The energy level statistics for the Anderson tight binding model - Statement of a conjecture -

Nariyuki, MINAMI Institute of Mathematics, University of Tsukuba

Let us consider the Anderson tight binding model $H_{\omega} = -\Delta + V_{\omega}$, where $(\Delta u)(x) = \sum_{|y-x|=1} u(y) \ (x, y \in \mathbf{Z}^d)$, is the discretized Laplacian, and $V_{\omega} = \{V_x(\omega)\}_{x\in\mathbf{Z}^d}$: is the random potential consisting of i.i.d. random variables. For $L = 1, 2, \ldots$, let $\Lambda := \Lambda_L = [0, L]^d \cap \mathbf{Z}^d$, and consider $H_{\omega}^{\Lambda} := \chi_{\Lambda} H_{\omega} \chi_{\Lambda}$, the restriction of H_{ω} to the hypercube Λ with the Dirichlet boundary condition. Now let $E_1^{\Lambda}(\omega) \leq \cdots \leq E_n^{\Lambda}(\omega)$, $n = |\Lambda|$, be the eigenvalues of H_{ω}^{Λ} . At this point, we assume that each random variable $V_x(\omega)$ has absolutely continuous distribution with a bounded density $\rho(v)$. We also assume that its upperbound $\|\rho\|_{\infty}$ is small. Smallnes of $\|\rho\|_{\infty}$ is assumed because it implies the exponential decay of the fractional moment of the Green's function $G_{\omega}^D(z;x,y) = (H_{\omega}^D - z)^{-1}(x,y)$. (See [1], [2] for the exact formulation.)

We now consider the rescaled spectrum of H^{Λ}_{ω} expressed as a point process on **R**: $\xi^{\omega}(\Lambda; E)(dx) = \sum_{j} \delta_{\xi_{j}^{\omega}(\Lambda; E)}(dx)$, with $\xi_{j}^{\omega}(\Lambda; E) = |\Lambda|(E_{j}^{\Lambda}(\omega) - E)$. It was proved in [3] that if the integrated density of states N(E) of H_{ω} is differentiable at E with n(E) = dN/dE, then as $L \to \infty$, the probability law of $\xi^{\omega}(\Lambda; E)$ converges weakly to that of the stationary Poisson point process with mean density n(E). Then a question arises: Can we compare the individual spectrum $\{E_{j}^{\Lambda}(\omega)\}$ of H^{Λ}_{ω} with the typical realization of a nice point process on **R**?

For this purpose, we need to "unfold" the spectrum. Let us assume that N(E) is of C^1 and n(E) > 0 everywhere on $(\inf \Sigma, \sup \Sigma)$, where $\Sigma \subset \mathbf{R}$ is the closed set such that $spec(H_{\omega}) = \Sigma$ a.s.. Now let us call $e_j^{\Lambda}(\omega) := |\Lambda| \cdot N(E_j^{\Lambda}(\omega)) \in (0, |\Lambda|)$ the unfolded eigenvalues of H_{ω}^{Λ} . Then it is seen that the sequence $\{e_j^{\Lambda}(\omega)\}$ is asymptotically unformly distributed on $[0, |\Lambda|]$ as $L \to \infty$.

Conjecture1 Let μ be the uniform distribution on [a, b]. For $\omega \in \Omega$ and $t \in [a, b]$, define a point process

$$\Xi^{\Lambda}_{\omega,t}(dx) := \sum_{j} \delta_{e^{\Lambda}_{j}(\omega) - |\Lambda|t}(dx) \; .$$

Then for *P*-a.a. $\omega \in \Omega$, the probability law of $\Xi_{\omega,t}^{\Lambda}$ under $\mu(dt)$ converges weakly to that of the stationary Poisoon point process with mean density 1.

In this talk, I showed that if we would be able to prove the following lemma, then one would obtain a weaker version of the conjecture:

Lemma(also a conjecture) For any finite intervals J and $E \neq E'$,

$$P(\eta^{\omega}(C_p; E)(J) \ge 1 \text{ and } \eta^{\omega}(C_p; E')(J) \ge 1) = o(N_L^{-d})$$

as $L \to \infty$.

References

 Aizenman, M., Molchanov, S.A.: Commun. Math. Phys. 157, 245-278 (1993)

[2] Graf, G.M.: J. Stat. Phys. **75**, 337-346 (1994)

[3] Minami, N.: Commun. Math. Phys. 177, 709-725 (1996)