Schrödinger operators with random δ magnetic fields by Takuya Mine¹ and Yuji Nomura²

We consider random magnetic Schrödinger operators on \mathbb{R}^2

$$H_{\omega} = \left(\frac{1}{i}\nabla + \mathbf{a}_{\omega}\right)^2,$$

where $\mathbf{a}_{\omega} = (a_{\omega,x}, a_{\omega,y})$ is the magnetic vector potential. We consider two types of random magnetic fields:

rot
$$\mathbf{a}_{\omega}(z) = B + \sum_{\gamma \in \Gamma} 2\pi \alpha_{\gamma}(\omega) \delta(z - \gamma)$$
, (Anderson type)
rot $\mathbf{a}_{\omega}(z) = B + \sum_{\gamma \in \Gamma_{\omega}} 2\pi \alpha \delta(z - \gamma)$, (Poisson type)

where $B \geq 0$, $0 < \alpha < 1$ are constants, $\{\alpha_{\gamma}(\omega)\}_{\gamma \in \Gamma}$ are independently, identically distributed [0, 1)-valued random variables, Γ is a lattice, and Γ_{ω} is the Poisson point process with intensity measure $\rho dx dy$ ($\rho > 0$ is a constant).

We studied some spectral properties of these operators. The main statements are summarized as follows:

- 1. Consider the Anderson case and assume B = 0. If the support of the common distribution measure $\mu = P \circ \alpha_{\gamma}^{-1}$ contains 0 or 1, then the Lifshitz tail holds near the energy E = 0.
- 2. Consider the Poisson case and assume B > 0, $\alpha \notin \mathbf{Q}$. Then, $\sigma(H_{\omega}) = [B, \infty)$ almost surely.
- 3. Consider the Anderson case and assume B > 0, supp $\mu \not\supseteq 0, 1$. Then, the lower Landau levels are isolated, infinitely degenerated eigenvalues.
- 4. Consider both cases and assume B > 0. For each n = 1, 2, ..., there exists a number B_n independent of ω satisfying the following: if $B > B_n$, then the *n*-th Landau level $E_n = (2n-1)B$ is an infinitely degenerated eigenvalue of H_{ω} almost surely.

¹Department of Comprehensive Sciences, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

email: mine@kit.ac.jp

²Department of Mathematics, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan. email: nomura@math.titech.ac.jp