Games of singular control and stopping driven by spectrally one-sided Lévy processes

Kazutoshi Yamazaki
Department of Mathematics
Kansai University
E-mail: kyamazak@kansai-u.ac.jp

Joint with Daniel Hernández-Hernández (CIMAT)

We study a zero-sum game where the evolution of a spectrally one-sided Lévy process is modified by a singular controller and is terminated by the stopper. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space hosting a spectrally one-sided Lévy process $X=$ $\left\{X_{t} ; t \geq 0\right\}$. Let \mathbb{P}_{x} be the conditional probability under which $X_{0}=x$ (also let $\mathbb{P} \equiv \mathbb{P}_{0}$), and let $\mathbb{F}:=\left\{\mathcal{F}_{t}: t \geq 0\right\}$ be the filtration generated by X.

The games analyzed in this paper consist of two players. The controller chooses a process $\xi \in \Xi$, which denotes the set of nondecreasing and right-continuous \mathbb{F} adapted processes with $\xi_{0^{-}}:=0$, while the stopper chooses the time $\tau \in \Upsilon$ among the set of \mathbb{F}-stopping times Υ. The controller minimizes and the stopper maximizes the common performance criterion:

$$
J(x ; \xi, \tau):=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-q t} h\left(U_{t}^{\xi}\right) \mathrm{d} t+\int_{[0, \tau]} e^{-q t} \mathrm{~d} \xi_{t}+e^{-q \tau} g\left(U_{\tau}^{\xi}\right) 1_{\{\tau<\infty\}}\right],
$$

where U^{ξ} is a right-continuous controlled process defined by

$$
U_{t}^{\xi}:=X_{t}+\xi_{t}, \quad t \geq 0
$$

The problem is to show the existence of a saddle point, or equivalently a Nash equilibrium $\left(\xi^{*}, \tau^{*}\right) \in \Xi \times \Upsilon$, such that

$$
\begin{equation*}
J\left(x ; \xi^{*}, \tau\right) \leq J\left(x ; \xi^{*}, \tau^{*}\right) \leq J\left(x ; \xi, \tau^{*}\right) \tag{0.1}
\end{equation*}
$$

for any $\xi \in \Xi$ and any stopping time $\tau \in \Upsilon$; in this case we call $J\left(x ; \xi^{*}, \tau^{*}\right)$ the value function of the game.

In this paper, we consider for X a general spectrally negative or positive Lévy process and show under a suitable condition that a saddle point is given by ($\xi^{a}, \tau_{a, b}$) for some $a<b$, where we define

$$
\begin{aligned}
\xi_{t}^{a} & :=\sup _{0 \leq t^{\prime} \leq t}\left(a-X_{t^{\prime}}\right) \vee 0, \quad t \geq 0, \\
\tau_{a, b} & :=\inf \left\{t \geq 0: U_{t}^{\xi^{a}}>b\right\}
\end{aligned}
$$

The saddle point and the corresponding value function is written in terms of the scale function. Numerical examples under phase-type Lévy processes are also given.

References

[1] Hernández-Hernández, D. and Yamazaki, K., Games of singular control and stopping driven by spectrally one-sided Lévy processes, arXiv:1308.3141, 2013.

