Old and new tales about Lifshitz tails

Werner Kirsch, Ruhr-Universität Bochum, Germany

In the mid sixties I. Lifshitz argued that:

1) The integrated density of states N(E) for an ordered system in dimension d behaves like:

$$N(E) \sim C (E - E_0)^{\frac{a}{2}}$$

for $E \searrow E_0$ where E_0 is the infimum of the spectrum.

2) The integrated density of states N(E) for a disordered system in dimension d behaves like:

$$N(E) \sim C e^{(E-E_0)^{-2}}$$

for $E \searrow E_0$ with γ , the Lifshitz exponent equal to $\frac{d}{2}$.

We review some of the mathematical papers on Lifshitz tails starting with the famous paper by Donsker and Varadhan to recent developments.

To be specific let us consider a random Schrödinger operator with potential:

$$V_{\omega} = \sum_{i \in \mathbb{Z}^d} q_i(\omega) f(x-i)$$

The random variables q_i are independent and identically distributed with a common law P_0 .

If the single site potential f decays faster than $(1 + |x|)^{-(d+2)}$ then the Lifshitz exponent is, indeed, $\frac{d}{2}$. However, if f behaves near infinity like $C(1 + |x|)^{-\alpha}$ with $\alpha > d + 2$ then we have $\gamma = \frac{d}{\alpha - d}$.

There are also recent results on f decaying in a non homogeneous way, namely like $(1 + |x_1|)^{-\alpha_1}$ in some directions x_1 and like $(1 + |x_2|)^{-\alpha_2}$ in the other directions x_1 .

If we add a homogeneous magnetic field to the random potential V_{ω} then the Lifshitz exponent is smaller, as a rule. In fact, one can prove that $\gamma = \frac{d}{\alpha}$ for all α whenever $f \sim C (1 + |x|)^{-\alpha}$. In particular $\gamma = 0$ for compactly supported f.

For details, see the review cited below and references therein.

Reference: Kirsch, W.; Metzger, B.: The Integrated Density of States for Random Schrödinger Operators, math-ph/0608066 in arxiv.org