. We say that ) is non-exceptional with respect to W,
if J is not exceptional with respect to {W;}7 ;.

Proposition 3.55. Let YV be a mild subset of Rat and suppose that Y is weakly nice and non-
exceptional with respect to some holomorphic families {V; };”:1 of rational maps. Then there exists

a dense subset A of the topological space (M (Y, {W;}7L,), O) such that all of the following (a)(b)
hold.

(a) For each T € A and for each L € Min(G,, C) with L C N7 S(W;), we have x(7, L) # 0.

(b) Let 7 € A. Then §Jxer(Gr) < 00 and Jxer(Gr) C NJL1S(W;). Moreover, setting Hy =
{L € Min(G;, Jier(G-)) | X(7,L) > 0} and denoting by Q the set of points y € C for which
T{y € Xs | In e N s.t. vp1(y) € Uren, L}) =0, we have that 4(C\ Q) < R and for each
z€Q, 7({y €Y | z € J,}) = 0. Moreover, for 7-a.e. v € (Rat)", we have Lebs(J,) = 0.
Furthermore, J),(1) C C\ Q and B0, (1) < Ro.

Proof. By Lemma 3.53, [36, Propositions 4.7, 4.8] and [37, Remark 3.5], we may assume that
there exist a 7 € My (Y, {W;}) and an L € Min(G, C) such that L C N7, S(W;)) N J(G~). For

such L, Lemma 3.46 implies that for each p € My (Y, {W;}],), we have L € Min(G,, C) and
L S(W;). Let

{L1,...,L,} == {K C N, S(W;) | K € Min(G,,C) for each p € My (¥, {W;} 1)}
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Since (¥, {W;}}~) is non-exceptional with respect to {W;}7",, for each k = 1,...,r there exists
a Ty € My (Y, {W;}7L,) such that x(7x, L) # 0. Let W = {fjx | A € A;} foreach j =1....,m.
We consider the following two cases.

Case (I). For each k = 1,...,r, for each z € Lj and for each j = 1,...,m, there exists a A € A;
such that D(f; ). # 0.

Case (II). There exist a k € {1,...,7}, a point z € Lj, and an element j € {1,...,m} such that
for each A € A;, D(f;.2). =0.

Suppose that we have Case (I). We now prove the following claim.

Claim 1. For each k there exists an element p € My (Y, {W;}]L;) which is arbitrarily close to
7k such that gsupppr < oo, such that for each g € supppy and for each z € Ly, we have Dg, # 0,
and such that x(pg, Li) # 0.

To prove this claim, for each 7 € My (Y, {W;}L,) and for each L € Min(G-, C), let purz be
the canonical T-ergodic measure on L (see Definition 3.29). Let k € {1,...,r}. We now consider
the following two cases.

Case (I)(a). x(7k,Lk) # —oo. Case (I)(b). x(1, L) = —o0.
Suppose we have Case (I)(a). Let By := {g € Y | Dg, = 0 for some z € Ly}. Since x(7, Li) =
J1,. Jy 108 |Dg: ||sd7i(g)dpir,, 1, (2), We obtain that 74(Bx) = 0. Let Cj,, be the set of elements

g € Y with (g, Bx) > 1/n. Then [, fcm log | Dg.||sdmi(9)dpir, 1, (2) — x(Lk,7) as n — oo

Trlcg . o Tilcy n
Tlc(c::n) — T as n — oo in My (Y, O). Modifying Tk(C::n)’

close to 7 such that fsupppy < oo, such that for each g € supppy and for each z € Ly, we have
Dg, # 0, and such that x(pg, Lx) # 0.

We now suppose that we have Case (I)(b). Let o, (g, z) = max{log ||Dg.|s, —n} for each n € N.
Since x(7k, L) = —oo, we have [, [}, an(g, 2)d7i(g)dpir, 1, (2) = —00 as n — co. Hence for each
M < 0 there exists an n € N such that ka fy an (g, 2)dmi(9)dpir, 1, (2) < M. Therefore there exists
a pr, € My (Y, {W;}jL,) which is arbitrarily close to 7 such that fsupppy < oo, such that for each
g € supppg, and for each z € Ly, we have Dg, # 0, and such that ka_ fy an(g, 2)dpr(9)dpp,, L, (2) <

and we obtain py which is arbitrarily

4. Hence x(px, L) < [}, [} an(g, 2)dpi(9)dppy, 1, (2) < & Thus we have proved Claim 1.
For each n € N, let

Dy = {((Nji)i=t....m)i=1..m € [[ A} | D(fja,.)= =0 for some z € Ly}.
j=1

Moreover, let

Brm = {(Pij)i=1....0j=1,..m € (0, )" | > pij =1} x (][ A})\ Dr.n)
j=1

.3

and let a p, : Bk, — R be the function defined by ag »((pis), (Aji)) = X(Zy;l Z?:l pijdfj,kji ,Li).
Then (H;"Zl A?)\ Dy, is connected and ayp, : Eyn — R is real-analytic. Hence claim 1 implies
the following claim.
Claim 2. There exists an ny € N such that for each n € N with n > nyg, the function oy, », : Ex ., — R
is not identically equal to zero in any open subset of E, ,,.

We now let ¢ € My (Y, {W;}]L,) be an arbitrary element. Then there exists an element
Co € My (Y, {W;}L,) arbitrarily close to ¢ such that fsupp(y < oo and such that for each
g € supp (o, for each k, and for each z € Ly, we have Dg, # 0. We may assume that for some
n > ng there exists an element (((pij)i=1,....n)j=1,...ms (Nji)i=1,...n)j=1,...m) € Nh_1 Ex n such that
(o = Z;":l Dy pijéijkji. By claim 2, there exists a (1 close to (o such that for each g € supp (3,
for each k, and for each z € Ly, we have Dg, # 0, and such that for each k, x((1, Lx) # 0. By
enlarging the support of (;, we obtain an element (; € My (Y, {Wj};”:l) which is close to (;
such that for each g € supp (s, for each k, and for each z € Ly, we have Dg, # 0, such that for
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each k, x(C2, Lx) # 0, and such that for each j = 1,...,m, int(suppC N {fix | A € W;}) # 0
in the space {fjx | A € W;}. By Lemma 3.45, we obtain that Jie(G¢,) C N7 SOV;). In
particular, fJier(G¢,) < 00 by Lemma 3.39. By Theorem 3.37, denoting by H_ the set of elements
L € Min(Ge,, Jrer(Ge,)) with x(Ca, L) > 0 and denoting by €2 the set of elements y € C for which
C({y € X, | 3n € Nsit. yna(y) € Uren, L}) = 0, we have that #(C\ Q) < Ry and for each
2eQ, G({y e X, | 2 € J,}) = 0. Moreover, for (s-a.e.y € (Rat)N, Leba(J,) = 0. Furthermore,
J%(r) € €\ Q and $J%(7) < Ro.
We now suppose that we have Case (II). Let

I'={ke{l,...,r} |3z € Ly 3j € {1,...,m} such that for each A € A;, D(f; ). = 0}.

We modify the argument in Case (I). Namely, we can choose (; and (s in the argument of Case
(I) so that x(¢1,Lk) = x((2, Ly) = —oo for any k € I. For any k ¢ I, we use the same argument
in that of Case (I). Thus we have proved our proposition. O

Lemma 3.56. Under the assumptions of Proposition 3.55, there exists an open dense subset A of
the topological space (M (Y, {W;}7L,), O) such that all of the following hold.

(i) For each T € A and for each L € Min(G,,C) with L C N7 S(W;), we have x(r, L) # 0.

(ii) For each T € A and for each L € Min(G,,C) with L C N7 SOWV;), if x(1,L) > 0, then for
each z € L and for each g € G, we have Dg, # 0.

Proof. Let W; = {fjx}xena, for all j. We use the arguments in the proof of Proposition 3.55.
As in the proof of Proposition 3.55, we may assume that there exists a 7 € 9 (¥, {W;}7L;)

and an L € Min(G,,C) such that L C NyL . S(W;) N J(G-). Let Ly, ..., L, be as in the proof of
Proposition 3.55. Let ¢ € M (¥, {W;}7L;). Let (o € My (Y, {W;}7L;) with §I'¢, < oo which is
arbirarily close to ¢. We classify the elements k of {1,...,r} into the following two types (I) and

(Im.

Type (I). There exist an element ¢ = 1,...,m and an element zy € Ly such that D(f; x),, =0
for all A € A;.

Type (II). Not type (I).

Note that if k is of type (I), then x({o, Lx) = —oo. Note also that if k is of type (II), then
perturbing (p if necessary, we may assume that for each g € I'¢, and for each z € Ly, we have
Dg, # 0. Therefore, by using the arguments in the proof of Proposition 3.55, we can take (; €
My (Y, {W;}72,) with §I'¢; < oo which is arbitrarily close to (p such that the following hold.

(a) x(¢1,Lx) = —oo for any k of type (I).
(b) For any k of type (II), for any z € L, and for any g € T'¢,, we have Dg, # 0.
(¢) For any k of type (II) and for any z € Ly, we have x((1, L) # 0.
Hence for any (2 € My (Y, {W;}}L;) which is close enough to (1, we have the following.
(a)’ x(C2,Lg) < 0 for any k of type (I).
(b)" For any k of type (II), for any z € Ly and for any g € I'¢,, we have Dg, # 0.
(¢)’ For any k of type (II) and for any z € Ly, we have x((2, Lg) # 0.
Thus we have proved our lemma. [

Definition 3.57. For a topological space X, we denote by Con(X) the set of connected components
of X.
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Definition 3.58. Let 7 € My (Rat). For an element L € Min(G-, C), we denote by U, 1, the space
of all finite linear combinations of unitary eigenfunctions of M, : C(L) — C(L), where we say that
an element ¢ € C(L)\{0} is a unitary eigenfunction of M, : C(L) — C(L) if there exists an element
a € C with |a| = 1 such that M, (p) = o in L. Also, we say that an element a € C with |a| =1
is a unitary eigenvalue of M, : C'(L) — C(L) if there exists an element ¢ € C(L) \ {0} such that
M, () = ap. Moreover, we denote by U, 1, . the set of unitary eigenvalues of M, : C(L) — C(L).

Definition 3.59. Let U be an open subset of C and let {gan U — C}2, be a sequence of
holomorphic maps from U to C. We say that a map ¢ : U — C is a limit function of {,}2,
if there exists a subsequence {¢,; }52; of {y,}52; such that ¢,; — ¥ as j — oo locally uniformly
on U.

The following lemma is very important to analyze the random dynamical system generated by
T € My (Rat) with §Jker(G) < 0o. The proof is based on careful observations of limit functions
on Fatou components of G by using the hyperbolic metrics on the Fatou components of G .

Lemma 3.60. Let 7 € 9 .(Rat) and suppose £.J(G) > 3. Let L € Min(G, C) with LNF(G,) # 0.
Let Qr = UyeConr(a.,y),unrzoU- Suppose that 8((0921) N Jker(Gr)) < 0. Then we have the

following (T)(IT)(III).

(I) There exists a Borel subset A of X, with 7(A) = 1 such that for each v = (y1,72,...) € A
and for each z € Qp, there exists a § = 0(z,7) > 0 satisfying that d(yn,1(2),L) — 0 and
diam(yn1(B(z,6))) = 0 as n — oo.

(II) We have C(L) = U, ®{p € C(L) | M?(¢) — 0 as n — oo} in the Banach space C(L)
endowed with the supremum norm and dimc U, 1 < oo. Moreover, setting rr, := dimc U 1,
we have fMin(G7r, L) = rr,. Also, there exist Ly, ..., Ly, € Min(G7%, L) such that {L;};L, =
Min(G7-, L), L = UL, L and h(Lj) = Lj1 for each h € I'z, where Ly, 1 := L. Moreover,
foreachj=1,...,r, there exists a unique element wr, j € My (L;) such that (MI*)*(wr ;) =
wr,j. Also, for each j =1,...,rp, we have M (p) = ([ ¢ dwr ;) - 1L, in the Banach space
C(L;) endowed with the supremum norm as n — oo for each ¢ € C(L;), suppwr j = L; and
M} (wr,j) = wr j+1 in MM (L) where wp r, 41 =wr1. Also, we have Uy, ={a € C|a™ =
1} and for each o € U 1, «, we have dimc{p € C(L) | Myp = ap} = 1.

(II) The function Ty, ; : C — [0,1] of probability of tending to L is locally constant on F(G.).

Proof. Let Q = Q. Let U € Con(Q2). Let a € U N L. To prove item (I), it suffices to prove that
there exists a Borel subset A, of X, with 7(A,) = 1 such that for each v € A,, each limit function
of the sequence {7, 1}22, around a is constant. Since L N F(G,) # 0, we have L N Jyer(G7) = 0.
Hence there exists a § > 0 such that

B(Jier(G+),8) N G1(B(a, 0)) = 0. (32)

Since we are assuming #(J(G,)) > 3, we have that J(G.) is perfect. Since we are assuming
802 N Jiker(G1)) < 00, taking § so small, we may assume that

J(G) \ B((09) N Jier(G), 6) # 0. (33)

By (32) and (33), taking ¢ so small, we may assume that for each Uy € Con(F(G.)) with LNUy # 0,
we have

(0Uo) \ B((99) N Jier(G),6) # 0. (34)

For each z € (092) \ B((0€) N Jiex(Gr), 0), there exist an element g. € G, and an open disk
neighborhood V. of z in C such that gz(V) F(G;). Since (09Q) \ (B((092) N Jxer(G+), ) is
compact, there exists a finite set {z1,...,2,} in (0Q) \ B((92) N Jxer (G+), 6) such that

(G

V2, D (09Q) \ B((0Q) N Jker(G1),6) and g, (V2,) C F(G~) for each j. (35)
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For each j = 1,...,p there exists an element o/ = (a{,...,ai(j)) c 0 for some k(j) € N

such that g., = ai(j) o---0aj. Since G.(F(G,)) C F(G;), we may assume that there exists
a k € N such that for each j = 1,...,p, we have k(j) = k. For each j = 1,...,p, let W;
be a compact neighborhood of o/ in I'* such that for each 8 = (B1,...,0r) € W;, we have
Bro---0p1(V.,) C F(G,). Also, for each j =1,...,p, let Bj := UBeCon(Q),Bﬂsz;é(bB' Let ne N
and let ¢, = 1/q for each ¢ € N. Let (41,...,4;) be a finite sequence of positive integers with
i1 < --- <. Let ¢ > 0. We denote by A, ;(i1,...,4) the set of elements v € X, which satisfies
all of the following (a) and (b).

(a) Yre1(a) € (C\ B(9Q),¢y)) N B ift € {iy, ..., i1}

(b) Yrea(a) € (C\ BOQ,c,)) N By ift € {1, i)\ {ir,....it}.

Moreover, when [ > n, we denote by By jn(i1,...,%) the set of elements v € X, which satisfies
items (a) and (b) above and the following (c).

(€) (Vhist1s- -+ Vhis+k) € Wj for each s =n,n+1,...,1.

Furthermore, we denote by Cy ;n(i1,...,%) the set of elements v € X, which satisfies items (a)
and (b) above and the following (d).

(d) (Yhist1s- -+ Vhiotk) € W foreach s=n,n+1,...,1 — 1.

Furthermore, for each ¢, j, n, [ with I > n, let By jn1 == U, <. o, Bajnlin,...,i1). Let D =
U1 Uj—1 Unen Nisn Bajini- We show the following claim.

Claim 1. Let v € X be such that there exists a non-constant limit function of the sequence
{Yn1lv : U = C}22,. Then v € D.

To show this claim, let v € X be an element such that there exists a non-constant limit function
of {ynilv : U — C}°° ,. Then there exists a ¢ € N, a j € {1,...,p}, and a strictly increasing
sequence {i;}72; in N such that v € ()2, 4q,j(i1,...,%) and any subsequence of {v;, 1|lv : U —
@};’il does not converge to a constant map. Suppose that there exists a strictly increasing sequence
{lp}p21 in N such that for each p € N, (ki +1,- -, Vhi,, +k) € Wj. Since §J(G-) > 3, for each
A € Con(F(G-)), we can take the hyperbolic metric on A. From the definition of W; and [24, Pick
Theorem], we obtain that there exists a constant 0 < o < 1 such that for each p € N and for each
a’ in a small neighborhood U, of a, we have ||(Yxi,,+k = Vi, 1) (Vkiy, ,1(a")) | < c, where for each
g € G, and for each z € F(G,), ||¢’(2)||n denotes the norm of the derivative of g at z measured
from the hyperbolic metric on the element of Con(F(G;)) containing z to that on the element of
Con(F(G7)) containing g(z). Hence, for each a’ € Ua, |[(Vki,, 1) (@)[[n — 0 as p — co. However,
this is a contradiction, since {7x;, ,1lu};2; does not converge to a constant map. Therefore, v € D.
Thus, we have proved claim 1.

Let n := max§=1(®’§:17)(1"§ \ W;) (< 1). Then we have for each (I,n) with [ > n,

%(Bq,j,n(ih coyiig1)) < 7~'(Oq7j7n(7;1, ot Ny € X5 | (7kil+1+1a o 77kil+1+k) o4 W]})
< (Cq,jm(ila s 7il+1)) - 1.

N

Hence, for each [ with [ > n,

F(Bgjmas1) =7 | Bgjmlin,--viy) = Y. #(Bgjnlin,- i)

i1 <o <f41 i1 < <dp41

> (Cogmlin, i) =07 |J  Coynlin, i) <nF(By )

11 < <fp41 i1 <o+ <dp41

IN

Therefore 7(D) < 322, 370 1 3 en T((Misn Bayjini) = 0. Hence we have proved item (I) of our
lemma. a
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We now prove item (II). Since LN Jier(G) = 0, Lemmas 3.13 and 3.15 imply that L C F(7).
Thus we obtain that for each ¢ € C(L), {M™(¢)|L}52, is equicontinuous on L. Combining this
with item (I) and the argument in [36, page 83-87], we easily see that item (II) holds.

We now prove (III). Let U be a connected component of F(G;) and let 1,22 € U. Let H; :=
{ve X; |d(yn1(x;),L) — 0as n — oo} for each i = 1,2. Then Ty (z;) = 7(H;). Let Z; := {v €
H; | In € N. such that v, 1(z;) € Q}. Let A be as in (I). Since 7(A) = 1 and 7 is o-invariant,
we have 7(Z;) = 7(Z; N N¢2,0 ™(A)). By (I), we have Z; N N2 10 "(A) = Zo, NN 0 " (A).
Hence 7(Z1) = 7(Z3). Let v € H1 \ Z1. Then d(vn1(z1),L N J(G-)) — 0 as n — oo and every
limit function of 7,1 on U should be constant. Therefore v € Ha \ Zo. Thus Hi \ 71 C Ha \ To.
Similarly, we have Ha \ Zo C H1 \ Z1. Hence H1 \ Z1 = Ha \ Zs. From these arguments, it follows
that Ty, - (x1) = Ty - (x2). Therefore T}, , is locally constant on F(G.).

Thus, we have completed the proof of Lemma 3.60. O

Definition 3.61. Under the assumptions of Lemma 3.60, we call the number r; the period of
(r,L).

Remark 3.62. The above argument in the proof of item (I) generalizes the argument in the
proof of [36, Lemma 5.2]. In the proof of [36, Lemma 5.2], in order to make the argument more
precise, “and {7y, 1] : U — C}°, converges to a non-constant map.” ([36, page 81,line -5])
should be “and any subsequence of {yki, 1lv : U — C}j’il does not converge to a constant map.”
and “converges to a non-constant map.” ([36, page 82, line 4]) should be “does not converge
to a constant map.” Also, in the proof of [36, Lemma 5.3], the definition of E, ,, should be
“Epm = {v € Al vir,1(a0) € U_, V., N B(8J(G;),b),i =n,...,m}, where the number b is equal
to min{d(u,v) | u € 0J(G7),v € Ui_; Upy, . yyew, T 71 (Vz,)} > 07

The following is an important result on random dynamical systems generated by 7 € 9y .(Rat)
with §Jker (Gr) < 00. In the proof we use the no-wandering-domain theorem ([29]) and the Fatou-
Shishikura inequality ([26]).

Proposition 3.63. Let 7 € 9 (Rat) with $J(G;)
fMin(G,) < oo and for each L € Min(G,) with L
Lemma 3.60 hold.

> 3. Suppose $Jxer(Gr) < 0o. Then 1 <
N F(G;) # 0, statements (I)(I1)(I1) of
Proof. By Lemma 3.60, for each L € Min(G,) with L N F(G;) # 0, statements (I)(IT)(III) of
Lemma 3.60 hold. Also, by Lemma 3.60, we obtain that

for each W € Con(F(G,)), #{L € Min(G,,C) | LNW # 0} < 1. (36)

We now suppose that §Min(G., @) = o0o. Then, since we are assuming fJxe;(G,) < 00, we obtain
that
#{L € Min(G,,C) | LN F(G,) # 0} = cc. (37)

We now show the following claim.

Claim 1. Let {L;}72; be a sequence in Min(G, C) consisting of mutually distinct elements such
that for each j, L; N F(G,) # (. Moreover, let {w;}32; be a sequence in C such that w; € L; for
each j and {w;} tends to a point we, € C. Then we, € Jier (Gr).

To show this claim, suppose that we, & Jker(Gr). Then there exists an element o € G, such
that a(ws) € F(G;). Let U € Con(F(G,)) with a(ws) € U. Then for each large j, we have
UNL; # 0. However, this contradicts (36). Hence, Claim 1 holds.

Let {L;}32, be a sequence in Min(G-, C) consisting of mutually distinct elements such that
for each j, L; N F(G,) # 0. For each j, let z; € L; N F(G;) be a point. Since §J(G,) > 3, by the
density of repelling fixed points in the Julia set ([27]), either there exists a loxodromic element of

Aut(C) NG or there exists an element in G of degree two or more.
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Suppose that there exists a loxodromic element g € Aut(C) NG. Let a4 be the attracting fixed
point of g. Then for each j, we have ¢g"(z;) — a4 as n — oo. This implies ay, € L; for each j.
However, this is a contradiction.

Suppose that there exists an element g € G with deg(g) > 2. By the no-wandering-domain
theorem ([29]), we have that for each z € F(G;), ¢"(z) tends to one of the following cycles. (I)
attracting cycle. (II) parabolic cycle. (III) Siegel disc cycle. (IV) Hermann ring cycle. Moreover,
by the Fatou-Shishikura inequality ([26]), the number of those cycles for one element g is finite.
Suppose that there exist a subsequence {z;, } of {2;} and a sequence {ns} in N such that g"*(z;,)
tends to an attracting or parabolic cycle ¢, of g. Then ¢, € Lj, for each large k € N and this is a
contradiction. Therefore, there exist a subsequence {z;, } of {z;} and a sequence {n;} in N such
that g™*(z;,) belongs to a Siegel disk cycle or Hermann ring cycle of g for each k. By taking a
higher iterate of g, we may assume that the period of the cycle is one. Also, by renaming ¢"*(z;, )
as zp, we may assume that there exists a B € Con(F(g)) which is either Siegel disk or Hermann
ring of g such that for each j, we have z; € BN L; N F(G;). Note that each BN L; N F(G,) is a
union of analytic Jordan curves in B. Let

D:={zecC]| foreach § >0,4{j € N| B(2,6) N BNL; N F(G,) # 0} = o0}.

Then by Claim 1, we have D C Jyer(G+). Since we are assuming fJxe;(Gr) < 00, Claim 1 again

implies that for any connected component A of 9B, we cannot have that A C D. Thus it follows that

there exists a point 2o, € Jyer(G) such that D = {2z }. Therefore B is a Siegel disk for g and z., is

the center of B, i.e. zoo € B and g(2s0) = Zoo. Let 0 < e < 2min{d(a,d) | a,b € Jxer(G-),a # b}

For each j € N, let C; be the connected component of C\(Bn L;) such that zo, € Cj. Let
i -1

eo := max{||Dh,||s | h €T,z € (@} We may assume that for each j, max,cc; d(z0,a) < €7 €.

Since zoo € Jiker(Gr) C J(G-), it follows that for each j there exists an element h; € G, such that

1 _
max d(h;(z0), hj(a)) = Feq e (38)

We may assume that fixing the generator system I'; of G, the word length of h; is the minimum
among the word lengths of elements of G, satisfying the same property as that of h;. Then, by
(38) and the minimality of the word length of h;, it follows that

max d(hj(ze0), hj(a)) < €, for each j. (39)

Let a; € C; be a point such that d(h;(2x), hj(a;)) = max.ecc; d(h;(2s0), hj(a)). Then a; € 0C; C
L; for each j. Hence, setting u; = hj;(a;), we have

u; € L; for each j. (40)

By (38) and (39), we have
1
560_16 < d(hj(ze0),uj) < €. (41)

Since hj(200) € Jrer(Gr) and by the way of the choice of €, (41) implies that {u;}72; cannot accu-
mulate in any point of Jyer(G-). Combining this with (40) and Claim 1, we obtain a contradiction.

Hence, tMin(G,,C) < cc.
Thus we have proved our proposition. O

The following is an important and interesting object in random dynamics.

Definition 3.64. Let A be a subset of C. Let 7 € 9 (Rat). For each z € C, we set T ,(2) :=
T{y=(,72,--.) € X7 | d(7n1(2),A) = 0 as n — oo}). This is the probability of tending to
A regarding the random orbits starting with the initial value z € C. For any a € C, we
set Ta,T = T{a}’.,..
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We now prove the following theorem regarding the systems with finite kernel Julia sets.

Theorem 3.65. Let 7 € My (Rat) with §J(G;) > 3. Suppose that §Jxer(Gr) < 00 and for each
z € F(G;), we have G-(z) N (ULeMin(GﬂC)_Lnger(GT) L) # (. Then we have the following.

(i)

(iii)

(vi)

(vii)

#Min(G,, C) < oco. Moreover, for each L € Min(G,,C), we have
CL)y=U;p®&{pecC(L)| M(p) >0 asn— oo}

in the Banach space C(L) endowed with the supremum norm and dimg U 1, < co. Moreover,

for each L € Min(G,,C), let r;, = dime(Ur.1). Then #Min(G?2, L) = ry. Also, there exist
Ly, ..., Ly, € Min(G7E, L) such that {L;}’L, = Min(G7*, L), L = UL, L; and h(L;) C Lty
for each h € I';, where Ly, 11 := L.

Foreachj=1,...,rL, there exists a unique element wy, ; € M1 (L;) such that (MIV)*(wr ;) =
wr,j. Also, for each j =1,...,rp, we have M (p) = ([ ¢ dwr ;) - 11, in the Banach space
C(L;) endowed with the supremum norm as n — oo for each ¢ € C(L;), suppwr, j = L; and
M} (wr,j) = wr j+1 in M (L) where wy, yp+1 = wi,1. Moreover, Uy 1. ={a € C|a"™ =1}
and for each a € U, p, ., we have dimc{p € C(L) | M;p = ap} = 1.

Let | := HLGMin(G,- &L For each L € Min(GT,C), for each j = 1,...,rp and for each

yeC, let a(Lj,y) =7({y € TV | d(yni1(y), Lj) = 0 as n — 00.}). Then for eachy € C and
for each p € C(C), we have

TL
MM () (y) — Z Za(Lj,y) / @ dwr,j as n — oo (pointwise convergence), (42)
LeMin(G,,C) 7=1

i.e. we have

TL
(M)™M(8,) = > > a(Ljy)wr, asn— oo in My(C) (43)
LeMin(G,,C) 7=1

with respect to the weak convergence topology. Also,
(M:)Z(ZLeMin(GT,@) Z;; a(Lj, y)wr,;) = ELeMin(GT,C) Z;il a(Lj,y)wr ;-

For each z € C there exists a Borel subset A, of I'N with 7(A.) = 1 such that for each
7= (11,72, - --) € Az, we have d(1n,1(2), U eppin(e, &y L) = 0 as n — oo.

There exists a Borel subset A of Rat™ with 7(A) = 1 such that for each L € Min(G,C) with
L ¢ Jxer(G:), for each point z € Qp, := UveCon(r(a,))unpzol and for each v € A, there
exists a 6 = 6(z,v) > 0 such that diam(y,1(B(%,9))) = 0 and d(yp,1(2),L) = 0 as n — oo.
In particular, for each L € Min(GT,C) with L ¢ Jxer(G7) and for each j = 1,...,r1, if
Y € Qrj = UycCon(r (G, ))unrjzeU: then a(Lj,y) =1, and ify € Q. ; with (L', 1) # (L, j)
then a(Lj,y) =0

Let L € Min(GT,@) and let 5 =1,...,ry. Then the functions Ty, ; : C— [0.1] and a(L;,-) :
C — [0,1] are locally constant on F(G.).

Let L € Min(G,,C) and let j = 1,...,ry. Then for each y € EY.(7), we have

1imz€©’zﬁy Ty, .(2) =T - (y) and limze@’zﬁy a(Lj,z) = a(Lj,y).
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Proof. Let L := ULEMin(G,,C),Lﬁchr(G,) L. Then, by the assumption of our theorem, we have

L # 0. Moreover, we have £ = U, cvin(g. &), 0nr (. )20 L- Let

V= | J{U € Con(F(G,)) | 3L € Min(G, C) with LN U # 0}.

Then G, (V) C V. Moreover, by the assumptions of our theorem, we obtain Nyeq, g~ {(C\ V) =
Jker(Gr). Therefore, the statements (i)—(v) of our theorem follow from Lemma 3.26, Proposi-
tion 3.63 and Lemma 3.15.

We now prove statement (vi). Let L € Min(G,,C) and j = 1,...,7p. If L ¢ Jier(G5), then
by Lemma 3.60 (III) and its proof, the functions 77, , and «(Lj,-) are locally constant on F/(G).
If L C Jker(Gr), then for any U € Con(F(G,)), for any x,y € U and for any v € X, with
d(yn1(x),L) — 0 (n — o0), we have that any limit function of {v,,1}n2, is constant on U.
Hence d(Vn,1(y),L) — 0 as n — oo. This argument implies that T}, , is constant on U for any
U € Con(F(G;)). Therefore Ty, ; is locally constant on F(G;). By the same method as above, we
can show that a(L;,) is locally constant on F(G).

We now prove (vii). Let L € Min(G,,C) and let j = 1,...,7r. Since tMin(G,,C) < oo, there
exists an element @7, € C(C) such that |, = 1 and ¢p| = 0 for any L' € Min(G,,C) with
L' # L. By statement (iv), we have Tp ,(x) = lim,_, M”(pr)(z) for any 2 € C. Thus for any
y € F,(7), we have lim_ ¢, T1 -(2) = Tp - (y). Similarly, we can show that for any y € F}, (),
sezry @(Ly: 2) = alLy,y).

Thus we have proved our theorem. O

lim

We now prove the following theorem, which is a generalization of [36, Theorem 3.15].

Theorem 3.66. Let 7 € My (Rat). Suppose that fJyer(Gr) < 00, §J(G7) > 3 and that for each
L € Min(G, Jiex(G7)), X(7,L) < 0. Then we have F4(7) = C, Freas(r) = M1 (C), Leba(J,) =0
for 7-a.e.y € (Rat)™, and all statements in [36, Theorem 3.15 (1)—(3),(4a),(5)(6),(8)—(16), (19)(20)]
hold for T. Moreover, for each z € C, there exists a Borel subset A, of X, with 7(A,) = 1 satisfying
that for each v = (y1,72,...) € A, and for each m € NU {0}, we have

nh—>ngo ||D(7n+m,1+m)’ym,1(z) Hé = 0.

Also, if, in addition to the assumptions of our theorem, each L € Min(GT,C) with L ¢ Jyer(G7)
is attracting for T, then there exist a constant ¢, < 0 and a constant p, € (0,1) such that for each

z € C, there exists a Borel subset A, of X, with 7(A;) =1 such that for each v € A, and for each
m € NU {0}, we have the following (a) and (b).

(a)

. 1
lim sup — log | D (Yntm,14m)ym 1 (2)|ls < ¢ < 0.

n—oo TN

(b) There exist a constant § = §(7, z,v,m) > 0, a constant { = ((7,z,7v,m) > 0 and an attracting
minimal set L = L(7,z,7) of T such that

diam(Yn+m,14+m (B (¥m,1(2),9))) < ¢p7 for alln € N,

and
d(7n+m,1+m('ym,1(z))v L) < (p? foralln € N.

Proof. We modify the proof of Theorem 3.37. By the assumption of our theorem, the set

in the proof of Theorem 3.37 is equal to C. By Theorem 3.37, we see that for each z € C,
7({y € X, | z€ Jy}) =0 and FJ)(r) = C. Therefore by [36, Lemma 4.2], Fyncas(7) = 9 (C).
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Let §; > 0 be a small number. Let ¢ > 0 be an arbitrarily small number. Then by the
argument in the proof of Lemma 3.13, there exist a do > 0 with d; < é; and a Borel subset A,
of X, with 7(A.) > 1 — € such that for each L € Min(G, Jxer(G-)), for each z € L, and for each
v =(7,72.-..) € A, we have diam(v,, 1(B(z,d2))) < d;. For this dz, by the argument in the proof
of Lemma 3.13 again, there exist a d3 > 0 and a Borel subset B, of X, with 7(B.) > 1 — € such
that for each L € Min(G, Jxer(G1)), for each z € L, and for each v = (y1,72...) € Be, we have
diam(vyy,,1(B(z,03))) < 2. A

Let I; := {L € Min(G,,C) | L C Jxer(G7)} and I := {L € Min(GT,C) | LN F(G,) # 0}.

Note that I Uls = Min(G,, @) For each L € I, let Wy, := UUGCOH(F(GT)).UQL;AVJU' Then for each

z € C, there exists an element g, € G, such that 9:(2) € B(Uper,L,03) UUper,Wr. Let 6, > 0
be a number such that g.(B(z,9.)) C B(Urer, L,d3) UULer, Wi Since C is compact, there exist
finitely many points z1, ..., 2, € C such that C = Uj_1B(2;,05,;). Note that G-(W) C Wy, for
each L € I. Thus if g,(z) € Wy, for some L € I, then for each g € G,, we have gg.(z) € Wr.
Moreover, for each L € I, for each z € L, for each v € B, and for each n € N, we have
Yn,1(B(2,03)) C B(ULer, L, 02). Hence, considering a; o g., for some a; € G for each j, we have
the following claim.

Claim 1. There exist an [ € N and n elements h,,,...,h,, € G, such that each h,; is the
composition of [ elements of I'; and such that for each j = 1...,n, we have h.,(B(z,4.;)) C
B(Urer,L,62) UUrer,Wr. A ‘ _

For each j =1,...,1,let (7{,...,7]) € T\ be an element such that h., =~ o---o~]. For each
j=1,...,n, let V; be a neighborhood of (77, ...,~/) € T such that for each (v, ...,q;) € V}, we
have a; - -~ a1 (B(2j,0.,)) C B(Uper, L,02) UULer, Wr. Let Qy,...,€; be the measurable partition
of C such that each €; is a finite intersection of elements of {B(zj,02;)}j—y. Foreachi =1,...,t, let
¢(i) € {1,...,n} be an element such that ; C B(2,(;), 0z, ). For each z € C,leti(z) € {1,...,t}
be the unique element such that z € ;.. Let j(z) = ¢(i(2)) € {1,...,n}. For each n € N and
each z € C, let C,,.» be the set of elements v = (y1, 72, ...) € X, satisfying the following.

o (Voo m) € Vi (Vi1 5720) & Viewa@)s - (V=241 - s Yn—1)1) € Vitym_aya(2)
and (’Y(n—l)l-i-lv ey Ynl) € VJ'(V(n—l)L,l(Z))'

Similarly, let Dy, » == {v € Cpn > | (Yni+1,Vnit2, - - -) & Ae}. Moreover, let E, be the set of elements
v = (71,72, -..) € X, satisfying that for each n € N, (v(n—1)i41,---+Vn1) & Vi(4m-1y1(2))- Then for

each z € C we have
{ve€X: | vmi1(2) & B(Urer, L, 1) UUrer, W, for infinitely many n € N} C Uy, D,, ., UE..

It is easy to see that 7(E,) = 0. Moreover,
?(UZ‘;Dn,z) = Z?:l 7~—(Dn,Z) = 270;;1 ?(sz) CT(Xr\ A = %(U?zozlcn,Z) T(Xr\Ae) <e
Hence
T({v € X7 | Ym1(2) € B(Urer, L, 61) UULe, Wy, for infinitely many n € N}) <e. (44)

Since €,0; are arbitrary, combining (44) and Lemma 3.60 implies that for each z € C, there
exists a Borel subset @, of X, with 7(Q,) = 1 such that for each v € @, we have

d(Yn,1(2), ULeMin(G,,cf:)L) — 0 as n — oo. (45)

By the result Fpeqs(7) = M (@), (45), Lemma 3.25 and its proof, Lemma 3.30 and its proof,
Lemma 3.60, the proof of [36, Theorem 3.15] and [36, Theorem 3.14], the statement of our theorem

holds. O
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Remark 3.67. Under the assumptions of Theorem 3.66, suppose that Jixe(Gr) # 0. Then 7 is
not mean stable. Also, 7 does not satisfy the assumptions of [36, Theorem 3.15], although most of
the statements of [36, Theorem 3.15] hold for 7. Note that we have many examples 7 € 9y .(Rat)
with Jxer (Gr) # 0 satisfying the assumptions of Theorem 3.66. See Section 5, Example 5.4.

We now give the definition of nice sets and strongly nice sets of Rat.

Definition 3.68. Let ) be a weakly nice subset of Rat with respect to some holomorphic families
{Wj;}7L, of rational maps, where W; = {f; x| A € A;} for each j =1,...,m.

e We say that ) is nice (with respect to holomorphic families {W;}72, of rational maps) if for
each 2 € Spin({W;}jL1) (see Definition 3.47) and for each j = 1,...,m, either (a) the map
X — D(f;x)- is non-constant on A; or (b) D(f;x). =0 forall A € A;.

e We say that a finite sequence {2;}7; of points of C is a peripheral cycle for (V, {W; }te)
if there exists a I' € Cpt()) such that both of the following (a)(b) hold.

(8) {2 i =1,..,n} C (U St OM)) \ Upentingqry,@,ncum, s omp b

(b) There exists a finite sequence {v;}_; of elements of I' such that for each i = 1,...,n,
there exists a number j; € {1,...,n} satisfying that for each i« = 1,...,n, we have
Yi € {fji,/\ |\ e Aji}» z; € S1(W;,) and v;(z;) = ziy1 where 2,41 1= 21.

e We say that ) is strongly nice with respect to {W;}7., if J is nice with respect to {W;}7.,
and there exists no peripheral cycle for (3, {W;}7.,).

Definition 3.69. Let ) be a weakly nice subset of Rat, with respect to some holomorphic families
{W;}iL, of rational maps, where W; = {f; x| A € A;} foreach j =1,...,m. Let ' € Cpt(}) such
that TN{fjx | A€ A;} #Dforeach j=1,...,m. Let L € Min((I'), C) with L # C. Let g € I' and
j€{l,...,m}. We say that g is a strict bifurcation element for (I', L) with corresponding
suffix j if one of the following statements (a)(b) holds.

(a) g € {fix | X € A;} and there exists a point z € (LN J((T'))) \ S1(W;) such that g(z) €
LN J(T)).

(b) g € {fix | X € A;} and there exist an open subset U of C with (U N L)\ S;(W;) # 0 and
finitely many elements ~q,...,v,-1 € I such that go~,_1- -7 (U) C U and U is a subset
of a Siegel disk or a Hermann ring of goy,_10--- 0.

Lemma 3.70. Let YV be a weakly nice subset of Raty with respect to some holomorphic families
{W;}iLy of rational maps, where Wy = {fjx | A € A;} for each j =1,...,m. Suppose there erists
no peripheral cycle for (), {Wj};”zl) Let T' € Cpt(Y) such that TN {fjx | X € Aj} # O for each
j=1,....,m. Let L € Min((T'),C) with L # C. Suppose that Jie:((T)) C 7L, S(W;) and 4L = oo.
Suppose also that L is not attracting for I'. Then there exists an element (g,j) € T' x {1,...,m}
such that g is a strict bifurcation element for (I',L) with corresponding suffiz j. Moreover, if
(h,i) € T x {1,...,m} and h is a strict bifurcation element for (T, L) with corresponding suffix i,
then h € O(T N {fix | A € A;}) with respect to the topology in {fix | A € A;}.

Proof. Let G = (I'). [37, Lemma 3.8] implies that we have one of the following two situations

(D).

(I) There exist an element (g,5) € I' x {1,...,m} with g €e TN {f;» | A € A;} and a point
20 € LN J(G) such that g(z9) € LN J(G).

(IT) There exist an open subset U of C with UNL # () and finitely many elements 1, ...,7, € I’
such that v,.0---~v1(U) C U and U is a subset of a Siegel disk or a Hermann ring of v,.0- - -o;.

36



Suppose we have case (II). Since §L = oo, by using [36, Remark 3.9] and [37, Remark 2.24] we
obtain that (U N'L) = co. Let j € {1,...,m} with v € {fjx | A € A;}. Since §51(W,) < oo
(Lemma 3.39), it follows that v, is a strict bifurcation element with corresponding suffix j.

Suppose we have case (I). Then there exist a sequence {7;}72; in I with v; € {f;, A | A € A}, },
Ji € {1,...,m} and a point zp € LN J(G) such that v;---v1(20) € LN J(G) for each i. We now
consider the following two cases (a)(b).

(a) There exists an ¢ € N such that v; - - - v1(20) & S1 (W,

i+1)'

(b) For each i € N, ;- --v1(20) € S1(W;

i+1)’

Suppose we have case (a). Then ;41 is a strict bifurcation element with corresponding suffix j;1.
Suppose we have case (b). Since §L = oo and § U}~ S1(W;) < oo (Lemma 3.39), we have that
L ¢ UL S1(W;). Then for each i € N, we have

i m(20) € (Ui S1(0V;5)) \UKeMin(G,@),Kcuy;lSl(wj)K'

Since we are assuming case (b) and since § U7, S;(W;) < oo, there exist two elements i,j € N
with j > ¢ such that v;---7;---71(20) = 7 ---71(20). This contradicts to the assumption that
there exists no peripheral cycle for (¥, {W;}7.,).

We now suppose that (h,i) € T' x {1,...,m} is a strict bifurcation element for (I", L) with
corresponding suffix ¢. Supoose that h € int(I' N {f; » | A € A;}) with respect to the topology in
{fix | A € A;}. Then for each z € C\ S;(W;), we have that int((I')(z)) # 0. Hence it is easy to
see that int(L) N J(G) # 0. It implies that L = C. However, this contradicts the assumption of our
lemma. Hence h € (T N{fix | A€ Aj}).

Thus we have proved our lemma. O

Lemma 3.71. Let YV be a weakly nice subset of Raty with respect to some holomorphic families
{W; L, of rational maps, where W = {fix}ren;»J = 1,...,m. Suppose that there exists no
peripheral cycle for (V,{W;}72). Let p € M1 (V,{W;}]L,) and suppose that the interior of
L,n{fjx | A € Aj}is not empty with respect to the topology in {fjx | X € Aj} foreachj=1,...,m.
Suppose also that F(G,) # (0. Then we have the following.

(1) Jker(Gp) C NOFL SWy), tdker(Gp) < 00 and EMin(G,) < oco.

(ii) Let L € Min(GP,C) with L ¢ NJLS(W;). Suppose that L is not attracting for p. Then
there exists an element (g,7) € T, x {1,...,m} such that g is a strict bifurcation element
for (T'p, L) with corresponding suffiz j. Moreover, if (h,i) € ', x {1,...,m} such that h
is a strict bifurcation element for (I',, L) with corresponding suffiz i, then h belongs to the
boundary of T, N {fix | A € A;}, where the boundary of Ty N {fix | A € A;} is taken with
respect to the topology in {fix | X € A;}.

(iii) Suppose that there exists an element Ly € Min(G,,,(@) which is attracting for p. Then there
exists an open neighborhood V' of p in (M (Y, {W;}L,),0) such that for each p1 € V
satisfying that T, N {fix | A € Aj} Cint(Tp, N{fjr | A € Aj}) with respect to the topology
in {fjx| A€ A;} foreach j=1,...,m, we have the following.

(a) ﬂMin(va@) =
1({L" € Min(G,, C) | L' € ML, S(W))})
+#{L’ € Min(G,,C) | L' ¢ NL1S(W;) and L' is attracting for p}.

(b) For each L € Min(G,,,,C) there exists a unique L' € Min(G,, C) with L' C L such that
either “L" C N7y S(W;)” or “L" ¢ NI S(W;) and L' is attracting for p”.

(c) Initem (b), if L' C NJL S(W;), then L = L'. If L ¢ NJLS(W;) and L' is attracting

=1
for p, then L is attracting for p;.
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(d) Fach L € Min(Gpl,@) with L ¢ N7, S(W;) is attracting for p;.

(iv) Suppose that each element Lo € Min(G ,, C) is not attracting for p. Let p1 € My (Y, {W;}1L)
be an element such that T', N {fj x| A€ A;} C int(Ty, N {fjx | A € Aj}) with respect to the
topology in {fjx | A € Aj} for each j =1,...,m. Then we have the following.

(a) If there exists an element L € Min(Gp,@) with L C NLS(W;), then Min(G),,C) =
{L € Min(G,,C) | L C N, S(W;)}.
(b) If there exists no L € Min(G,,C) with L C N S(Wj), then Min(G,,,C) = C and
J(G,,) =C.
Proof. By Lemma 3.45, we obtain that Jier(G,) C NJLyS(W;). Thus by Lemma 3.39, ke (G) <
0. From Proposition 3.63, it follows that #Min(G,, C) < cc. Thus statement (i) holds.

To prove statement (ii), since L ¢ N72;.S(W;) and since int(T, N {fjx | A € A;}) # 0 with
respect to the topology in {f; x| A € A;} for each j = 1,...,m, we obtain that §L = co. Moreover,
since int(I', N {fjx | A € A;}) # 0 for each j and since J(G,) \ UL S1(W;) # 0, we have
int(J(G,)) # 0. Combining this with the assumption F(G,) # 0, we obtain that C cannot be a
minimal set for (G, C). Thus statement (i) follows from Lemma 3.70.

To prove statement (iii), let V' be a small open neighborhood V' of p in (90 (¥, {W;}72,), O)
and let p; € V such that T, n {fjn | A € A;} C int(T'y, N {fj» | A € A;}). Taking V small
enough, we have that for each p/ € V, F(G,/) # 0. By Zorn’s lemma, for each L € Min(G,,,C)
there exists an element L' € Min(G,, C)with L' c L. If L/ ¢ N7 S(W;) and L' is not attracting
for p, then statement (ii) (for p and p;) implies a contradiction. Hence either L' C N7, S(WV;)
or L' is attracting for p. If L' C NJL;S(W;), then Lemma 3.46 implies that L' = L. Suppose
L' ¢ N, S(W;) and L' is attracting for p. Then taking V' so small, [37, Lemma 5.2] implies that
L is attacting for p; and there is no L” € Min(G,,C) with L” # L’ such that L” C L. Also, by
Lemma 3.46 again, for any K € Min(G,,C) with K C N7 S(W;), we have K € Min(G,,, C).
Moreover, by [37, Lemma 5.2] again, for any K € Min(G,,C) with K ¢ N7L1S(W;) which is
attracting for p, there exists a unique element K e Min(G,,, @) close to K, and this K is attracting
for p;. From these arguments, statement (iii) follows.

We now prove statement (iv). Suppose that each Ly € Min(G,, (@) is not attracting for p. Let
p1 € My (Y, {W;}7,) be an element such that I'y N {f;x | A € A;} C int(Ty, N {fjx | A€ A;})
for each j = 1,...,m. Let L € Min(Gpl,(@). Suppose that L # C and L ¢ N7L1S(W;). Then
0 # int(L), #(C \ int(L)) > 3 and G, (int(L)) C int(L). Hence § # int(L) C F(G,,). Also, L is not
attracting for p; (otherwise by Zorn’s lemma there exists an element Ly € Min(G,, L) which is
attracting for p). By applying statement (ii) for p and p;, we obtain a contradiction. Thus either
L=CorLcC AL SWy). If L = C, then since int(J(G,,)) # 0 (see the argument in the proof of
(ii)), we obtain that F(G,,) = 0. Hence statements (a) and (b) in (iv) hold.

Thus we have proved our lemma. O

Definition 3.72. Let I" € Cpt(Rat). We say that I" is weakly mean stable if there exist a positive
integer n and two non-empty open subsets Vi, Var of C with Vi C Vor and §(C\ Vor) > 3
such that the following three conditions hold.

(a) For each (y1,...,7n) €I, 400y (Var) C Vip.
(b) Let Dr := Nye(ryg~*(C \ Va,r). Then §Dr < cc.

(¢) For each L € Min({I"), Dr) there exist an element z € L and an element g, € (I') such that
z is a repelling fixed point of g,.
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Moreover, we say that 7 € 9 .(Rat) is weakly mean stable if supp 7 is weakly mean stable. If
T € My (Rat) is weakly mean stable, then we set V; , =V, r, and D, = Dr_.

Lemma 3.73. Let A:= {T' € Cpt(Rat) | T is weakly mean stable}. Then A is open in Cpt(Rat).
In particular, the set A" = {1 € M (Rat) | T is weakly mean stable} is open in (M; .(Rat), O).

Proof. Let I' € A. For this I', let Vi 1, Vo r,n as in Definition 3.72. Let Vll,F be an open subset of
C such that Vir € V/ C V/ [ C Var. Then there exists a neighborhood U of T' in Cpt(Rat) such
that for each A € U and for each (M1,-+-,7n) € A", we have v, 0---0y1(Var) C Vf,r-

For each L € Min((I"), Dr), let z, € L and g; € (I') such that zz is a repelling fixed point
of gr. Let € > 0 be a small number. By considering linearizing coordinate for g at zr and the
fundamental region for g near zp, it is easy to see that for each L € Min((T"), Dr) there exist
small simply connected open neighborhoods Hy r 1, Hr r2 of zp with Hypro C Hp r,;1 such that
for each z € B(zp,¢€) \ {z1} there exists an element n € N such that ¢7(z) € Hrr1 \ Hrr 2.

Shrinking U if necessary, we may assume that for each A € U and for each L € Min((T'), Dr)
there exist zp A € B(zr, 5) and gz a € (A) such that 2z, 4 is a repelling fixed point of gz o and such
that gr, A — g1, and 2z, A — 21, as A — I'. Since the linearizing coordinate for a repelling fixed point
is continuous on Rat, if U is small enough, then for each A € U, for each L € Min((T"), Dr) there
exist two small simply connected open neighborhoods Hy, a1, Hp a2 of zp a with Hp a0 C Hpan
such that the following hold.

1. For each z € B(zp a,€)\{zr A} there exists an element n € N with gEA(z) €Hrai\Hrap.

2. There exist two small numbers €1,e2 > 0 with €1 < €5 < %min{d(a,b) | a,b € Dr,a # b}
such that for each A € U and for each L € Min((T"), Dr),

B(ZL,El) C HL7A,27 HL,A,I C B(ZL,€2). (46)

For each w € Dr, let L,, € Min({(I'), Dr) be an element such that (I')(w) N Ly, # 0. Moreover, let
hw € (T') such that h,(w) = zr,,. Taking ¢ small enough, there exists a § > 0 with

0 <e€,0< %min{d(a,b) | a,b € Dr,a # b}. (47)

such that for each p € U and for each w € Dr, there exists an element h,, o € (A) close to h,, such
that
€
hwa(B(w,d)) C B(z,,, 5) C B(zL, A, €). (48)

Let K5 = C\ B(Dr,6). Then for each z € Kj there exists an element o, € (I') such that
a.(z) € Var. Since Kj is compact, there exist a finite set {z1,..., 24} in K5, a number ¢y > 0 and
elements B, ..., 5q € (I') such that

K§ C U?:lB(Zj7 60) (49)

and §;(B(zj,€0)) C Vo for all j =1,...,q. Hence shrinking U/ if necessary, we have that for each
A € U, there exist elements 14, ..., 04,4 € (A) such that

ﬁj’A(B(Zj,Eo)) - ‘/2’1"7 for allj =1,...,q. (50)

We now let A € U and let zy € ﬁg€<A>g_1(@\Vg,p). Then by (49) and (50), we have zy € K;. Thus
20 € B(Dr, d). Moreover, by (46) and (47), we have Hy, o o\ Hp a1 C K for all L € Min((T"), Dr)
and for all A € Y. Combining this with (48), we obtain that taking an element w € Dr with
d(zp,w) < 6, we have hy a(20) = 21,4 for all A € U. It follows that

() 9" (C\Var) C U hyly(z0.4) forall A el (51)
ge(A) LeMin((T"),Dr),w€Dr
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Since the right hand side of the above is a finite set, we obtain that §D < oo, where Dy :=
ﬂge<A>g_1(C \ Var). Moreover, by (51), we have that for each K" € Min((A), D) there exist an
element z € K and an element ¢, € (A) such that z is a repelling fixed point of .. Thus A is
wealky mean stable. Hence we have proved our lemma. O

Lemma 3.74. Let T’ € Cpt(Rat) be weakly mean stable. Let Dr be as in Definition 3.72. Then
Dr = Jxex ('), #(Jker ({T))) < 00, and for each z € F({T')), we have

T (z)N U L|#0.

LeMin({T"),C),LZ Jier ((T))

In particular, if T € My (Rat) is weakly mean stable and §J(G;) > 3, then statements (i)-(vii) in
Theorem 3.65 hold.

Proof. By definition of Dr, we have (I')(Dr) C Dr. Also, by condition (¢) in Definition 3.72, we
have Dpr C J((I')). Thus Dr C Jker({I')). Let Vo be as in Definition 3.72. Then Vo C F((T)).
Since (T)(Jier (1)) C Jier((T)) € J((T)) € C\ Var, we obtain Jie((I)) € Dr. Hence we have
Dr = Jke:((T')). By definition of weakly mean stable elements again, we have $Dr < oco. Thus
fJker({I')) < o00. Let Var be as in Definition 3.72 for I'. Let z € F((I')). Since z ¢ Jxer((I')) and
Dr = Jyer((T')), it follows that (I')(z) N Vo # 0. Thus (I')(z) N (UL eMin((r),€), L s () L) # 0.
If 7 € My (Rat) is weakly mean stable and §J(G,) > 3, then combining the above argument and
Theorem 3.65 implies that statements (i)—(vii) in Theorem 3.65 hold for 7. O

Lemma 3.75. Let I' € Cpt(Rat). Let G = (I'). Let L € Min(G,C) with tL < co. Then we have
the following.

(i) Suppose that for each z € L and for each g € G with g(z) = z, we have ||Dg.||s > 1. Then
there exist a constant Oy > 0 and a constant o > 1 such that for each v € TN and for each
z € L, we have ||D(yn1):|ls > Cra™.

(ii) Suppose that for each z € L and for each g € G with g(z) = z, we have ||Dg,||s < 1. Then
there exist a constant Cy > 0 and a constant 8 < 1 such that for each v € TN and for each
z € L, we have || D(Yn,1)z]ls < Cof".

Proof. We first prove statement (i). We show the following claim.
Claim 1. Under the assumptions of our lemma and statement (i), let & € N with 1 < k& < L.
Then there exist a constant Ay > 0 and a constant «y > 1 such that for any subset H C L with
tH =k, for any n € N, for any z € H and for any v € I'N, if v,1(2) € H for each j = 1,...,n,
then || D(yn,1):ls = Araj.

To prove this claim, we use the induction on k. Apparently, the statement of the conclusion of
the claim holds for k = 1. Suppose that the statement of the conclusion of the claim holds for k,
where 1 < k < L. Let u € N with u > 2 such that for each ' € N with «' > u, we have

(min [ Dgu||) Apags > 2. (52)
For this u, let
B = min{[D(p, o0 pr)ulls | 0 € Lyr (o1, -spr) €17, pro--wopy(w) = w) > 1. (53)
Also, let v € N be a large number such that
(it [ Do) Arai - (min{|D(pr o0 pr)ulls | w € Lr <y (pryospp) €T > 2. (54)
Let p € N be a large number such that

BP -min{||[D(p, 0+ 0 p1)ulls |w € L7 <u,(p1,...,pr) €7} > 2. (55)
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Let n € N with n > puv. Let H C L with #H = k+1. Let v € 'V, 2 € H and suppose that vj1(z) €
H foreach j=1,...,n. Let j1,...,jm € Nwith 1 < j; < jo <--- < jp, < nsuch that v, 1(2) =2
foreachi=1,...,mand y,1(2) # z foreach l € {1,...,n}\ {j; | i =1,...,m}. Also, let jo :=0
and jm41 = n. (If there is no j € N such that 7;1(2) = z, then we set jo = 0,m = 0, j; = n.) We
now want to show that |D(vy,1):|ls > 2. In order to do that, we consider the following three cases
1,2,3.

Case 1. jm+t1 — jm > u. In this case, by the definition of {j;}, assumptions of our lemma and
(52), we obtain that ||D(vy,1)2]ls > 2.

Case 2. jm+1 — Jm < u and there exists an element ¢ € NU {0} with 0 < ¢ < m — 1 such
that jg+1 — jq > wv. In this case, by the definition of {j;}, assumptions of our lemma and (54), we
obtain that ||D(yn,1)z]ls > 2.

Case 3. jm+1 — Jjm < u and for each i € NU {0} with 0 < ¢ <m —1, j;11 — j; < wo. In this
case, we have puv < n = 31" (jit1 — ji) < (m + 1)uv. Hence m > p. Combining this with the

definition of {j;} and (55), we obtain that

[D(Yn,1):lls = B™ -min{[|[D(pr o+ o pr)uwlls | 7 < u,(p1,...,pr) €T} > 2.

From these arguments, the induction step for k + 1 is complete. Thus we have proved Claim 1. By
Claim 1, statement (i) of our lemma holds.
By the similar method to the above, we can show that statement (ii) of our lemma holds.
Thus we have proved our lemma. O

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.76. Let Y be a mild subset of Raty and suppose that Y is strongly nice with respect
to some holomorphic families {Wj};”:l of rational maps. Then the set

{7 € My (V,AW;}]L1) | T is weakly mean stable}

is open and dense in (M (Y, {W;}jL,),0). Moreover, there erists the largest open and dense

subset A of (M (Y, {W;}L,), O) such that for each T € A, all of the following statements (i)—(v)
hold.

(i) 7 is weakly mean stable.

(ii) Let D, be as zzz Definition 3.72 for 7. Then §Jxer(Gr) < 00, Dy = Jyer(G) C ﬁ;”:lS(Wj)

and fMin(G,,C) < oo.
(iii) For each L € Min(G,,C) with L ¢ Jyer(G+), we have that L is attracting for 7.
(iv) For each z € F(G;), we have that G,(z) N (ULEMin(GT,(@),ngJker(GT)L) # 0.
(v) All statements (i)—(vil) of Theorem 3.65 hold for .

Proof. Let 7 € My (Y, {W;}]L;) be an element. There exists an element 79 € My (Y, {W;}7,)
with fsupp 7o < oo arbitrarily close to 7. Since ) is nice with respect to {W; }’]71:17 we may assume
that for each 2 € Smin({W;}7L;) and for each j € {1,...,m}, either

o Dh. #0forall h € Ty M {f; | A € A}, or
. D(fj,/\)z =0 for all A € Aj.

By enlarging the support of 79 a little bit, we obtain an element 71 € My (Y, {W;}}]L,) arbitrarily
close to 7 such that int(I'-, N {fjx | A € A;}) # 0 with respect to the topology in {fjx | A € A;}
for each j = 1,..., m. By enlarging the support of 71 a little bit again, Lemma 3.71 implies that,
we can obtain an element 72 € My (Y, {W;}]L,) arbitrarily close to 7 such that int(I'z, N {fjx |
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A € Aj}) # 0 with respect to the topology in {f;x | A € A;} for each j = 1,...,m, such that
Jker(Gr,) C NJL1S(Wj), such that §Jier(Gr,) < 00, such that #Min(G,,,C) < oo, and such that
each L € Min(G,,,C) with L ¢ N7L1S(W;) is attracting for To. We now prove the following claim.
Claim 1. There exists an element 73 € (My,(V, {W;}]L;) arbitrarily close to 72 such that the
interior of I'zy; N {f;x | A € A;} is not empty with respect to the topology in {f;\ | A € A;} for
each j = 1,...,m, and such that for each L € Min(G,,,C) with L C N7, S(W;), exactly one of
the following (I)-(IV) holds.

(I) For each z € L and for each g € G, with g(z) = z, we have ||Dg,|/s > 1.
(IT) For each z € L and for each g € G, with g(z) = z, we have ||Dg.||s < 1.

(IIT) There exist a point z; € L and elements g1, g2, g3 € G, such that ¢1(z1) = 21, | D(91) 2 ||s >
1, g2(z1) = 21,0 < ||D(92)2 1| < 1, g3(21) = 21, and 2z is the center of a Siegel disk of gs.
Moreover, there exist some elements a,...,oq € I'zy with ag € int(T'ry N {fjo 0 | A € Ay )
with respect to the topology in {fj, x | A€ Aj, }, k=1,...,l, such that g3 =aj0--- 0.

(IV) There exist a point z; € L and a j € {1,...,m} such that for each A € A;, we have
D(fjx)- = 0. Moreover, there exist a point zp € L and an element g € G, such that
g(z2) = 22 and || Dg,,||s > 1.

To prove this claim, we first remark that regarding the minimal set L € Min(GTy((A:) with L C
N7 S(W;) of type (I), by Lemmas 3.46 and 3.75, if we perturb 72 a little bit to 73, then L €

Min(GTé,@) with L C ﬁ;’;ls(Wj) and L is of type (I) for 74. By Lemmas 3.46 and 3.75 again,
the similar thing holds for minimal sets L € Min(G,,,C) with L C N7, S(W;) of type (II). Let
73 € My (Y, {W;}]L,) be an element such that 73 is close to 2 and I'r, C int(T'7;N{fjx | A € A;})
with respect to the topology in {fjx | A € A;}), for each j =1,...,m. Regarding the element 73,
suppose that we do not have (I) or (II). Then there exist a point z; € L, an element g; € G, a
point z3 € L, and an element hy € G, such that g1(z1) = 21, ||D(91)2ls = 1, ha(z2) = 22, and
|D(h2)z,lls < 1. Since Y is nice with respect to {W;}7L,, by enlarging the support of 73 a little
bit, we may assume that ||D(g1)z,|ls > 1 and || D(hg),|ls < 1. (For, if g1 = 4, 0 -+ 041 where
Y €Ty N {fjux | A€ A}, k=1,...,n, we may assume that v, € int(I'z, N {f;, x| A € A, }.
Since ) is nice with respect to {W;}}L,, perturbing 7, a little bit if necessary, we may assume
that [|D(g1)z, || > 1. Similar argument is valid for hs.) Let o, 8 € T'7, such that a(z2) = z; and
B(z1) = z2. Take a large n € N so that | D(ahy ), |ls < 1. Let g2 = ahf. Suppose we do not
have (IV). Then we may assume that 0 < ||D(g2)z, ||s- In order to take an element g3 as in (III),

let a = ||D(g1)z|ls > 1 and b= |D(g2) s € (0,1). Let
Q:= {mloga+nlogh| (m,n) € (NU{0})?\ {(0,0)}}.

We now prove the following subclaim which is needed in the proof of Claim 1.
Subclaim (*). 0 € Q with respect to the topology in R.

To prove this subclaim, let Q4 = QN{x € R |z > 0} and Q_ := {z € R | 2 < 0}. Suppose that
0 ¢ Q. Then infQ, > 0 and supQ_ < 0. Suppose that inf Q, > —sup€_. Then for each € > 0
with € < max{inf Q + supQ_, —sup Q_}, there exist an element ¢; € Q1 with ¢; < infQ; + €
and an element dy € Q_ with di > supQ_ — €. Then ¢; +dy > inf Q; +supQ_ — e > 0. Hence
c1 +dy € Q4. However, ¢; +d; < infQ, 4+ supQ_ + e < inf Q4. This is a contradiction. Thus
we must have that inf Q; < —supQ_. Similarly, we must have that inf Q, > —sup{)_. Hence
inf O, = —supQ_. This implies 0 € Q. However, this is a contradiction. Thus we have proved
subclaim ().

Going back to the proof of Claim 1, for each i = 1,2, we write g; = 7 o --- o 'V;i where
Vi € Doy N {fjion | A € Aj, . }. By enlarging the support of 73 a little bit, we may assume that
i € int(Tr, N {f5,. 0 | X € Ay, . }) with respect to the topology in {fj, x| A € Aj, , } for each 4, k.
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Then there exist an € > 0 and a neighborhood Vk i of v in int(Try N{fj.,0 | A € Ay, ,}) such that
(loga — ¢ loga +¢€) C {logllD(% “Ap)aills |5 € Vi, k =1...,p1} and (logb — €,logb +¢) C
{log||[D(F -+ 47, )z lls [ 37 € Vias b =1...,pa}. We set

Q= {mlog||[D(F} -3} )z ls + nlog | D(73 - 72, )zll|s
| (m,n) € (NU{0})?\ {(0,0)},75} € Vi1, € V2, Vk}.

Then for each ¢ € Q, we have (¢ — ¢, ¢+ €) C €. By Subclaim (x), it follows that 0 € €. Therefore
there exist an element (m,n) € (NU{0})?\ {(0,0)}, pi-elements 7} € Vy1,k = 1,...,p1, and
po-elements 37 € Vi, k = 1,...,ps such that setting hs = (51 ---35 )" (51 - -+ 75,)", we have
|D(h3),|ls = 1. Perturbing ¥ a little bit, we obtain an element g3 which is close to hg such that
g4(21) is a Brjuno number (we may assume z, € C by conjugating G, by an element of Aut(C)).
Thus g3 has a Siegel disk whose center is z; ([24]). Thus we have proved Claim 1.

By Lemma 3.75, we have the following two claims.
Claim 2 There exists a k € N such that for each L € Min(G,, Smin({W;}72,)) of type (I), for each
z € L and for each (y1,...,7) € T¥ | we have || D(yz 0+ om):|s > 2.
Claim 3. There exists a k& € N such that for each L € Min(Gr,, Smin({W}}L,)) of type (II), for
each z € L and for each (y1,...,v) € I'¥ , we have |[D(y; 0 -+ om).|s < 3. Moreover, there
exists a neighborhood V of L with #(C\ V) > 3 such that for each (v1,...,7) € I'y,, we have
i o---0y (V) C V. In particular, L is attracting for G, and L C F(G.,).

Throughout the rest of the proof, we fix an element k& € N which satisfies the statements in
Claims 2,3.

We now prove the following claim.
Claim 4. Let L € Min(Gr,, Smin({W;}}j,)) be of type (III). Then L C int(J(Gr,)). In particular,

for each z € F(G.,), we have G,(z) N L = {.

To prove Claim 4, let 21, g1, g2, g3 be as in (III). Since z; is a repelling fixed point of g1, we
have z; € J(G,). Since J(G.,) is perfect (see [13]), there exists a point w € J(G,) N (B\ {z1}),
where B denotes the Siegel disk of g3 whose center is z;. Therefore there exists a gs-invariant
analytic Jordan curve ¢ in J(G,,) N B with w € ¢. If K is a compact subset in C \ S;(W;), A is
a subset of {f;x | A € A;} with int(A) # () with respect to the topology in {f;\ | A € A i}, and
ho € int(A), then there exists an € > 0 such that for each z € K, B(ho(z),€) C {h(2) | h € A}
From this fact and that (S1(W;)) < oo for each j, it follows that ¢ C int(J(G~,)). Similarly, for
each w' € BN J(G4,), if we take the gs-invariant analytic Jordan curve ¢’ in B with w’ € ¢/, then
¢’ C int(J(Gry)). From this argument, we obtain that z; € int(J(G,)). Therefore L C int(J(Gr,)).
Thus we have proved Claim 4.

We now prove the following claim.

Claim 5. Let L € Min(Gr,, Smin({W;}}j£,)) be of type (IV). Then L C int(J(G,)). In particular,
for each z € F(G+,), Gr,(z) N L = 0.

To prove Claim 5, let j € {1,...,m}, 21,22 € L and g € G, be as in (IV). Since z; is a repelling
fixed point of g, we have zo € J(G,,). Moreover, let A € A; with f; y € T';, and let o, 5 € G,
such that a(z2) = 21, 8(fjA(21)) = z2. Then o f; ) o a(zz) = 22 and D(B o fjro0«),, = 0. By
(14, Corollary 4.1], we obtain that zo € int(J({g, 5 o fjx o @))) C int(J(Gr,)). Moreover, for each
z € L, there exists an element v € G, such that v(z) = z2. Thus L C int(J(G,)). Hence we have
proved Claim 5.

Let 7 := {L € Min(G~,,C) | L € N7, S(W;), L is of type (I)}. Let

Cr, = {w e C\UrezL | I(1,..., k) € I"jg st vy (w) € UpezL}.
Note that Cr, C J(G.,). Moreover, by Claim 2,

Cr, N ULeMin(Gr, &)L = ¢ and C,, is compact. (56)
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We now prove the following claim.
Claim 6. Let z € F(G,). If G,(2) N (ULel\/Im(GT3 ,@)7L0F(GT3)7€@L) = (), then

Gry(2) N (ULez Leac.,)L) # 0 and G-, (2) N Cry # 0.

To prove Claim 6, let z € F(G,,) and suppose G, (z) N (ULEMin(Gﬂ-g,C),LﬂF(GT3)¢0L) = (). Since
Gr,(2)N ULEMin(GTB,@)L # 0, Claims 3,4,5 imply that G-, (z) N (Urez rcs(a,,)L) # 0. Let 61 >0

be a number such that for each (y1,...,7%) € I‘ﬁg, for each L € 7 and for each x € L, we have

Ve * V1| B(x,5,) is injective and we can take well-defined inverse branch ¢ : B(yg - --v1(x),61) — C
of v - -+ v1 such that (v ---71(x)) = z. We may assume

01 < (1/2) - min{d(a,b) | L € Z,a,b € L,a # b}.

Let 65 € (0,81) be a number such that for each L € Z, for each € L and for each y €
B(z,02), we have d(vg - - v1(y), Y-+ ,71(x)) < 61. Let € € (0,61) be any small number with
€ < d(z,UrezL). Then there exist an element v = (y1,72,...) € X,, an element n € N, and an
element L € Z such that v,x1(2) € B(L,¢). We may assume that n is the minimum one. Sup-
pPose Y(n—1)k,1(2) € UrezB(L,d2). Then there exist an element Ly € Z and an element zy € Lo
such that vy;,—1y%,1(2) € B(z0,02). It implies that d(vnr,1(2), Vnk - Vn-1)k+1(20)) < d1. Let
& B(Yak - Yn—1)k+1(20),01) — C be the well-defined inverse branch of 7,y - “Y(n—1)k+1 such
that £(Vnk - Yn—1)k+1(20)) = 20. By Claim 2, taking J; small enough, we obtain that

3
§(B(Ynk - '7(n—1)k+1(20)76)) C B(zo, 16) C B(z0,61).
Since Ynk - Yn—1)k+1|B(z0,5,) 18 injective, it follows that

Yin-1)k,1(2) € E(B(Ynk == Yn—1)k+1(20), €)) C B(20,€).

However, this contradicts the minimality of n. Therefore we should have that vi,_1)x,1(2) &
UrezB(L,02). Since the above argument is valid for arbitrarily small € > 0, we obtain that
G, (2) N Cr, # 0. Thus we have proved Claim 6.

Let p € N with p > 3770, £S1(W;) + 1 and let H := {z € F(G,) | Gr,(2) N Cy, # 0}. For
each z € H and for each n € N, there exist an element (W, ;,.0,--.,Wsnyp) € (Gr(2))PT and an
element (V. n,1,- -+, Yzm,p) € I'%, such that v, niy1(Weni) = Wem,ip1 for each i =0,...,p—1 and
such that d(w; p p,Cr,) < % We may assume that for each ¢ = 0, ..., p, there exists an element

W 00, € Gry(2) such that w, i — W, 0, as 1 — 0. Moreover, we may assume that for each
1 =1,...,p, there exists an element v, o ; € I's, such that v, ,; = 7:,00,i a8 n — oco. Then we
have that v, c0,i+1(Wz,00,i) = Wz c0,i+1 for each ¢ =0,...,p — 1. Since w, c0p € Cry C J(Gry), We
obtain that w, «; € J(Gr,) foreach i =0,...,p. Foreach i =1,...,p, let j,, € {1,...,m} be an
element such that v, ;s € I'r, N {f;...x | A € Aj_,}. We now prove the following claim.

Claim 7. There exists a number € > 0 such that for each z € H, there exists an element ¢ € N with
1 <4 < psuch that d(w;,00,i—1,51(Wj.,)) > €.

To prove Claim 7, suppose that the statement of Claim 7 does not hold. Then for each r € N
there exists a z, € H such that for each i € N with 1 <i < p, we have d(w., c,i—1,51(W;. ,)) < L.
We may assume that for each ¢ = 1,...,p, there exist an element a,_1 € C,,, an element j; €
{1,...,m}, and an element v; € I'-, N {f;;.» | A € A;, } such that j, , = j; for each r, such that
Wy, o0,i—1 — Gj—1 a8 T — 00, and such that v, ~; — v; as r — oco. Also we may assume that there
exists an element a, € C;, such that w,,  , — ap as r — co. Then we have that a;,_1 € S1(W},)
and 7y;(a;—1) = a; for each i = 1,...,p and thus a;,_1 ¢ ULeMin(G,3,<ﬁ)L for each i = 1,...,p (by
(56) and the fact a, € C,). However, this contradicts to the assumption that there exists no

peripheral cycle for (Y, {W; ;’L:l). Thus we have proved Claim 7.
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Since W, 00 € J(Gry) for each z € H and ¢ = 1,...,p, Claim 7 implies that if 74 €
My (Y, {W;}72;) is an element such that 'y N {f;x | A € A;} C int(Dry 0 {f50 [ A € Aj})
with respect to the topology in {f;x | A € A;} for each j = 1,...,m, then for each z € H there
exists an element g, € I';, such that

Gry(9:(2)) N ULEMin(GTS,C)7 L is attracting for s # 0.

Combining this with Lemma 3.71 and Claim 6, we easily see that if we assume further that 74 is
close enough to 73, then for each L € Min(G,,,C) with L ¢ Jier (G, ), we have that L is attracting
for 74 and

for each z € F(G,,), we have that G, (z) N ULeMin(G,,.0), L is attracting for LL#0. (57)

Moreover, Lemma 3.71 implies that there exist two non-empty open neighborhoods Vi -,, Vs ;, of
the union of attracting minimal sets for (G,,,C) and an element n € N such that Vi ., C Vo r,,

#(C\ Va.r,) > 3 and for each (v1,...,7,) € I, we have 7, o---0y1(Var,) C Vir,. By (57) and
Lemma 3.71 (i), we have

D, = m g_l(C \ Va,r,) = Jier(Gry) C ﬁ}'L:lS(Wj)- (58)
9€Gry

Furthermore, for each L € Min(G,,,C) with L C NJL151(W;), L satisfies exactly one of (I)~(IV)
in Claim 1. Therefore 74 is weakly mean stable. By (58), Lemma 3.46, Lemma 3.73 and its proof,
and Lemma 3.74, we see that there exists an neighborhood V' of 74 in (9 (Y, {W;}}L,), O) such
that for each 75 € V', we have that statements (i)(ii)(iii)(iv)(v) in our theorem hold for 75. Thus
we have proved Theorem 3.76. O

Definition 3.77. Let )Y be a weakly nice subset of Rat with respect to some holomorphic families
{W; };”:1 of rational maps. We set

M cmita(Vs AW;}iL1) = {7 € My (Y, {W;}]L,) | FL € Min(G,, C) which is attracting for 7}.
Also, we denote by M . yr(Y, {W;}72;) the set of elements 7 € My (Y, {W;}]L,) satisfying that
J(G,) = C and either Min(G,,C) = {C} or ULeMin(a.,&)L € NjZ1SW;).

Remark 3.78. Let ) be a weakly nice subset of Rat with respect to some holomorphic families
{W;}7L, of rational maps. Then it is easy to see that My ¢ mira(V, {W;}L;) is an open subset of
(M1, (Y, {W;}7L1), 0).

We now prove a theorem in which we do not assume that ) is mild with {W;}7.,.

Theorem 3.79. Let Y be a strongly nice subset of Rat with respect to some holomorphic families
{W;}iL, of rational maps. Then the set

{7 € My cmira(Vs AW, }jL1) | T is weakly mean stable}
is open and dense in (M1, cmia(Y, {W; };-":1), O). Moreover, there exists the largest open and dense

subset A of (M ¢, mira(V, {W;}L1), O) such that for each T € A, all statements (i)—(v) in Theo-
rem 3.76 hold. Furthermore, we have

AUMy g (VAW L) = M (VAW H21)

with respect to the topology O.
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Proof. By using the argument in the proof of Theorem 3.76, we obtain that the set of mean
stable elements 7 € My ¢ muq is open and dense in (M ¢ mira (Y, {Wj}?”;l),(’)), and there exists
the largest open and dense subset A of (MM ¢ mira(Y, {Wj}Tzl),O) such that for each 7 € A,
all statements (7)-(v) in Theorem 3.76 hold. To prove the last statement of the theorem, let
7 € My (Y, {W;}]L;) and suppose that there exists no element in Min(G, C) which is attracting
for 7. We want to find an element in 9% . 77 (Y, {W;}72,) which is arbitrarily close to 7, by using
the arguments in the proof of Theorem 3.76 with some modifications. We take 71 close to 7 as in
the proof of Theorem 3.76. We may assume that there exists no element in Min(G,,, C) which is
attracting for 7. We now consider the following two cases.

Case 1. F(G.,) =0. Case 2. F(G,,) # 0.

Suppose we have Case 1. Let L € Min(G,,,C) and suppose L # C and L ¢ N7, S(Wj). Then
0 # int(L), #(C \ (int(L))) > 3 and G, (int(L)) C int(L). Hence by Montel’s theorem, we obtain
0 # int(L) C F(G,). However, this is a contradiction. Thus 2 € My ¢ 7r (Y, {W;}7L,).

Suppose that we have Case 2. Let 7 € My (Y, {W;}]L;) such that T'-, N {fix | A € A;} C
int(I'7,N{fjx | A € A;}) for each j = 1,...,m, and such that 7 is close to 7. Then by Lemma 3.71
(iv), we have that either Min(G,,,C) = {C} or ULemin(a., &)L C M= SOV)), and if Min(Gr,, €)=
{C} then J(G,,) = C. Thus we may assume that ULeMin(a,,,6)L C N7L1S(W;). Under this
condition, if F(Gr,) = 0, then 7 € My . 7r (Y, {W;}7L,). Thus we may assume F(G,,) # (). By
the argument in the proof of Claim 1 in the proof of Theorem 3.76, there exists an element 73 close
to 7o such that T, N {fjx | A € A;} Cint(T, N{fjx | A € A} for each j = 1,...,m, and such
that the statement in Claim 1 in the proof of Theorem 3.76 holds for 75. By Lemma 3.46, we have

ULeMin(G-, oL cniLiswy). (59)

Also, since Iy, C T';,, there exists no element in Min(G,, @) which is attracting for 73. As before,
we may assume that F(G.,) # 0. There exists a k € N for which the statement of Claim 2 in the
proof of Theorem 3.76 holds. We fix such an element. It is easy to see that statements in Claims
4,5 hold for 73 even under our assumptions. Let Z,C., be as in the proof of Theorem 3.76. Then
the statement of Claim 6 in the proof of Theorem 3.76 holds for 75. More precisely, we have that

if 2 € F(Gr,), then G, (2) N (UpezL) # 0 and G, (2) N Cry # 0. (60)

As in the proof of Theorem 3.76, let p > Z;ﬂ:l 8S(W;) + 1 and let

H :={z € F(Gx,) | Gry(2) N Cry # 0} (61)
Then we have that
the statement of Claim 7 in the proof of Theorem 3.76 holds for our 3. (62)

Let 74 be an element close to 73 such that 'y, N {f;x | A € A;} Cint(T', N {fjx | A € A;}) for
each j =1,...,m. Then by (59) and Lemma 3.46, we have that

ULeMin(a,, &)L C Ny S(W;). (63)

Moreover, by (62), we see that for each z € H there exists an element g, € I';, such that
Gr,(9:(2)) Nint(J(Gry)) # 0. In particular, H C J(G,). Combining this with (60) and (61), it fol-
lows that F(G.,) C J(G,). Hence J(G,) = C. Therefore we obtain that 74 € My . 7# (Y, {W; -
Thus we have proved our theorem. O

We now prove the following theorem on the systems generated by weakly mean stable elements.
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Theorem 3.80. Let 7 € My (Rat) be weakly mean stable. Suppose $J(G,) > 3. Suppose
that for each L € Min(G;, Jxer(G-)), we have x(L,7) # 0. Suppose also that for each L €
Min(G,, Jxer (G+)), if x(L,7) > 0 then for each z € L and for each g € T, we have Dg, # 0.
Then all of the following hold.

(i) #Jier(Gy) < 0.

(ii) For each L € Min(G., C) with L ¢ Jyer(G), we have that L is attracting for G-.

)
)
(iii) For each z € F(G,), we have that G,(z) N ((ULeMin(GT,C),ngJker(GT)L) # .
(iv) All statements (i) —(vii) in Theorem 3.65 hold for T.

)

(v) Let Hy ; = {L € Min(Gy, Jxex(G7)) | x(,L) > 0} and let Q, be the set of points y € C
for which 7({y € X; | In € N s.t. v,1(y) € ULen, . L}) = 0. Then we have Q. = Fo(7),
#(C\ Q) < Rg and for each z € Q,, 7({y € X, | z € J,}) = 0. Moreover, for 7-a.ey € X,
we have Leby(Jy) = 0. Moreover, Uren, L C J),(1) = C\Q, and #J0, (1) < Rq.

(vi) Let Q. be as in (v). Then #(C\ Q) < Ry and there exist a constant ¢, < 0 and a constant
pr € (0,1) such that for each z € 1, there exists a Borel subset C. , of X; with 7(C;,) =1
satisfying that for each v = (y1,72,...) € Cr, and for each m € N U {0}, we have the
following (a) and (b).

(a)

. 1
lim sup — log ||D(7n+m71+m)7m,1(Z)HS <c¢r <0

n—oo T

(b) There exist a constant 6 = 6(t,z,v,m) > 0, a constant ( = ((1,z,v,m) > 0 and an
attracting minimal set L = L(7,z,7) of T such that

diam(7n+m,1+m(B(7m,l(Z)a5))) <(¢pt foralln €N,

and
d(7n+m,1+m(7m,1(z))a L)< Cpy for allm € N.

(vii) For T-a.e. v € X, for Lebs-a.e. z € C. there exists an attracting minimal set L = L(71,7,2)
such that d(yn,1(2),L) — oo. Also, for T-a.e. v € X, for each z € F,, there exists an
attracting minimal set L = L(7,7, z) such that d(y,1(z), L) — oo.

(viii) Let Q; be as in (v). Then we have Q, = FJ(1), #(C \ FY(7)) < No and for each L €
Min(GT,@), foreach j=1,...,rr, where r;, = dimc U, 1, and for each y € F;,)t(T), we have
that lim ¢ ., Tr -(2) = Tp+(y) and lim L;,z) = a(Lj,y), where a(Lj,-) is the
function coming from Theorem 3.65 (iii).

z€@,z—>y a(

(ix) Let Hy ; and Q; be as in (v). Lety € J),(1) = C\Q,. Then there exist an element L € Hy ,
and j € {1,...,7r1} such that all of the following hold.

(a) Tr ~(2) does not tend to Ty, ,(y) as z — y.

(b) a.(Lj, z) does not tend to a(Lj,y) as z — y. Here, for the notation L;, see Theorem 3.65
(4)-

(¢) Let pr, € C(C) be any element such that pp|p, = 1 and @p|r = 0 for any L' €

Min(G,,C) with L' # L. Then the convergence in (42) in Theorem 3.65 for ¢ = ¢, is
not uniform in any neighborhood of y.
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(d) There exists a Borel subset E., of X, with 7(E;,) = T -(y) > 0 such that for each
v € E.,, there exists an element m € N such that ym1(y) € L and
1,00 7 108 [| D (Yt m,14m )y, 1 ) lls = X(7, L) > 0.

Proof. By Lemma 3.74, statements (i)—(iv) hold. By Theorem 3.37, we have #(C\ Q,) < Xy and
for each z € Q,, 7({y € I'Y | 2 € J,}) = 0. Moreover, for 7-a.e.y € X, we have Leby(.J,) = 0.
Moreover, J0, (1) C C\ Q, and 870 (1) < No. In order to prove Q, = F0 (1), let y € C\ Q.. Then
by Lemma 3.36,

T({v € X; | d(ym1(y),ULen, L) = 0 as n — oo}) > 0. (64)

Since #(C\ Q,) < Ng, there exists a sequence {2, }°°_, in Q, such that z,, — y as m — co. Then
by Lemma 3.36 again, we have 7({y € X+ | d(Vn,1(2m),ULen, ,L) — 0 as n — oo}) = 0 for each
m € N. Combining this with (iv) and Theorem 3.65 (iv), we obtain that

T({v € X; | d(yn,1(2m), ULGMin(GT,@)\HJr,TL) — 0asn — oo}) =1 for each m € N. (65)

By (64) and (65), it follows that y € Jp,(7). Hence Q, = FJ(7). Also, by the definition of Q,

we have Urep, L C C\ Q,. Thus statement (v) holds. Moreover, by using the above argument,
we can show that there exist an element L € H, ; and an element j € {1,...,7r.} such that (a)
and (b) in (ix) hold. By statement (a) in (ix) and the fact {Min(G,) < oo, statement (c) in (ix)
holds. Statement (d) in (ix) follows from the definition of 2, Lemma 3.36 and Birkhoft’s ergodic
theorem. Hence statement (ix) holds.

We now prove statement (vi). By Theorem 3.65 (iv) and Lemma 3.36, it follows that for
each z € Q., there exists a Borel subset D, . of X, with 7(D;,.) = 1 satisfying that for each
v=(7,7%,...) € D;, we have

d | vna(2), U LU L] —-0asn— oc.
LeMin(G,,C),L 1s attracting LeEMin(G,Jier (G-)) and x(L,r)<0

(66)
There exist a constant A, € (0,1) and a constant C; > 0 such that for each v = (y1,72...,) €
X7, for each z € Upoviniq, ¢).1 is attracting L and for each n € N, we have 1D(vn1)zls <
C: 7. Let ¢, := max{log \;, MaxX1eMin(G, ,Juer (Gr))x(Lr)<0 X (L, T)} < 0 (if there exists no L €
Min(G, Jxer(G7)) with x(L,7) < 0, then we set ¢; =log ;). Then for each z € €., there exists a
Borel subset C . of D, , with 7(C;.) = 1 such that for each v = (y1,72,...) € C; . and for each
m € NU {0}, we have

limsup ~ 108 [ D (1. o) ls < €5 < 0.
n—oo N
Also, by (66) and Lemma 3.30 and its proof, there exists an element p, € (0,1) such that we can
arrange C; , so that for any v € C; . and for any m € NU {0}, statement (vi)(b) holds. Hence
statement (vi) holds for 7.
By statements (vi) and (v), statement (vii) holds.
By (iv)(v) and Theorem 3.65 (vii), statement (viii) holds. Thus we have proved our theorem. [

We now prove the following theorem, which is one of the main results of this paper.

Theorem 3.81. Let Y be a mild subset of Raty and suppose that Y is non-exceptional and strongly
nice with respect to some holomorphic families {Wj};ﬁzl of rational maps. Then there exists the
largest open and dense subset A of (M o(V,{W;}7L,),O) such that for each T € A, all of the
following hold.

(i) 7 is weakly mean stable.
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(ii) For each L € Min(G,,C) with L C N7 S(W;), we have x(L,T) # 0. Moreover, for each
L € Min(G,,C) with L c N S(Wy), if x(L,7) > 0, then for each z € L and for each
g € ', we have Dg, # 0.

(iil) fJker(Gr) < 00 and Jyer(Gr) C N7 SOV;).

For each L € Min(G-, (@) with L ¢ Jyer(G), we have that L is attracting for 7.

For each z € F(G~), we have that G+(2) N (U enin(a. &), L¢ Jen (G L) 7 0.
All statements (i) —(vii) in Theorem 3.65 hold for T.

Let Hy » = {L € Min(Gr, Juex(G7)) | x(7,L) > 0} and let Q. be the set of points y € C
Jor which 7({y € X; | 3n € N s.t. yn1(y) € Uren, ,L}) = 0. Then we have Q, = Fp(7),
#(C\ Q) < N and for each z € Q,, 7({y € TV | z € J,}) = 0. Moreover, for 7-a.ey € X,
we have Leby(J,) = 0. Moreover, Urepn, L C J3,(1) = C\ Q. and #70,(1) < Ro.

(viii) Let Q, be as in (vii). Then #(C\ Q) < R and there exist a constant ¢, < 0 and a constant
pr € (0,1) such that for each z € S, there exists a Borel subset C; , of X, with 7(C-.) =1
satisfying that for each v = (y1,72,...) € Cr, and for each m € N U {0}, we have the
following (a) and (b).

(a)

. 1
lim sup — 10g | D (Vnt-m,14m )y 1 (2) s < €7 < 0.

n—oo T

(b) There exist a constant 6 = 6(7,z,v,m) > 0, a constant ( = {(1,2,v,m) > 0 and an
attracting minimal set L = L(7,z,7) of T such that

diam(Yptm,14m (B(Ym,1(2),90))) < (p2 for alln € N,

and
d(7n+m,1+m(7m,1(z))a L)< Cpy for allm € N.

(ix) For T-a.e. v € X, for Lebs-a.e. z € C. there exists an attracting minimal set L = L(71,7,2)
such that d(yn,1(2),L) — oo. Also, for T-a.e. v € X, for each z € F,, there exists an
attracting minimal set L = L(7,7, z) such that d(y,1(z), L) — oo.

(x) Let Q; be as in (vii). Then we have Q. = Fp(7), #(C \ E(7)) < Ro and for each L €
Min(GT,C), foreach j=1,...,rr, where r;, = dimc U, 1, and for each y € th(T), we have
that lim_ e, Tp-(2) = Tr-(y) and lim_ e, o(Lj,z) = oLy, y), where a(Ly,-) is the
function coming from Theorem 3.65 (iii).

(xi) Let Hy . and Q be as in (vii). Let y € J} (1) = C\ Q,. Then there exist an element
L e Hy ; and an element j € {1,...,rp} such that all of the following hold.

(a) Tr.~(2) does not tend to Ty, ,(y) as z — y.

(b) «(Lj,z) does not tend to a(Lj,y) as z — y. Here, for the notation L;, see Theorem 3.65
(i)-

(c) Let o1 € C(C) be any element such that o)y = 1 and @p|p = 0 for any L' €
Min(G,,C) with L' # L. Then the convergence in (42) in Theorem 3.65 for ¢ = @y, is
not uniform in any neighborhood of y.

(d) There exists a Borel subset E., of X, with 7(E;,) = Tr (y) > 0 such that for each
v € E,, there exists an element m € N such that v, 1(y) € L and
limy, 00 %k)g ||D('Yn+m,1+m)7m,1(y) |s = x(, L) > 0.
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Proof. By Theorem 3.76 and Lemma 3.56, there exists an open and dense subset A of the space
(My,(V, {W;}7L1), O) such that for each 7 € A, statements (i), (ii) and (iii) hold. By Theo-
rem 3.80, for each 7 € A, statements (iv)—(xi) hold. Thus we have proved our theorem. O

We now prove a theorem in which we do not assume that J is mild with {W;}L,.

Theorem 3.82. Let Y be a non-exceptional and strongly nice subset of Rat with respect to some
holomorphic families {W; };”:1 of rational maps. Then there exists the largest open and dense subset
A of (M1 c.mita(Y, {W;}71L1), O) such that for each T € A, all statements (i)—(xi) in Theorem 3.81
hold. Furthermore, we have

AU e gp (VAW 1L1) = M (VAW 120)
with respect to the topology O.

Proof. By the arguments in the proof of Theorem 3.81 and Theorem 3.79, it is easy to see that
the statements of our theorem hold. O

We now give corollaries of Theorems 3.76 and 3.81.

Corollary 3.83. Let YV be a mild subset of Raty and suppose that Y is strongly nice with respect
to some holomorphic families {Wj};":l of rational maps. Then the set

{T €My VAW, }7Ly) | T is weakly mean stable and §suppT < oo}

is dense in (M (Y, {W;}72,), O). Moreover, there exists a dense subset A of (M (Y, {W;}7L,), O)
such that for each T € A, we have fsuppT < oo and all statements (1)—(v) of Theorem 5.76 hold

for T.

Corollary 3.84. Let ) be a mild supset of Raty and suppose that Y is non-exceptional and strongly
nice with respect to some holomorphic families {W; };”:1 of rational maps. Let A be the largest open

and dense subset of (M (Y, {W;}L;), O) given in Theorem 3.81. Let Al = {1 € A| T, < a}.
Then A7 is a dense subset of A and is a dense subset of (My (Y, {W;}7-,), O) such that for each
7 € Af, we have that #suppT < oo and all statements (i)-(xi) in Theorem 3.81 hold for T. Also,
let Ay == {r € A|3L € Min(G,,C) s.t. x(r,L) > 0} and let Ai = A, NAS. Then Ay is an
open subset of A (hence an open subset of (IM1,.(V,{W;}jL1),0)) and Ai is a dense subset of
Ay. Moreover, for each T € Ai, we have J), (1) = J(G,) which is a perfect set.

Proof. Tt is easy to show that A7 is dense in A. Thus A7 is dense in (M (Y, {W; }71), 0). Also,
by statement (ii) in Theorem 3.81, it is easy to show that A, is open in A. In order to prove
the last statement, suppose 7 € A{_. Since Uren, ,L C Jgt, we have Jgt # (). Moreover, since
I, C Raty, we have J), C J(G;) C C\ E(G,) (recall that E(G,) denotes the exceptional set of
G;). Hence G;l(JSt(T)) D J(G;) (see [13, Lemma 3.2]). Also, by the definition of €., since I';
is finite, we have C \ Q = (G, U {Id})""(Urepm, .L) and G;1(C\ Q,) C C\ Q,. Furthermore,
by Theorem 3.81 (vii), we have J),(7) = C\ Q.. It follows that G;l(Jgt(T)) C J(r) C J(G).
Therefore J9, (1) = G7 ' (J%(7)) = J(G;). Finally, by [13, Lemma 3.1], J(G,) is perfect. O

4 Random relaxed Newton’s method

In this section we apply Theorems 3.76, 3.81 and the other results in the previous sections to
random relaxed Newton’s methods in which we find roots of given any polynomial.
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Definition 4.1. Let ¢ € P. Let A := {A € C | |]A—1] < 1} and let fia(z) = z — )\gg,((zz)) for
each A € A. Let W = {fa}xea. Let ¥ := {f\» € Rat | A € A}. Then Y is called the random
relaxed Newton’s method set for g and W is called the random relaxed Newton’s method
family for g. Also, (¥, W) is called the random relaxed Newton’s method scheme for g.
Moreover, for each 7 € My .()), the random dynamical system on C generated by 7 is called a
random relaxed Newton’s method (or random relaxed Newton’s method system) of

(g,7). Also, let Qg := {20 € C| g(20) = 0}.

We need the following lemma to investigate random relaxed Newton’s methods and other
examples to which we can apply Theorems 3.76 and 3.81. The proof is easy and it is left to the
reader.

Lemma 4.2. Let Y be a nice subset of Rat with respect to a holomorphic family W = {fa}rea
of rational maps. Then Y is strongly nice with respect to W and Y satisfies the assumptions in
Theorem 3.76. Moreover, if, in addition to the assumption of our lemma, Y satisfies that for
each T € Cpt({fr | A € A}) and for each L € Min((I'), S(W)), we have L = 1, then Y is
non-exceptional and strongly nice with respect to V.

We now show that we can apply Theorem 3.81 to random relaxed Newton’s methods.

Lemma 4.3. Let g € P and let (Y, W) be the random relaxed Newton’s method scheme for g.
Then Y is a mild subset of Rat and ) is non-exceptional and strongly nice with respect to W.
Also, for each x € Q4 and X € A, we have that fr(z) = x and f{(z) =1 — 2=, where m, denotes
the order of g at the zero x, and |f}(x)| < 1. Moreover, for each A € A, we have fx(c0) = oo, the
multiplier of fx at oo is equal to (1 — ﬁ@)_l, and | D(f))oolls = |1 — ﬁ(,ﬂ_l > 1. Moreover,
we have SW) = Q411 {oo} I1{zy € C | ¢'(20) = 0,9(20) # 0}. Moreover, for each T' € Cpt(Y), we

have Min((I'), SOV)) = {{z} [ # € Qq} U {{oc}}.
Proof. It is easy to see that SW) = Q, L {oo} L1 {2y € C | ¢'(20) = 0,9(20) # 0} and for each
I € Cpt(Y), we have Min((T'), SOV)) = {{z} | = € Q,} U {{o0}}.

It is easy to see that fy(z) = z and fi(z) =1 — n% for each v € Q4 and A € A. Since
{1—%|)\€A}:{ZGC| ‘Z_(l_n%” < miT},wehave |fi(z)] < 1forall z € Q4 A€ A.
Similarly, it is easy to see that for each A € A, we have f\(oo) = oo, the multiplier of fy at co
is equal to (1 — ﬁ@)_l, and ||D(f))oolls = |1 — ﬁ(,ﬂ_l > 1. From the above arguments, we
obtain that ) is a mild subset of Rat and ) is non-exceptional and nice with respect to W. By
Lemma 4.2, it follows that ) is strongly nice with respect to W. O

We now prove the following theorem on random relaxed Newton’s methods.

Theorem 4.4. Let g € P. Let (Y, W) be the random relaxed Newton’s method scheme for g. Then
we have the following.

(i) There exists the largest open and dense subset A of (M1 (Y, W), O) such that for each T € A,
all statements (i)—(xi) in Theorem 3.81 hold.

(ii) Let T € A. Let Q. be the set defined in Theorem 3.81. Then #(C\ Q,) < Rq and
Q. ={yeC|7{ve X; | IneN st v,1(y) =o0}) =0}
Moreover, there exists a constant p- € (0,1) such that for each z € Fy (1) = Q, there exists

a Borel subset C; . of X, with 7(C; ) = 1 satisfying that for each v € C; ,, there exists a
constant ¢ = ((7,z,7) > 0 such that

d(Vn,1(2), Qg ULeMin(a, €)1 is attracting for +,L0Q,—0 L) <¢py for alln € N.
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(iii)

For each T € A, we have oo € J)(7) = C\ Qr and Jrex(G7) = {20 € C | ¢'(20) = 0, 9(20) #
0} U {oo}. In particular, O # J,(7) and Juex(G7) # O for each 7 € A. Also, if we set
Al = {7 € A| 1, < o<}, then A’ is dense in (M1..(Y,W),0). Moreover, if, in addition
to the assumptions of our theorem, g/g’ is not a polynomial of degree one, then for each
T € AT, we have JO,(t) = J(G,) which is perfect.

Let Acony = {17 € A| Min(G,,C) = {{z} | 2 € Q,} U {00}}}. Then Acony is open in A.

Let 7 € Agony. Then we have jj((@ \ Q) < Ry and maXgeq, ex(mi#}) < 1. Moreover, for

each o € (maxzeq, eX(m{eh) 1) and for each z € FY(1) = Q, there exists a Borel subset
Cr 0 of Xr with 7(Cr..o) = 1 satisfying that for each v € C; , o, there exist an element
r=a(1,z,a,7) € Qg and a constant § = &(T, z,«,7y) > 0 such that

d(Yn1(2),z) < &a™ for alln € N. (67)

Also, for T-a.e. v € X, we have Leba(Jy) = 0 and for each z € F,, there exists an element
x =x(T,7,2) € Qg such that

d(Yn1(2),2) = 0 as n — . (68)
Moreover, for each x € Q4 and for each z € §;, we have

lim T, ,(w) =Ty -(2). (69)

weC,w—z
Furthermore, we have
T{ve X, | IneN st v,1(2) =o00}) + Z Tyr(2) =1 for all z € C, (70)
TEQ

and we have

Z Ty r(2) >0 forall z € C\ Jier(Gr) =C\ {20 € C | ¢'(20) = 0, 9(z0) # O}. (71)
TEQ

In particular, for any subset B of C with §B > deg(g), there exists an element z € B such
that 3, cq, Tur(2) > 0.

Let 7 € My (Y, W) and suppose that int(T';) D {fr | A € C,|A — 1| < 1} with respect to the
topology in Y. Then T € Acony. In particular, the statements regarding (67), (68), (69), (70)
and (71) hold for T.

Let T € My (Y, W) and suppose that int(I'z) D {fx | A € C,|A — 1| < 3} with respect to
the topology in Y and T is absolutely continuous with respect to the 2-dimensional Lebesgue
measure on Y = A (e.g., let T be the normalized 2-dimensional Lebesque measure on the set
{fAI A€ C,IA=1] <7} where L <r <1, under the identification Y = A). Then T € Acon
and the statements regarding (67), (68), (69), (70) and (71) hold for T. Moreover, we have

Qr; =C\ {20 € C|g'(20) = 0,9(20) # 0}. (72)

In particular, we have ﬁ((@ \ Q) < deg(g) — 1, and for any subset B of C with §B > deg(g),
there exists an element z € B such that

N To-(z)=1 (73)

TEQ
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Furthermore, for each ¢ € C(C) and for each z € ), we have

M) (2) = > Tur(2)p(x) asn — oo (74)
TEQ

and this convergence is uniform on any compact subset of Q).

Proof. When g/g’ is a polynomial of degree one, then it is easy to see that statements (i)-(vii)
hold. Thus we may assume that g/¢’ is not a polynomial. By Lemma 4.3, Theorem 3.81, the proof
of Lemma 3.30 and Corollary 3.84, statements (i)—(v) hold.

We now prove (vi). Let © := {L € Min((f1),C) | L € C\ Q,, L is attracting for &, }. Then
each L is an attracting periodic cycle of f1. Let L € ©. If the period pr, of (f, L) is equal to 1, then
there exists an element = € Q4 with L = {z}. However, this is a contradiction. Hence, we have
pr, > 2. In particular, two different points of L never belong to the same connected component of
F(fy).

We now let 7 € My (¥, W) and suppose int(I';) D I’y with respect to the topology in Y, where
Lo :={fA| A€ C,[]A—=1] < 1}. Let ' € Cpt(Y) be an element such that int(I") D Iy, int(I';) D T,
and I' is close enough to I'y with respect to the Hausdorff metric. We now use the arguments in
the proof of Theorem 3.81 and we modify them a little. By Lemma 4.3, we have the following
claim.

Claim 1. Let h € I and = € Q4. Then we have h(z) = = and ||Dhg||s < 1. Also, h(co) = co and
|Dhoolls > 1.
We now prove the following claim.

Claim 2. Let L € Min((I'y),C) and suppose L C C\ Q4. Then L is not attracting for I'y.

To prove this claim, suppose that there exists an element L € Min((Tg),C) with L € C\ Q,
which is attracting for I'g. Then there exists an element Ly € © with Ly C L. We have that the
period of (f1,Lg) is not 1. Let B := max{|f1(z) — x| | x € Lo} > 0. Let 29 € Ly be an element
such that |fi(xo) — 29| = B. Then we have

1, 9(wo) 1, 1
{a(zo) [A€C A1 < 5} = {xo—Ag,(xO) [AeCA-1< o} ={2€Clla~ filzo)l = 2(155})-

Let fo = Id. By (75) and the fact |f1(z0) — fZ(z0)| < B, we obtain that
{/x(fi(zo)) | A €[0,1]}
= (AU | A€ 051 ULA () [ A€ [3,1)

C {2 €C ]| fileo)l < 5lfilw) = o)} UL fi(w0)) A €T A—1] < 3}
C (Ao INEC A -1 < U {AGAE) [AeCA-1< g} C L,

Moreover, since two different points fi(x¢) and f2(xo) in Ly cannot belong to the same connected
component of F(f1), we have that {f\(f1(x0)) | A € [0,1]} N J(f1) # 0. From these arguments, it
follows that LN J({T'g)) # 0. However, this contradicts the assumption that L is attracting for T'g.
Thus we have proved Claim 2.

We now prove the following claim.
Claim 3. We have Min((T'),C) = {{z} | # € Q,} U {{oc}}.

This claim is proved by combining Claims 1,2 and Lemma 3.71.

By using Claim 3, Lemma 4.3 and the arguments in the part from Claims 6, 7 and the last in
the proof of Theorem 3.76, we obtain that 7 is weakly mean stable, 7 satisfies the assumptions of
Theorem 3.80, and there is no L € Min(G-, (@) with L C C\ Q4. By Theorem 3.80, it follows that
T € Acony. Thus we have proved statement (vi) in our theorem.

Statement (vii) follows from statements (i), (ii), (iv), (v), (vi) and Theorem 3.65.

Thus we have proved our theorem. O
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Remark 4.5. Let g be a non-constant polynomial. We say that g is normalized if the set
{z0 € C | g(z0) = 0} is contained in D := {z € C| |z| < 1}. Note that if g € P is normalized, then
¢’ is also a normalized polynomial (see [1, page 29]). Thus, for a normalized polynomial g € P,
for a random relaxed Newton’s method scheme (Y, W) for g, if 7 € My (Y, W) is an element
such that int(I';) > {A € C | [A— 1| < 1} and 7 is absolutely continuous with respect to the
2-dimensional Lebesgue measure on Y = {\ € C | |\ — 1| < 1}, then for any zp € C\ D, for 7-a.e.
v, Yn,1(20) converges to a root of g as n — oco.

5 Examples

In this section, we give some examples to which we can apply our main theorems.

Example 5.1. Let ) be a weakly nice subset of P with respect to some holomorphic families
{W;}iL, of polynomial maps. Suppose that N2, S(W;) = {oco}. Then Y is nice with respect to
{W; L, and (Y, {W;}]L,) satisfies the assumptions of Lemma 3.53. Thus by Lemma 3.53, the
set A= {1 € My (Y, {W;}]L;) | 7 is mean stable} is open and dense in My (Y, {W;}}]L,) with
respect to the topology in O. In particular, all statements (i)—(xi) of Theorem 3.81 hold for any
7 € A and the set 2, in Theorem 3.81 is equal to C.

We give some examples of ) which are mild, non-exceptional and strongly nice and satisfies
the assumptions in Theorem 3.81.

Example 5.2. For each ¢ € N with ¢ > 2, let P, := {f € P | deg(f) = ¢}. Let (¢1,...,qm) € N™
with g1 < g2 < --- < ¢ and let W; = {f}fequ,j =1,...,mand let Y = U7, P, . In this case,
S(Wj) = {oo}. Thus by Example 5.1, the set A := {7 € My (V,{W;}]L;) | 7 is mean stable}
is open and dense in My (Y, {W;}L,) with respect to the topology in O and the set (. in
Theorem 3.81 is equal to C.

Example 5.3. Let ¢ € N with ¢ > 2 and let W = {27 + ¢}cec. Let Y = {27 + ¢ | ¢ € C}. In this
case, S(W) = {oo}. Thus by Example 5.1, the set A := {7 € My (Y, W) | 7 is mean stable} is
open and dense in M (Y, W) with respect to the topology in O and the set Q. in Theorem 3.81
is equal to C.

We now give an important example of J to which we can apply Theorems 3.76 and 3.81 but
in which €2, # C for any 7 in an open subset of A, where A is the set in Theorems 3.76 and 3.81.

Example 5.4. Let W = {\z(1 — 2)}rec\foy and let ¥ = {Az(1 —2) € P, | A € C\ {0}}. In
this case, S(W) = {0,1,00} and S(W) \ {0} = {0,1} # 0. It is easy to see that ) is a mild
subset of P and ) is non-exceptional and strongly nice with respect to holomorphic family W.
Thus the statements of Theorems 3.76, 3.81 hold. Let A be the largest open and dense subset of
(OM1,.(Y, W), O) such that for each 7 € A, all statements (i)-(v) of Theorem 3.76 and all statements
(i)—(ix) of Theorem 3.81 hold. Since each element of Y is a quadratic polynomial, for each 7 € A,
exactly one of the followings holds.

e Type (I). Min(G,,C) = {{0}, {c0}}.

e Type (II). Min(G,,C) = {{0}, {oo}, L}, where L, is an attracting minimal set with L, #
{0}, {0}

If 7 € Ais of type (I), then Theorem 3.76 (v) and Theorem 3.65 imply that

M) (y) = To.+(y)p(0) + Too,~ (y)p(c0) as n — oo, for each y € C, pE C((@) (76)

T
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ie., (M*)"(dy) = To,-(¥)do + Teo,r(y¥)0eo as n — oco. If 7 € A is of type (II), then Theorem 3.76

T

(v) and Theorem 3.65 imply that

T

M2 () (1) = To+(1)9(0) + Too - (1) p(00) + 3 a((L1);,9) / g dup, jasn oo (T7)

j=1

for each y € C and for each ¢ € C(C), where r, = dimc (U, ,) (the period of (7, L,), see
Lemma 3.60 and Definition 3.61), and {(L;);};Z,, {wr, ;};_; are elements coming from Theo-
rem 3.65.

Note that there exists an element 7 € A of type (I). For example, let go(z) = Agz(l —2) € Y
where 0 < |Ag| < 1 and let 79 = §,4,. Then any element 7 € A which is close enough to 7y is of type
(I). Also, there exists an element 7 € A of type (II). For example, let g; € Y be an element which
has an attracting periodic cycle with period p > 2. Let 7y = d4,. Then any element 7 € A which
is close enough to 71 is of type (II) with r, = p.

We now classify elements 7 € A of type (I) into the following three types.

e Type (Ia). 0 € F(G,) and {0} € Min(G,,C) is attracting for 7.
e Type (Ib). 0 € Jier(G-) and x(7,{0}) < 0.
e Type (Ic). 0 € Jyer (G-) and x(7,{0}) > 0.

We first remark that for each type (x) above, there exists an element 7 € A of type (x). In
fact, for the above 79, any element 7 € A which is close enough to 7y is of type (Ia). Also, let
93(2) = 32(1 = 2) € Y, 94(2) = 62(1 — z) € Y and let 75 := p10y, + p2dgy,, where (p1,p2) € (0,1)?
with p1 +p2 = 1, py log% + polog6 < 0. Then any element 7 € A which is close enough to
73 is of type (Ib). Moreover, let 73 := q10,4, + g20,,, Where (q1,q2) € (0,1)% with ¢1 + ¢2 = 1,
Q log% + g21log6 > 0. Then any element 7 € A which is close enough to 73 is of type (Ic). Hence
for each type (%), there exists an element 7 € A of type (x).

For each type (x)=(Ia), (Ib), (Ic), (II), we set A, the set of element 7 € A of type (x). We
show the folloing claim.

Claim 1. For each (x)=(Ta), (Ib), (Ic), (II), the set A, is a non-empty open subset of A. Also,
A =11, A,, where II denotes the disjoint union.

To show this claim, we first remark that we have already shown that each A, is non-empty and
A =U,A,. By [37, Lemma 5.2], the sets Ajq, Arr are open in A. Also, since x (7, {0}) is continuous
with respect to 7 € A, we see that Aj. is open in A. Finally, since each 7 € A is weakly mean
stable, for each 7 € Ayy, there exists an element g € I'; with |¢’(0)] > 1. From this, we obtain that
Ajp is open in A. Thus we have proved Claim 1.

We now show the following claim.

Claim 2. For each 7 € Aj; and for each g € T';, we have |¢’(0)| > 1. In particular, 0 € Jier(G)
and x(7,{0}) > 0.

To show this claim, let 7 € A;; and g € I'.. Then g has an attracting periodic cycle in L.,
which does not meet 0. Thus |¢’(0)| > 1. Hence we have proved Claim 2.

For each 7 € A, we have that 7 is weakly mean stable. We now show the following claim.
Claim 3. Each element 7 € Ay, is mean stable. However, each element 7 € A, U Ap. U Ajpy is
weakly mean stable but not mean stable.

To show this claim, let 7 € Ayp,. Since each minimal set is attracting, 7 is mean stable. We now
let 7€ Ay UA. UArr. Then 0 € Jie (G). Thus 7 is not mean stable. Hence we have proved
Claim 3.

For each T € Ayj,, the convergence in (76) is uniform on y € C since 7 is mean stable.

Let U :={r € A| x(7,{0}) > 0} = A;. U A;;. Then U is a non-empty open subset of A. We
now prove the following claim.

Claim 4. For ecach 7 € U, the set 2, (with #(C\ ©,) < Rg) in Theorem 3.81 is not equal to C. In
particular, 0 # J%(7) = C\ Q..
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To prove this claim, let 7 € Y. Then x(7,{0}) > 0. By the definition of £, we obtain that
0 e C\ Q,. Also, by Theorem 3.81 (vii), we have (1) = C\ Q.. Hence we have proved Claim 4.

We now prove the following claim. Note that the set {7 € U | fI'; < oo} is dense in U.
Claim 5. Let 7 € U with $I'; < oo. Then we have Jgt(T) = J(G,) and this is a perfect set.
Also, there exists an element L € Min(G,,C) such that letting ¢z, € C(C) be any element such
that ¢z|z = 1 and ¢r|; = 0 for any L' € Min(G,,C) with L’ # L, the convergence in (42) in
Theorem 3.65 for ¢ = ¢, is not uniform in any open subset V' of C with V n J(Gr) # 0.

This claim follows from Claim 4 and Corollary 3.84. We have proved Claim 5.

We now prove the following claim.

Claim 6. For each 7 € Aj,, the functions Ty -, T - are continuous on C and there exists a neigh-
borhood V' of 0 such that Ty .|y =1 and Tw -|v = 0. Also, for each 7 € Ay, the functions T -
and T » are continuous on C and To.-(0) =1, T -(0) = 0, but for any neighborhood V of 0, we
have Ty - |v # 1 and Too - |v # 0.

To prove this claim, let 7 € A, UAj,. Then by Theorem 3.66 (or Theorem 3.81), the functions
To.r, Too are continuous. If 7 € Ay,, then 0 € F(G,) and since the functions Tj » and T, . are
locally constant (see [36, Theorem 3.15] or Theorems 3.76 and 3.65 (vi)), there exists a neigh-
borhood V' of 0 such that Ty |y = 1 and T |y = 0. We now suppose 7 € App. Let Foo (G1)
be the connected component of F(G) with co € Fo(G;). Then Toe 7|p_(q,) = 1. Let V be any
neighborhood of 0. Since 0 € J(G), there exist an element z € V and an element g € G, such that
9(2) € Foo(G7). Let (41 ...,7n) € I'? be an element such that g = vy, 0---0;. Then there exists a
neighborhood A of (y1,...,7,) in I'? such that for each (aq,...,0n) € A, apo---0a1(2) € Fs(Gr).
It implies that Teo - (2) > (®§”:17)(A) > 0. Therefore Teo |y # 0. Since Tp r + Too,» = 1, it follows
that Tp - |v # 1. Thus we have proved Claim 6.

We now prove the following claim.

Claim 7. Let 7 € Aj.. Then for each z € Q,, where €2, is the subset of C defined in Theorem 3.81,
we have T, - (2) = 1. Also, #(C\ ©2,) < R.

To prove this claim, by Theorem 3.81, we have ]i((f: \ ;) < Ng. Also, by the definition of .,
the result Ty, +Too = 1 on C and Lemma 3.36, we see that T -(y) = 1 for each y € Q. Thus
we have proved Claim 7.

We now prove the following claim.

Claim 8. Let 7 € A. Then 7 € Ay, if and only if for 7-a.e.y € X, we have Leby(K,) = 0, where
K., denotes the filled-in Julia set of v, i.e., K, :={z € C| {7,,1(2)}32, is bounded in C}.

To prove this claim, let 7 € Aj.. Then by Claim 7 and the Fubini theorem, for 7-a.e.y € X,
we have Leby(K,) = 0. We now suppose that 7 € A and for 7-a.e.y € X, we have Leby(K,) = 0.
Then by the Fubini theorem, we obtain that for Lebg-a.c. z € C, we have Tx, ,(2) = 1. Therefore
by Claim 7, 7 & Ajq U A, U Ajr. Hence by Claim 1, we obtain 7 € Aj.. Thus we have proved
Claim 8.

We also give some further examples to which we can apply Theorems 3.76 and 3.81.

Example 5.5. Let Q = {z1,...,2,} be any non-empty finite subset of C, where z1,...,xz, are
mutually distinct points. Let f(2) = a[[;_,(# — z;) € P, where a € C\ {0}. Then we have
{20 € C| f(20) = 0} = Q and if zp € C, f(20) = 0, then f'(20) # 0. Let W = {2z + A f(2) }aec\{0}
and let Y = {z+ Af(z) € P | A € C\ {0}}. In this case, SW) = Q U {oo} and SOV)NC =
{z0 € C| f(20) = 0} = Q # 0. By Lemma 4.2, we obtain that ) is a mild subset of P, the set
Y is strongly nice and non-exceptional with respect to holomorphic family W and (Y, W) satisfies
the assumptions of Theorems 3.76, 3.81. Thus there exists the largest open and dense subset A of
(M1, (Y, W), 0) such that for each 7 € A, all statements (i)—(x) in Theorem 3.81 hold for 7. In
particular, each 7 € A is weakly mean stable. Let fy(z) = z + Af(z). Then we have

A =1+ Af(2). (78)
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Let Ay := {7 € A| 3L € Min(G,,Q) s.t. x(7,L) > 0}. Also, let Ay oy :=={7 € A| forall L €
Min(G,, Q) we have x(7, L) > 0}. Moreover, let A := {7 € A |, < oo}, Ai =A; NAY, and
Aia” = -A+,all nAf.
We now show the following claim.

Claim 1. The sets A4 and Ay 4 are non-empty open subsets of A (and thus they are non-empty
open subsets of (M (¥, W), 0)). Also, Ai is dense in A4 and Aﬂcﬁa” is dense in A4 ;. Moreover,
for each 7 € Ay, we have ) # Urepn, L C Jj(1) = C\Q,, where Q, and H . are the sets defined
in Theorem 3.81, and for each 7 € Ay 41, we have Q C Jgt(r). Furthermore, for each 7 € Afr, we

have J3, (1) = J(G-) which is a perfect set.

To prove this claim, it is easy to see that A4 and A, 4 are open in A. By (78) and the fact
f'(z) # 0 for each x € Q, if Ao is large enough, then letting 70 := dy, , we have x(7o, {z}) > 0
for each & € Q. Therefore for each 7 € A which is close enough to 79 and for each z € Q, we
have x(7,{z}) > 0. Thus Ay D Ay o # 0. The rest statements follow from Theorem 3.81 and
Corollary 3.84. Thus we have proved Claim 1.

Let A_ g4y == {7 € A | forall L € Min(G,,Q) we have x(7,L) < 0}. We now prove the
following claim.

Claim 2. The set A_ 4 is a non-empty open subset of A and A_ ,;; N AL o = 0.

To prove this claim, it is easy to see A_ oy N Ay oy = 0 and A_ 4y is open in A. For each
x € @, combining (78), the fact f'(z) # 0 and the method above, we see that there exists an
element \, € C\ {0} such that f} (z)=0.Let ™ =3 o 164, . Then x(71,{x}) = —oo for each
x € Q. Hence for each 7 € A which is close enough to 71, we have x(7,{z}) < 0 for all z € Q.
Thus A_ ,;; # 0. Hence we have proved Claim 2.

We now prove the following claim.

Claim 3. Let 7 € A_ 4. Then for each L € Min(G-, Jker(G-)), we have x(7,L) < 0, and each
L € Min(G-, C) with L ¢ Jyer(G+) is attracting 7. Thus 7 satisfies all assumptions of Theorem 3.66
and all conclusions in Theorem 3.66 hold. In particular, J, (1) = 0 and Fyeas(T) = M, (C).

This claim follows from Theorem 3.81, the fact 7 is weakly mean stable and Theorem 3.66.

Example 5.6. Let n € N with n > 2 and let w = >/ € C. For each i = 1,...,n, let
Wi = {w'(z + AMz" — 1)) }recrfoy- Let d1,...,im € {1,...,n} with 43 < iz < ip. Let Y =
U7 {w' (z 4+ Xj(2" — 1)) € P | Aj € C\ {0}}. For each j = 1,...,m, let A; := C\ {0} and let
fin; (2) = w' (z+ (2" —1)) for each z € C,\j € Aj. Let W; = {fix, Ir en, foreachj =1,... m.
We show the following claim.

Claim 1. Y is a mild subset of P and ) is strongly nice and non-exceptional with respect to
holomorphic families {W;}2; of polynomial maps and (Y, {W;}}L) satisfies the assumptions of
Theorem 3.81.

To prove this claim, we first note that S(W;) = {w* |k =1,...,n}U{cc} foreach j = 1,...,m.
Hence we have N7, SOWV;) N C = {w* | k = 1,...,n} # 0. For each w* € N, S(W;) and
for each j = 1,...,m and for each \; € C\ {0}, we have f;,(w*) = w"™ € N7 S(W;).
Thus for each 7 € My (Y, {W;}7L,), we have G- (N7 SW;) N C) C N7 S(W;) NC. Let Q :=
N SW;)NC = {w* | k=1,...,m}. For each j = 1,...,m, let a; : @ — Q be the map defined
by a;(z) = w" - z,z € Q. Then for each j = 1,...,m and for each \; € A;, we have f; g = ;.
Since the semigroup {a? | n € N} is a cyclic group generated by «;, there exists an element n; € N
such that a;l = «"7. Therefore we obtain that Q is equal to the union of minimal sets of the
semigroup generated by {a1,...,am}. Thus @ = Urcmin(a, @)L for each 7 € My (Y, {W;}]L,).
Hence there is no peripheral cycle for (Y, {W,}). Moreover, for each z € Q, for each j =1,...,m
and for each A; € A;, we have

Fin, (2) = w'i (14 A\mnz""1). (79)

Hence ) is strongly nice with respect to holomorphic families {W; };”:1 of polynomial maps. More-
over, by the formula f; , (2) = w' (1+ Ajnz""1). above, it is easy to see that ) is non-exceptional
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with respect to {W;}72 ;. Thus we have proved Claim 1.

Let A be the open and dense subset of (9 (¥, {W;}]L;), O) given in Theorem 3.81. Then
for each 7 € A, all statements (i)—(xi) in Theorem 3.81 hold. In particular, any 7 € A is weakly
mean stable. Let Ay := {7 € A| 3L € Min(G-,Q) s.t. x(r, L) > 0}. Also, let

Ay qui={r € A| for all L € Min(G,, Q) we have x(r,L) > 0}.

Moreover, let Af := {r € A |1, < oo}, Al = A, N Af, and Aia” = Ay N A7
We now show the following claim.
Claim 2. The sets A} and Ay oy are non-empty open subsets of A (and thus they are non-empty
open subsets of (9,.(V,{W;}]L),0)). Also, Afr is dense in A4 and Afla” is dense in A4 4.
Moreover, for each 7 € Ay, we have § # Urep, . L C J)(1) = C\ Q,, where Q, and H, , are the
sets defined in Theorem 3.81, and for each 7 € Ay 41, we have Q C Jgt(’l'). Furthermore, for each
TE .Afr, we have J0,(7) = J(G;) which is a perfect set.
To prove this claim, by (79), we obtain that A4 and Ay o are non-empty. It is easy to see that
Ay and Ay oy are open in A. The rest statements follow from Theorem 3.81 and Corollary 3.84.
Let A_ 4y = {7 € A | forall L € Min(G,,Q) we have. x(7,L) < 0}. We now prove the
following claims.
Claim 3. The set A_ 4 is a non-empty open subset of A and A_ ,;; N AL o = 0.
Claim 4. Let 7 € A_ 4. Then for each L € Min(G-, Jker(G-)), we have x(7,L) < 0, and each
L € Min(G-, (@) with L ¢ Jyer(G) is attracting 7. Thus 7 satisfies all assumptions of Theorem 3.66
and all conclusions in Theorem 3.66 hold. In particular, J9(7) = 0 and Fycas(T) = M, (C).
These claims 3,4 can be shown by (79) and the method in Example 5.5.

Example 5.7. Let z1,...,2, € C be mutually distinct points with « > 2. Let a € C\ {0}
and let g(2) = a[j_, (2 — 2;). Let @ = {@1,...,2,}. Let Pi,..., Py be mutually distinct non-
constant polynomials and suppose that P;(Q) C @ for each j = 1,....m. Also, suppose that
Q = ULeMin((Pr,...,Pn),@) L Note that we have the following claim.

Claim 1. For any finite subset @ of C, we can take such elements Py, ..., P,.

To prove this claim, we remark that for any map ¢ : @ — @, there exists a polynomial P such
that P|g = ¢ on Q. This fact can be shown by using van der Monde determinant argument. Thus
the statement of Claim 1 holds.

For each j = 1,...,m, let A; := C\ {0} and for each \; € Aj, let f;\ (2) = Pj(z + A\jg(2)).
Let W; = {fjx; }ren, and let YV = UL {f;x; | A; € A;}. Then Y is a weakly nice subset of P
with respect to holomorphic families {W); };”:1 of polynomials. We now prove the following claim.
Claim 2. We have N2, S(W;) = Q U {oo}. Moreover, ) is a mild subset of P and ) is non-
exceptional and strongly nice with respect to holomorphic families {Wj};"’:l of polynomial maps.
Hence, there exists the largest open and dense subset A of (M (Y, {W;}L;), 0) such that for
each 7 € A, all statements (i)—(xi) in Theorem 3.81 hold. In particular, any 7 € A is weakly mean
stable.

We give the proof of this claim. Since ) C P, the set ) is mild. For each x € @, for each
j=1,...,m and for each A\; € A;, we have f;,(x) = Pj(x). Thus for each j =1,...,m, we have
S(W;) = QU{oo}. Hence N7, S(W;) = QU {oc}. Also, by the property of {P;}7";, we have that
for each 7 € My (Y, {W;}]L;), we have Q = Uremin(q,,q)L- Hence there is no peripheral cycle
for (¥, {W;}]L,). Also, we have

fin, (@) = Pj(x)(1+ XNjg'(x)) forall z € Q,j = 1,...,m, \; € A;. (80)

Therefore ) is strongly nice with respect to {W;}7",. By (80), it is easy to see that ) is non-
exceptional with respect to {W; };”:1 By Theorem 3.81, the statement of Claim 2 holds. Thus we
have proved Claim 2.

We define subsets Ay, Ay a1, A, Ai,Ai as A—au of Ain the same way as that of Exam-
ple 5.6. Then by (80) and the arguments in E);amples 5.6 and 5.5, we obtain the following claims.
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Claim 3. The set A_ 4 is a non-empty open subset of A and A_ ,;; N AL o = 0.

Claim 4. Let 7 € A_ 4. Then for each L € Min(G-, Jker(G-)), we have x(7,L) < 0, and each
L € Min(G-, (C) with L ¢ Jyer(G) is attracting 7. Thus 7 satisfies all assumptions of Theorem 3.66
and all conclusions in Theorem 3.66 hold. In particular, J9(7) = 0 and Fycas(T) = M, (C).
Claim 5. Suppose that Pj’(x) # 0 for any j = 1,...,m and for any = € @Q. Then the sets A,
and Aj 4 are non-empty open subsets of A (and thus they are non-empty open subsets of
(DM (Y, {W;}7L1), 0)). Also, .Aﬂcr is dense in A4 and Ai,au is dense in A4 4. Moreover, for
each 7 € Ay, we have ) # Uren, L C JY(7) = C\ Q,, where Q, and H, , are the sets defined

in Theorem 3.81, and for each 7 € Ay a1, we have Q C J,(7). Furthermore, for each 7 € .Af;, we

have J9, (1) = J(G-) which is a perfect set.

Remark 5.8. As in Example 5.7, we can embed many finite Markov chains into C as weak
attractors (i.e. minimal sets with negative Lyapunov exponents) of one random complex polyno-
mial dynamical system generated by 7 € 9y .(P) which is weakly mean stable and satisfies all

statements in Theorem 3.66 (e.g. Fieas(7) = M1 (C)).
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