2 Dimensional O(N) Spin Model and Localization Type Problems

K. R. Ito 1

Department of Math. and Phys., Setsunan University Neyagawa, Osaka 572-8508, Japan

1: The O(N) spin model

It is shown [1, 2] that the two-point correlation functions $\langle s_0 s_x \rangle$ of 2D O(N)(classical) spin model ($s_x \in S^{N-1}$) is represented as an average of the Green's function $G^{(\psi)}(0, x)$ which depends on real random potentials [2] { $\psi(x); x \in Z^2$ } with a pure imaginary coefficient $i\kappa$:

$$\begin{array}{lll} < s_0 s_x > & = & \int G^{(\psi)}(0,x) d\mu(\psi) \\ \\ G^{(\psi)}(0,x) & = & \frac{1}{-\Delta + m^2 + i\kappa\psi}(0,x), \quad (\kappa = 2/\sqrt{N}) \end{array}$$

where Δ is the Laplacian defined on the lattice space Z^2 $((\Delta)_{xy} = -4\delta_{x,y} + \delta_{|x-y|,1})$ and $\{\psi(x); x \in Z^2\}$ are random variables which obey the a distribution $d\mu(\psi)$ which is close to a Gaussian probability distribution but not exactly:

$$d\mu(\psi) = F(\psi) \prod d\psi_x$$

$$F(\psi) = \det_3^{-N/2} (1 + i\kappa G\psi) \exp[-\langle \psi, G^{\circ 2}\psi \rangle]$$

where $G(x, y) = G^{(\psi=0)}(x, y)$, $G^{\circ 2}(x, y) \equiv (G(x, y))^2$ and m^2 is chosen so that $G(0) = [-\Delta + m^2](0) = \beta$. Here $\beta > 0$ is the inverse temperature of the system and then $m \sim e^{-2\pi\beta}$ is very small. It is a subtle and longstanding problem [5, 6] to prove (or disprove) that $\langle s_0 s_x \rangle$ decreases exponentially fast as $|x| \to \infty$ if $N \geq 3$ in two dimensions.

2: Result

Our idea is to apply the argument of the Anderson localization to show that $\langle s_0 s_x \rangle$ decreases exponentially fast. Assume that the interaction is restricted to a finite rectangular region $\Lambda \subset Z^2$ and study the limit $\Lambda \to Z^2$. We decompose Λ into many small squares $\Lambda = \bigcup_{i=1}^n \Delta_i$ and apply the Feshbach formula to obtain det ${}^{-N/2}(1 + i\kappa G_{\Lambda}\psi_{\Lambda})$ in the following form:

$$\left[\prod_{i=1}^{n-1} \det^{-N/2} \left(1 + W(\Delta_i, \Lambda_i)\right)\right] \prod_{i=1}^n \det^{-N/2} \left(1 + i\kappa G_{\Delta_i} \psi_{\Delta_i}\right) \tag{1}$$

where $\kappa = 2/\sqrt{N}$, $\Lambda_k = \cup_{i=k+1}^n \Delta_i$, $G_\Delta = \chi_\Delta G \chi_\Delta$, $_\Lambda G_\Delta = \chi_\Lambda G \chi_\Delta$ and

$$W(\Delta_i, \Lambda_i) = -(i\kappa)^2 \frac{1}{1 + i\kappa G_{\Delta_i}\psi_{\Delta_i}} G_{\Delta_i, \Lambda_i}\psi_{\Lambda_i} \frac{1}{1 + i\kappa G_{\Lambda_i}\psi_{\Lambda_i}} G_{\Lambda_i, \Delta_i}\psi_{\Delta_i}$$

 $^{^1} ito @mpg.setsunan.ac.jp, ito @kurims.kyoto-u.ac.jp \\$

 $[G_{\Lambda}]^{-1}$ is a Laplacian with free boundary conditions at $\partial \Lambda_i$. To apply cluster expansion to prove the long-standing conjecture argued in [3, 5, 6], we will have to show $W(\Delta, \Lambda)$ are small. This work is the first step in this direction.

We prove that $([G_{\Lambda_i}]^{-1} + i\kappa\psi_{\Lambda_i})^{-1}$ behaves as massive Green's functions which decrease fast (localization). The measure restricted to each block is

$$d\mu_{\Delta} = \det_{3}^{-N/2} (1 + i\kappa G_{\Delta}\psi_{\Delta}) \exp[-(\psi_{\Delta}, G_{\Delta}^{\circ 2}\psi_{\Delta})] \prod_{x \in \Delta} d\psi(x)$$
(2)

which is regarded as a perturbed Gaussian measure which is not necessarily real positive. Put $d\nu = \prod d\mu_{\Delta}$ and we use $d\nu$ for $d\mu$ as the first approximation. Then we have the following theorem which exhibits the generations of large mass m_{eff} :

Theorem Let

$$G^{(ave)}(x,y) \equiv \int G^{(\psi)}(x,y) d\nu(\psi)$$
(3)

Then

$$G^{(ave)}(x,y) \sim \frac{1}{-\Delta + m_{eff}^2}(x,y) \tag{4}$$

where $m_{eff}^2 = O(1/N\beta)$.

See [4] for the proof.

References

- D. Brydges, J. Fröhlich and T. Spencer, The Random Walk Representation of Classical Spin Systems and Correlation Inequalities, Commun. Math. Phys.83: 123 (1982).
- [2] J. Fröhlich and T. Spencer, Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy, Commun. Math. Phys.88: 151 (1983)
- [3] K.R.Ito, Renormalization Recursion formulas and Flows of 2D O(N) Spin Models, Jour. Stat. Phys., 107: 821-856 (2002).
- [4] K. R. Ito, F.Hiroshima and H. Tamura, Two-Dimensional O(N) Spin Model and Anderson Localization with Complex Random Potential, Paper in prep. (2007)
- [5] A.Polyakov, Interactions of Goldstone Bosons in Two Dimensions, Phys. Lett, 59B: 79 (1975).
- [6] K. Wilson, Confinement of Quarks, Phys. Rev. D 10: 2455 (1974) and Renormalization Groups and Critical Phenomena, Rev. Mod.Phys. 55: 583 (1983)