LOCALIZATION FOR SCHRÖDINGER OPERATORS WITH POISSON RANDOM POTENTIAL

ABEL KLEIN
UNIVERSITY OF CALIFORNIA, IRVINE

Consider an electron moving in an amorphous medium with randomly placed identical impurities, each impurity creating a local potential. For a fixed configuration of the impurities, described by the countable set $X \subset \mathbb{R}^d$ giving their locations, this motion is described by the Schrödinger equation $-i\partial_t \psi_t = H_X \psi_t$ with the Hamiltonian

$$H_X := -\Delta + V_X \quad \text{on } L^2(\mathbb{R}^d),$$

where the potential is given by

$$V_X(x) := \sum_{\zeta \in X} u(x - \zeta),$$

with $u(x - \zeta)$ being the single-site potential created by the impurity placed at ζ. Since the impurities are randomly distributed, the configuration X is a random countable subset of \mathbb{R}^d, and hence it is modeled by a point process on \mathbb{R}^d.

The Poisson Hamiltonian is the random Schrödinger operator H_X in (1) with X a Poisson process on \mathbb{R}^d with density $\rho > 0$. The potential V_X is then a Poisson random potential. Poisson Hamiltonians may be the most natural random Schrödinger operators in the continuum as the distribution of impurities in various samples of material is naturally modeled by a Poisson process. A mathematical proof of the existence of localization in two or more dimensions has been a long-standing open problem.

In this lecture I discuss the following theorem proved by F. Germinet, P. Hislop and myself:

Theorem 1 (Germinet, Hislop and Klein). Let H_X be a Poisson Hamiltonian on $L^2(\mathbb{R}^d)$ with density $\rho > 0$. Then there exist $E_0 = E_0(\rho) > 0$ and $m = m(\rho) > 0$ for which the following holds \mathbb{P}-a.e.: The operator H_X has pure point spectrum in $[0, E_0]$ with exponentially localized eigenfunctions with rate of decay m, i.e., if ϕ is an eigenfunction of H_X with eigenvalue $E \in [0, E_0]$ we have

$$\| \chi_x \phi \| \leq C_{X, \phi} e^{-m|x|}, \quad \text{for all } x \in \mathbb{R}^d.$$

Moreover, there exist $\tau > 1$ and $s \in]0, 1[$ such that for all eigenfunctions ψ, ϕ (possibly equal) with the same eigenvalue $E \in [0, E_0]$ we have

$$\| \chi_x \psi \| \| \chi_y \phi \| \leq C_X \| T^{-1} \psi \| \| T^{-1} \phi \| e^{(y)\tau} e^{-|x-y|^s}, \quad \text{for all } x, y \in \mathbb{Z}^d.$$

In particular, the eigenvalues of H_X in $[0, E_0]$ have finite multiplicity, and H_X exhibits dynamical localization in $[0, E_0]$, that is, for any $p > 0$ we have

$$\sup_t \| (x)^p e^{-itH_X} \chi_{[0, E_0]} \| \chi_0 \|_2^2 < \infty.$$