Wegner estimates for Anderson type random surface potentials

Yoshihiko Kitagaki (Kyoto University)

We consider a Schrödinger operator on the Hilbert space $L^2(\mathbb{R}^d)$ $(d \geq 2)$ with the random potential concentrated near a surface $\mathbb{R}^{d_1} \times \{0\} \subset \mathbb{R}^d (1 \leq d_1 < d);$ $H^{\omega} := -\sum_{\nu=1}^d \frac{\partial^2}{\partial x_{\nu}^2} + \sum_{k \in \mathbb{Z}^{d_1}} \omega_k u(x_1 - k, x_2)$ for $x = (x_1, x_2) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d-d_1}$. The single-site potential u(x) is a non-zero and non-negative function less than or equal to 1 with a support included in a unit cube $\Lambda_1(0) := (-1/2, 1/2)^d$. The coupling constants $\{\omega_k\}_{k \in \mathbb{Z}^{d_1}}$ are independently identically distributed random variables such that the support of its common probability distribution μ is the finite interval $[\omega_-, 0]$ for some $\omega_- \in (-\infty, 0)$. We improved Wegner estimate given in [2,4] as follows: let χ_{S_L} be the characteristic function of a strip $S_L :=$ $(-L/2, L/2)^{d_1} \times \mathbb{R}^{d-d_1} C H_L^{\omega} := -\Delta + V^{\omega} \chi_{S_L}$, and $n(I; H_L^{\omega})$ be the number of eigenvalues of H_L^{ω} in an interval $I \subset (-\infty, 0)$.

Theorem 1. Assume that μ is α -Hölder continuous for $\alpha \in (0,1]$. Then, for any E < 0 there exists $C \in (0,\infty)$ such that

$$\mathbb{E}\{n([E-\eta, E+\eta]; H_L^{\omega})\} \le C\eta^a L^{d_1}$$

for any $0 < \eta < |E|/2$ and $L \in 2\mathbb{N} + 1$.

The method described in [1] and the recent spectral averaging technique [3] are used for the proof. We can also prove the α -Hölder continuity of the integrated density of surface states $N_s(E)$ for E < 0 (see [4]), where

$$N_s(E) := \lim_{L \to \infty} \frac{1}{L^{d_1}} n((-\infty, E]; H^{\omega}_{D, S_L})$$

and H_{D,S_L}^{ω} is the Dirichlet restriction of H^{ω} to S_L .

Corollary 1. For any E < 0, there exists $C \in (0, \infty)$ such that

$$N_s(E+\eta) - N_s(E-\eta) \le C\eta^{\alpha}.$$

for any $0 < \eta < |E|/2$.

Moreover, by applying the multiscale analysis according to [5], one can show Anderson localization for negative energies near the bottom of the spectrum.

 J.M.Barbaroux, J.M.Combes, P.D.Hislop, *Helv. Phys. Acta*, 70, (1997), 16–43.

[2] A.Boutet de Monvel, P.Stollmann, Archiv Math. 561, (2003), no.1, 87–97.

[3] J.M.Combes, P.D.Hislop, F.Klopp, arXiv:math-ph/0605029v2.

[4] W.Kirsch, S.Warzel, J.Funct.Anal. 230, (2006), 222-250.

[5] P.Stollmann, Caught by disorder, Bound states in random media, Birkhäuser, Boston, 2001.