Asymptotic Expansion of A Gaussian Integral of the Chern-Simons Lagragian

Itaru Mitoma

Let M be a compact oriented smooth 3-manifold, G a simply connected, connected compact simple Lie group, \mathfrak{g} the associated Lie algebra and $\Omega^{r}(M, \mathfrak{g})$ the space of \mathfrak{g}-valued smooth r-forms on M with the inner product (,). We may identify \mathcal{A} of connections on a principal G-bundle over M with $\Omega^{1}(M, \mathfrak{g})$.

The Chern-Simons integral of the Wilson line $F(A)$ is given by

$$
\begin{equation*}
\int_{\mathcal{A} / \mathcal{G}} F(A) e^{L(A)} \mathcal{D}(A) \tag{0.1}
\end{equation*}
$$

where the Chern-Simons Lagrangian L is defined by

$$
L(A)=-\frac{\sqrt{-1} k}{4 \pi} \int_{M} \operatorname{Tr}\left\{A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right\} .
$$

Here $\mathcal{D}(A)$ is the Feynman measure integrating over all gauge orbits, Tr denotes the trace in the adjoint representation of the Lie algebra \mathfrak{g}, and the parameter k is a positive integer called the level of charges.

Then we replace $\mathcal{D}(A)$ by a standard Gaussian measure, which is called a Gaussian integral of the Chern-Simons Lagrangian.

Let $Q_{A_{0}}$ be a twisted Dirac operator coming from the Lorentz gauge fixing of (0.1) and λ_{i} and $e_{i}=\left(e_{i}^{A}, e_{i}^{\phi}\right), i=1,2, \ldots$ the eigenvalues and eigenvectors of $Q_{A_{0}}$.

For a sufficiently large integer p, we define the Hilbert subspace $H_{p}\left(\Omega_{+}\right)$of $L^{2}\left(\Omega_{+}\right)=$ $L^{2}\left(\Omega^{1}(M, \mathfrak{g}) \oplus \Omega^{3}(M, \mathfrak{g})\right)$ with new inner product $(,)_{p}$ defined by

$$
((A, \phi),(B, \varphi))_{p}=\left(A,\left(I+Q_{A_{0}}^{2}\right)^{p} B\right)+\left(\phi,\left(I+Q_{A_{0}}^{2}\right)^{p} \varphi\right),
$$

where I is the identity operator on $L^{2}\left(\Omega_{+}\right)$.
Now, let $H=H_{p}\left(\Omega_{+}\right)$and (B, H, μ) an abstract Wiener space.
Let denote ϵ-regularized Wilson line by $F_{A_{0}}^{\epsilon}(x)$, (Mitoma-Nishikawa) and the regularized determinant coming from the Lorentz gauge fixing, by $\operatorname{det}_{\text {Reg }}(x)$, (Albeverio-Mitoma).

From now on, we use the brief notations such that

$$
\beta_{j}=\left(1+\lambda_{j}^{2}\right)^{-p / 2}, h_{j}=\beta_{j} e_{j} \text { and } a_{j}=\beta_{j}^{2} \lambda_{j} .
$$

Then a Gaussian integral of the Chern-Simons Lagrangian in an abstract Wiener space setting is defined by

$$
\begin{align*}
& \frac{1}{Z_{G}} \int_{B} \widetilde{F}_{A_{0}}^{\epsilon}\left(\frac{1}{\sqrt[3]{k}} x\right) \exp [i \sqrt[3]{k} C S(x)] \\
& \times \exp \left[i \sum_{a b c=1}^{\infty}\left\langle x, h_{a}\right\rangle\left\langle x, h_{b}\right\rangle\left\langle x, h_{c}\right\rangle \beta_{a} \beta_{b} \beta_{c} T_{a b c}\right] \mu(d x), \tag{0.2}
\end{align*}
$$

where

$$
\begin{gathered}
Z_{G}=\int_{B} \exp [i \sqrt[3]{k} C S(x)] \mu(d x) \\
\widetilde{F}_{A_{0}}^{\epsilon}(x)=F_{A_{0}}^{\epsilon}(x) \operatorname{det}_{R e g}(x) \\
C S(x)=\sum_{j=1}^{\infty} a_{j}\left\langle x, h_{j}\right\rangle^{2}<+\infty \\
T_{a b c}=-\int_{M} \operatorname{Tr} \frac{1}{6 \pi} e_{a}^{A} \bigwedge e_{b}^{A} \bigwedge e_{c}^{A}
\end{gathered}
$$

and $\langle\cdot, \cdot\rangle$ denotes the bilinear form of B and its dual space B^{*}.
By the Fujiwara-Kumano-go method [1, 2], we obtain
Theorem. If we take for sufficiently large p of H_{p} in the abstract Wiener space, we have the following asymptotic expansion up to order $2 N$:

$$
\begin{aligned}
& (0.2)=\widetilde{F}_{A_{0}}^{\epsilon}(0) \\
& +\sum_{s=1}^{N}\left(\sum _ { r = 1 } ^ { s } \left(\sum _ { 1 \leq j _ { 1 } < j _ { 2 } < j _ { 3 } \cdots < j _ { r } < \infty } \left(\sum_{m_{1}, m_{2}, \cdots, m_{r} \geq 1, m_{1}+m_{2}+\cdots+m_{r}=s}\right.\right.\right. \\
& \left(\left(\prod_{q=1}^{r} \frac{1}{2^{m_{q}} m_{q}!\left(1-2 i \sqrt[3]{k} a_{j_{q}}\right)^{m_{q}}} \nabla_{h_{j_{q}}}^{2 m_{q}}\right)\right. \\
& \left.\left.\left.\left.\widetilde{F}_{A_{0}}^{\epsilon}\left(\frac{1}{\sqrt[3]{k}} x\right) \exp \left[i \sum_{a b c=1}^{\infty}\left\langle x, h_{a}\right\rangle\left\langle x, h_{b}\right\rangle\left\langle x, h_{c}\right\rangle \beta_{a} \beta_{b} \beta_{c} T_{a b c}\right]\right)(0)\right)\right)\right) \\
& \left.+O\left(\left(\sum_{j=1}^{\infty} j^{16 N+16} \frac{\beta_{j}^{2}}{\left|1-2 i \sqrt[3]{k} a_{j}\right|}\right)^{N+1}\right)\right\},
\end{aligned}
$$

for sufficiently large k.

References

[1] D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J. 124 (1991), 61-97.
[2] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation, Bull. Sci. Math. 128 (2004), 197-251.

