LOCALIZATION FOR SCHRÖDINGER OPERATORS WITH POISSON RANDOM POTENTIAL

ABEL KLEIN UNIVERSITY OF CALIFORNIA, IRVINE

Consider an electron moving in an amorphous medium with randomly placed identical impurities, each impurity creating a local potential. For a fixed configuration of the impurities, described by the countable set $X \subset \mathbb{R}^d$ giving their locations, this motion is described by the Schrödinger equation $-i\partial_t\psi_t = H_X\psi_t$ with the Hamiltonian

$$H_X := -\Delta + V_X \quad \text{on} \quad \mathcal{L}^2(\mathbb{R}^d), \tag{1}$$

where the potential is given by

$$V_X(x) := \sum_{\zeta \in X} u(x - \zeta), \tag{2}$$

with $u(x - \zeta)$ being the single-site potential created by the impurity placed at ζ . Since the impurities are randomly distributed, the configuration X is a random countable subset of \mathbb{R}^d , and hence it is modeled by a point process on \mathbb{R}^d .

The Poisson Hamiltonian is the random Schrödinger operator $H_{\mathbf{X}}$ in (1) with \mathbf{X} a Poisson process on \mathbb{R}^d with density $\varrho > 0$. The potential $V_{\mathbf{X}}$ is then a Poisson random potential. Poisson Hamiltonians may be the most natural random Schrödinger operators in the continuum as the distribution of impurities in various samples of material is naturally modeled by a Poisson process. A mathematical proof of the existence of localization in two or more dimensions has been a long-standing open problem.

In this lecture I discuss the following theorem proved by F. Germinet, P. Hislop and myself:

Theorem 1 (Germinet, Hislop and Klein). Let $H_{\mathbf{X}}$ be a Poisson Hamiltonian on $L^2(\mathbb{R}^d)$ with density $\varrho > 0$. Then there exist $E_0 = E_0(\varrho) > 0$ and $m = m(\rho) > 0$ for which the following holds \mathbb{P} -a.e.: The operator $H_{\mathbf{X}}$ has pure point spectrum in $[0, E_0]$ with exponentially localized eigenfunctions with rate of decay m, i.e., if ϕ is an eigenfunction of $H_{\mathbf{X}}$ with eigenvalue $E \in [0, E_0]$ we have

$$\|\chi_x \phi\| \le C_{\mathbf{X},\phi} e^{-m|x|}, \quad \text{for all } x \in \mathbb{R}^d.$$
(3)

Moreover, there exist $\tau > 1$ and $s \in]0,1[$ such that for all eigenfunctions ψ, ϕ (possibly equal) with the same eigenvalue $E \in [0, E_0]$ we have

$$\|\chi_x\psi\| \|\chi_y\phi\| \le C_{\mathbf{X}} \|T^{-1}\psi\| \|T^{-1}\phi\| e^{\langle y\rangle^{\tau}} e^{-|x-y|^s}, \quad \text{for all } x, y \in \mathbb{Z}^d.$$
(4)

In particular, the eigenvalues of $H_{\mathbf{X}}$ in $[0, E_0]$ have finite multiplicity, and $H_{\mathbf{X}}$ exhibits dynamical localization in $[0, E_0]$, that is, for any p > 0 we have

$$\sup_{A} \|\langle x \rangle^{p} e^{-itH_{\mathbf{X}}} \chi_{[0,E_{0}]}(H_{\mathbf{X}}) \chi_{0} \|_{2}^{2} < \infty.$$
(5)