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Let M be a compact oriented smooth 3-manifold, G a simply connected, connected
compact simple Lie group, g the associated Lie algebra and Q" (M, g) the space of g-valued
smooth r-forms on M with the inner product ( , ). We may identify A of connections on
a principal G-bundle over M with Q(M, g).

The Chern-Simons integral of the Wilson line F(A) is given by
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where the Chern-Simons Lagrangian L is defined by
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Here D(A) is the Feynman measure integrating over all gauge orbits, Tr denotes the trace
in the adjoint representation of the Lie algebra g, and the parameter k is a positive integer
called the level of charges.

Then we replace D(A) by a standard Gaussian measure, which is called a Gaussian
integral of the Chern-Simons Lagrangian.

Let Q4, be a twisted Dirac operator coming from the Lorentz gauge fixing of (0.1)
and \; and e; = (ef‘, ef), it =1,2,... the eigenvalues and eigenvectors of ) 4,.

For a sufficiently large integer p, we define the Hilbert subspace H,(Q+) of L*(Q4) =
L? (QY(M, g) ® Q3(M, g)) with new inner product ( , ), defined by

((Aa ¢)a (B7§0)>p = (A’ (I + QZAo)pB) + (¢’ (I + Q?“o)p s0) ’

where I is the identity operator on L?(£),).
Now, let H = H,(Q4) and (B, H, ;1) an abstract Wiener space.
Let denote e-regularized Wilson line by F§ (z), (Mitoma-Nishikawa) and the regular-
ized determinant coming from the Lorentz gauge fixing, by detgeq(x), (Albeverio-Mitoma).
From now on, we use the brief notations such that

—p/2

Then a Gaussian integral of the Chern-Simons Lagrangian in an abstract Wiener space
setting is defined by
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Zg = [ exp [i%C’S(w)]u(dm),

B
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and (-,-) denotes the bilinear form of B and its dual space B*.
By the Fujiwara-Kumano-go method [1, 2], we obtain

Theorem. If we take for sufficiently large p of H,, in the abstract Wiener space, we have
the following asymptotic expansion up to order 2N :
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for sufficiently large k.
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