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Let M be a d-dimensional connected manifold. Assume we are given a complete Ricci
flow

dg(1) .
7 = —2R1Cg(t)

on M, that is, we are given a family (g())o<t<r of Riemannian metrics on M, satisfying
the above equation, each of which makes M a complete Riemannian manifold. When M
is closed, this (modified by a diffecomorphism) can be interpreted as a gradient flow of the
Perelman’s F-functional (see [3]) defined by

Flg, f) = / {Ry+ V9D f12} e dvol,
M

under the constraint that e=/dvol, is fixed. Here g and f are any Riemannian metrics
and smooth functions on M respectively. The quantity R, denotes the scalar curvature
with respect to the Riemannian structure g.

On the other hand, from an optimal-transport point of view, Lott [2] defined the L,
functional by

Lo(y) = %/ﬂ {17 (O30 + Roay(7(t)) }dt

where 0 <t <t <T and v : [t',t"] — M is a smooth curve in M. From this lagrangian,
a Riemannian distance-like function Lj " and the Lo-transportation cost can be defined

by

LYY (m/,m") .= inf Lo(7), m' #m" in M
v

where the infimum is taken among smooth curves v : [t/,t"] — M such that v(t') = m’
and v(t") =m”, and

CUY (W, ") = inf / LY (! "y (dm!, dm”)
me[ T .w") S avrsm
respectively, where ¢/ and p” are two Borel probability measures on M and [](x/, 1) is
the set of all couplings of them.
The Perelman’s F-functional and the Ly-transportational cost are related (see Lott [2])
by the equation

da(t")

1
lim —— T
=t " — 1 dvoly)

Co"(a(t)), at")) = F(g(t)
1
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where « is a curve in the space of probability measures on M satisfying the backward

heat equation

Ox
9 _ _Aa.
ot “

By using this relation, Lott [2] gave an optimal-transport theoretical proof to the mono-
tonicity of the F-functional along the Ricci flow (although this is immediate from the
Perelman’s gradient flow interpretation of Ricci flow). In fact, heuristically, he proved the
monotonicity of the Ly-transportational cost along the backward heat flow, which is valid
at least under the condition where Otto’s calculus works well.
In this paper, we investigated a probabilistic proof of the Lott’s result for a deeper
understanding. Let
0<ty<t)<T, 0<ty<t/<T
with ¢ < t; and t} —t{, = t{ —tj. It will be helpful to think that we have two worlds
governed by Ricci flows (M, g(t'))y <i<y; and (M, g(t'))u<i<er-

Theorem 1. Assume that our Ricci flow satisfies the condition

sup [Rmg ) (m)|gq) < 00
(tym)e[th 4] x M
where Rmy is the Riemannian curvature tensor with respect to the Riemannian structure
g. Then for each (m',m") € M x M, there exists a coupling of g(t| — s)-Brownian motion
X = (Xi)o<s<, —1, starting from m’ and g(t] — s)-Brownian motion Y = (Ys)o<s<er 1

starting from m” such that s — Lgl_s’t,{_s(Xs, Ys) is a supermartingale.

Remark 1. (1) This result is an analogy of Kuwada-Philipowski [1] in which they dis-
cussed an existence of such a coupling of Brownian motions fitting to the relationship
of Perelman’s W-functional and the transportation cost described by the Perelman’s L-
geometry. (2) From Theorem 1, the monotonicity of Ly-cost along the backward heat
equation follows. (3) This also gives an extension of Lott’s monotonicity result because
Lott’s framework assumed the closedness of M but we do not. Instead we assumed the
space-time boundedness of the Riemannian curvature.
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