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Abstract. –

The spectrum of a Schrödinger operator with a Gaussian random potential is R. This is a theorem

appeared in a book by Pastur and Figotin and is proven by the theory on small ball probabilities. In

this paper, the detail of the proof is discussed, and similar facts are proven for Dirac and Schrödinger

operators with a Gaussian random magnetic field.
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1. Introduction

Let (Xω(x))x∈Rd be a real Gaussian random field on Rd with E[Xω(x)] = 0 and E[Xω(x)Xω(y)] =

γ(x− y) satisfying

(A1) γ(0) > 0, lim
|x|→0

γ(x) = 0, and γ is integrable and Hölder continuous at 0.

By the assumption (A1), we always realize the random field so that the sample path Xω(x) is contin-

uous in x (cf. Thereom 4.1.1 in Fernique [5]).

Our motivation is to prove the following:

Theorem 1. (i) The spectral set spec(−∆+(Xω)2) of the self-adjoint operator of the form −∆+(Xω)2

on L2(Rd) is [0,∞), where ∆ =
∑d

ι=1(∂ι)
2.

(ii) The spectral set spec(−∆+Xω) of the self-adjoint operator of the form −∆+Xω on L2(Rd) is R.

1



The results of this theorem are stated in Theorem II-(5.34) in Pastur and Figotin [17] with the outline

of the proof. In this paper we give a detailed proof of this theorem and extend the results to other

operators: Dirac and Schrödinger operators with a Gaussian random magnetic field.

The key theorem for the proof of Theorem 1 is the following:

Theorem 2. (i) It holds that

(1.1) P( sup
|x|≤ℓ

|Xω(x)| < η) > 0

for any ℓ, η > 0.

(ii) We assume

(A2)

∫
|ζ|<δ

γ̂(ζ)dζ > 0 for any δ > 0, where

f̂(ζ) =

∫
Rd

exp(−2πiζ · x)f(x)dx

is the Fourier transform.

Then it holds that

(1.2) P( sup
|x|≤ℓ

|Xω(x)− λ| < η) > 0

for any ℓ, η > 0 and λ ∈ R.

(iii) There exists a non-zero real rapidly decreasing function V on Rd such that

(1.3) P( sup
|x|≤ℓ

|Xω(x)− λV (x)| < η) > 0

for any ℓ, η > 0 and λ ∈ R.

The probability in this theorem is called the small ball probability and is well studied. For this aspect,

see Li and Shao [14]. Theorem 2 (i) is a simple consequence from more detailed results by Talagrand [20]

and Ledoux [12] Section 7 (see also Li and Shao [14] Theorem 3.8). By Theorem 2 (i), we can show

(1.4) spec(−∆+ (Xω)2), spec(−∆+Xω) ⊃ spec(−∆) = [0,∞)

and the proof of Theorem 1 (i) is completed. Theorem 2 (ii) and (iii) are simple consequences from more

detailed results obtained by Hoffmann-Jorgensen, Shepp and Dudley [8] and de Acosta [4] on the small

ball probability in the case that the ball is shifted (see also Li and Shao [14] Theorem 3.1, Theorem 3.2).

Their tool is the Cameron and Martin theorem [3]. In [17], the estimate (1.2) is stated without proof and

is used to prove Theorem 1. In this paper, we show that the estimate (1.2) is proven by the Cameron and
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Martin theorem under the assumption (A2), and we use Theorem 2 (iii) to prove Theorem 1 (ii) so that

the assumption (A2) is not required. For Dirac and Schrödinger operators with random magnetic fields,

Theorem 2 (iii) is difficult to apply and we apply Theorem 2 (ii) for the identification of the spectral sets.

To obtain Theorem 1 from Theorem 2, we deduce the following as in Ando, Iwatsuka, Kaminaga and

Nakano [1]:

Lemma 1.1. (i) For almost all ω, any ℓ, k ∈ N, there exists x(ω, ℓ, k) ∈ Rd such that sup|x−x(ω,ℓ,k)|≤ℓ |Xω(x)| <

1/k.

(ii) Under (A2), for almost all ω, any ℓ, k ∈ N and λ ∈ R, there exists x(ω, λ, ℓ, k) ∈ Rd such that

sup|x−x(ω,λ,ℓ,k)|≤ℓ |Xω(x)− λ| < 1/k.

(iii) For almost all ω, any ℓ, k ∈ N and λ ∈ R, there exists x(ω, λV, ℓ, k) ∈ Rd such that sup|x|≤ℓ |Xω(x+

x(ω, λV, ℓ, k))− λV (x)| < 1/k, where V is the function given in Theorem 1 (iii).

For comprehensive reviews on the random Scrödinger operators, refer to Carmona and Lacroix [2] and

Pastur and Figotin [17]. For the spectrum of the operator −∆+Xω, the asymptotic distribution at low

energies is studied by Pastur [16] and the Anderson localization at low energies is proven by Fischer,

Leschke, and Müller [6]. For the spectrum of the operator −∆+ (Xω)2, the asymptotic distribution at

low energies is studied in [21].

The organization of this paper is as follows. In Section 2, we discuss on the proof of Theorem 2. In

Section 3, we discuss on the proof of Theorem 1. In Section 4, we extend the identification of the spectral

sets to Dirac and Scrödinger operators with a Gaussian random magnetic field.

2. Proof of Theorem 2

Proof of Theorem 2 (i).

We have a positive lower bound

(2.1) P( sup
|x|≤ℓ

|Xω(x)| < η) ≥ exp(−ψ(η)),

under the existence of a nonnegative function ψ(η) satsfying

N({|x| ≤ ℓ}, γ, η) ≤ ψ(η)

and

C1ψ(η) ≤ ψ
(η
2

)
≤ C2ψ(η),

3



with some constants C1, C2 ∈ (0,∞), where N({|x| ≤ ℓ}, γ, η) is the entropy number defined by

min{n ∈ N : there exist {xi}ni=1 ⊂ Rd s.t.

n⋃
i=1

Bγ(xi, η) ⊃ {|x| ≤ ℓ}},

Bγ(xi, η) = {x ∈ Rd : dγ(x, xi) < η}, and dγ(·, ·) is the Dudley metric defined by

dγ(x, y) = E[(Xω(x)−Xω(y))2]1/2.

The bound in (2.1) was obtained by Talagrand [20] and the formulation in (2.1) was given by Ledoux

[12] Section 7 (see also Li and Shao [14] Theorem 3.8). We can take ψ(η) = cℓd/ηd/α if γ is α-Hölder

continuous at 0 in the assumption (A1), where c is some positive finite constant. 2

For the bound in (2.1), E[Xω(x)] = 0 is essential since this is also essential for the main tool for the

proof of (2.1), which is the correlation inequality

P( max
1≤i≤n

|Xω(xi)| < η) ≥ P(|Xω(x1)| < η)P( max
2≤i≤n

|Xω(xi)| < η),

This correlation inequality was proven by Khatri [11] and Sidak [18], [19] (See also Section 2.2 in Li and

Shao [14]).

Proof of Theorem 2 (ii).

To treat shifted small balls generally, the Cameron and Martin theorem [3] is applied with Hölder’s

inequality as

P( sup
|x|≤ℓ

|Xω(x)− h(x)| < η) ≥ P( sup
|x|≤ℓ

|Xω(x)| < η) exp(−∥h∥2H/2),

where ∥ · ∥H is the norm of the Cameron and Martin space (cf. Hoffmann-Jorgensen, Shepp and Dudley

[8], de Acosta [4], Section 3.1 in Li and Shao [14]). In our case, the norm is

∥h∥H =
(∫

Rd

|ĥ(ζ)|2

γ̂(ζ)
dζ

)1/2

.

Therefore a sufficient condition for the result of Theorem 2 (ii) is

(A3) For any ℓ, η > 0, there exists a function h on Rd such that

(2.2) sup
|x|≤ℓ

|1− h(x)| < η

and

(2.3)

∫
Rd

|ĥ(ζ)|2

γ̂(ζ)
dζ <∞.
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We will show that (A3) holds under (A2). For any δ > 0, there exists ε > 0 such that |{|ζ| < δ :

γ̂(ζ) > ε}| > 0, where | · ∥ is the d-dimensional Lebesgue measure. Since {|ζ| < δ : γ̂(ζ) > ε} is nonempty

open set, we can take a nonnegative continuous function g such that

(2.4) supp g ⊂ {|ζ| < δ : γ̂(ζ) > ε}

and

(2.5)

∫
g(ζ)

√
γ̂(ζ)dζ = 1.

Since γ̂(−ζ) = γ̂(ζ), we can take this function g so that g(−ζ) = g(ζ). Then the function

h(x) =

∫
exp(2πζ · x)g(ζ)

√
γ̂(ζ)dζ

is real valued, satisfies (2.3) by (2.4), and satisfies (2.2) by (2.4) and (2.5) if δ < η/(2πℓ). 2

Proof of Theorem 2 (iii).

We can take a function V so that V̂ is a non-zero smooth function such that V̂ (−ζ) = V̂ (ζ) and supp V̂

is a compact set included in {ζ : γ̂(ζ) > ε} with sufficiently small ε > 0. 2

3. Proof of Theorem 1

We first deduce Lemma 1.1 from Theorem 2 as in Ando, Iwatsuka, Kaminaga and Nakano [1]:

Proof of Lemma 1.1.

We prove only (ii). Other statements are similarly proven. For any λ ∈ R and k, ℓ ∈ N, we define the

events

E(λ, ℓ, k) :=
{
ω : sup

|x|≤ℓ

|Xω(x)− λ| < 1

k

}
and

D(λ, ℓ, k) :=
{
ω : sup

|x−x0|≤ℓ

|Xω(x)− λ| < 1

k
for some x0 ∈ Rd

}
.

Then by Theorem 2,

P(E(λ, ℓ, k)) > 0,

E(λ, ℓ, k) ⊂ D(λ, ℓ, k),

and D(λ, ℓ, k) is invariant under the shift in the space variable. Since the random field {Xω(x)} is

metrically transitive, we have

P(D(λ, ℓ, k)) = 1
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and

P
( ⋂

k,ℓ∈N

D(λ, ℓ, k)
)
= 1.

The metrically transitivity of the random fields are discussed in a more general framework of stationary

fields in Maruyama [15]. Thus for ω ∈
⋂

k,ℓ∈ND(λ, ℓ, k) and k, ℓ ∈ N, there exists x(ω, λ, ℓ, k) ∈ Rd such

that

sup
|x−x(ω,λ,ℓ,k)|≤ℓ

|Xω(x)− λ| < 1

k
.

2

We next prove Theorem 1, referring Pastur and Figotin [17].

Proof of Theorem 1.

We first prove (1.4). For any µ ∈ [0,∞), there exist {φn}n∈N in C∞
0 (Rd) such that ∥φn∥L2(Rd) = 1

and ∥(−∆ − µ)φn∥L2(Rd) → 0 as n → ∞ by Weyl’s criterion (cf. Hislop and Sigal [7], Theorem 5.10).

Let ℓ(n) be an integer such that suppφn ⊂ {|x| < ℓ(n)}, and let x(ω, ℓ(n), n) be the point in Rd given in

Lemma 1.1 (i). Then, for any m ∈ N, we have

∥(−∆+ (Xω)m − µ)φn(· − x(ω, ℓ(n), n))∥L2(Rd)

≤∥(−∆− µ)φn∥L2(R2) + sup
|x−x(ω,ℓ(n),n)|≤ℓ(n)

|Xω(x)|m,

which converges to 0 as n→ ∞. Thus by Weyl’s criterion, we have µ ∈ spec(−∆+ (Xω)m).

We next show that (−∞, 0) ⊂ spec(−∆ + Xω) by applying Theorem 2 (iii). For any µ ∈ (−∞, 0),

there exists λµ ∈ R such that

inf spec(−∆+ λµV ) = µ,

where V is the function given in Theorem 2 (iii). Indeed, by the expression

inf spec(−∆+ λV ) = inf
{∫

Rd

dx(|∇φ|2 ∗ λV (x)|φ(x)|2) : φ ∈ C∞
0 (Rd), ∥φ∥L2(Rd) = 1

}
,

we see that inf spec(−∆ + λV ) is a continuous function of λ such that inf spec(−∆) = 0 at λ = 0. If

V ≤ −ε on a non-empty open set S with a positive number ε, then we have

inf spec(−∆+ λV ) ≤ inf spec(−∆S)− λϵ

for λ > 0, where ∆S is the Laplacian on S with the Dirichlet boundary condition. Since the right hand

side tends to −∞ as λ ↑ ∞, we see the existence of λµ in (0,∞). If V ≥ ε on a non-empty open set S,

then we see the existence of λµ in (−∞, 0).
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There exist {φn}n∈N in C∞
0 (Rd) such that ∥φn∥L2(Rd) = 1 and ∥(−∆ + λµV − µ)φn∥L2(Rd) → 0

as n → ∞ by Weyl’s criterion. Let ℓ(n) be an integer such that suppφn ⊂ {|x| < ℓ(n)}, and let

x(ω, λµV, ℓ(n), n) be the point in Rd given in Lemma 1.1 (iii). Then

∥(−∆+Xω(x)− µ)φn(x− x(ω, λµV, ℓ(n), n))∥L2(Rd)

≤∥(−∆+ λµV − µ)φn∥L2(R2) + sup
|x|≤ℓ(n)

|Xω(x+ x(ω, λµV, ℓ(n), n))− λµV (x)|,

which converges to 0 as n→ ∞. Thus by Weyl’s criterion, we have µ ∈ spec(−∆+Xω). 2

4. Applications to operators for magnetic fields

In this section, we consider operators on R2. We first consider the Dirac operator

(4.1) Dω :=

2∑
ι=1

γι(i∂ι +Aω
ι (x)),

where

γ1 =

0 1

1 0

 , γ2 =

 0 i

−i 0


are Pauri matrices. Aω(x) = A0(x) + Ãω(x), A0(x) is a vector potential of a uniform magnetic field

B ∈ [0,∞), and Ãω(x) is a random vector potential of a random magnetic field B̃ω(x), which is a

Gaussian random field on R2 with E[B̃ω(x)] = 0 and E[B̃ω(x)B̃ω(y)] = γ(x − y) satisfying (A1). For

example, we can take the potentials as

A0(x) =
B

2

−x2

x1


and

(4.2) Aω(x) =

∫ 1

0

dt tB̃ω(tx)

−x2

x1

 .

The operator Dω in (4.1) with the domain C∞
0 (R2 → C2) is essentially self-adjoint in the Hilbert space

L2(R2 → C2), where C∞
0 (R2 → C2) is the set of all C2-valued smooth functions with compact supports

and L2(R2 → C2) is the Hilbert space of all C2-valued L2-functions (cf. Jörgen [10], Ivrii [9] §9.2.1).

We denote the unique self-adjoint extension by the same symbol. For this operator, we will show the

following:
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Proposition 4.1. (i) Under (A1) and either (A2) or B = 0, the spectral set spec(Dω) of Dω is R.

(ii) Under (A1) and B ̸= 0, we have

spec(Dω) ⊃ {±
√
2nB : n ∈ Z+}.

The right hand side is the Landau level of the Dirac operator D0 for the uniform magnetic field B and

B̃ω = 0.

Proof.

(i) For any µ ∈ R, there exist {φn}n∈N in C∞
0 (R2 → C2) such that ∥φn∥L2(R2) = 1 and ∥(D0 −

µ)φn∥L2(R2) → 0 as n→ ∞ by Weyl’s criterion (Hislop and Sigal [7], Theorem 5.10), where

D0 =

2∑
ι=1

γιi∂ι.

For almost all ω and any ℓ, k ∈ N, we take x(ω,B, ℓ, k) ∈ R2 such that

(4.3) sup
|x−x(ω,B,ℓ,k)|≤ℓ

|B̃ω(x) +B| < 1/k

by Lemma 1.1. For any n ∈ N, there exists ℓ(n) ∈ N such that

suppφn ⊂ {x : |x| ≤ ℓ(n)}.

Then we have

|B̃ω(x) +B| < 1/k

on {x ∈ R2 : |x− x(ω,B, ℓ(n), k)| ≤ ℓ(n)} ⊃ suppφn(· − x(ω,B, ℓ(n), k)). On this set, we take the vector

potential as

(4.4) Aω(x) =

∫ 1

0

dt t(B + B̃ω(tx+ (1− t)x(ω,B, ℓ(n), k)))

−x2 + x2(ω,B, ℓ(n), k)

x1 − x1(ω,B, ℓ(n), k)

 ,

which satisfies

|Aω(x)| ≤ ℓ(n)

2k
.

Thus we have

∥(Dω − µ)φn(· − x(ω,B, ℓ(n), k))∥L2(R2)

≤∥(D0 − µ)φn∥L2(R2) + ℓ(n)/k.

Thus by Weyl’s criterion, µ belongs to the spectral set of Dω.
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(ii) In the proof of (i), let µ be an element of spec(D0). For almost all ω and any ℓ, k ∈ N, we take

x(ω, ℓ, k) ∈ R2 such that

(4.5) sup
|x−x(ω,ℓ,k)|≤ℓ

|B̃ω(x)| < 1/k

by Proposition 1.1, and we take ℓ(n) ∈ N such that suppφn ⊂ {x : |x| ≤ ℓ(n)}. We divide the vector

potential similar to that in (4.4) as Aω(x) = Aω(x)1 +Aω(x)2, where

(4.6) Aω(x)1 =
B

2

−x2 + x2(ω,B, ℓ(n), k)

x1 − x1(ω,B, ℓ(n), k)

 ,

and

(4.7) Aω(x)2 =

∫ 1

0

dt tB̃ω(tx+ (1− t)x(ω, ℓ(n), k))

−x2 + x2(ω, ℓ(n), k)

x1 − x1(ω, ℓ(n), k)

 .

On the set {x ∈ R2 : |x− x(ω, ℓ(n), k)| ≤ ℓ(n)}, we have

|Aω(x)2| ≤ ℓ(n)

2k
.

Then we have

∥(Dω − µ)φn(· − x(ω, ℓ(n), k))∥L2(R2)

≤∥(D0 − µ)φn∥L2(R2) + ℓ(n)/k.

Thus by Weyl’s criterion, µ belongs to the spectral set of Dω. 2

We next consider the Schrödinger operator

(4.8) Hω :=
2∑

ι=1

(i∂ι +Aω
ι (x))

2.

We define this operator as the unique self-adjoint operator on L2(R2 → C) associated with the closure

of the quadratic form

2∑
ι=1

∫
dx(i∂ιφ(x) +Aω

ι (x)φ(x))(i∂ιψ(x) +Aω
ι (x)ψ(x))

with the domain C∞
0 (R2 → C), where C∞

0 (R2 → C) is the set of all C-valued smooth functions with

compact supports and L2(R2 → C) is the Hilbert space of all C-valued L2-functions. The domain of the

closed form coincides with

{φ ∈ L2(R2 → C) : i∂ιφ+Aω
ι φ ∈ L2(R2 → C) for ι ∈ {1, 2}}.
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If we can take Aω so that ∇ ·Aω is L2 on any compact sets, then this operator is essentially self-adjoint

on C∞
0 (R2 → C) (cf. Leinfelder and Simader [13]). For this operator, we will show the following:

Proposition 4.2. (i) Under (A1) and either (A2) or B = 0, the spectral set spec(Hω) of Hω is the

interval [0,∞).

(ii) Under (A1) and B ̸= 0, we have

spec(Hω) ⊃ {(2n+ 1)B : n ∈ Z+}.

The right hand side is the Landau level of the Landau Hamiltonian H0 for the uniform magnetic field B

and B̃ω = 0.

Proof.

(i) For any µ ∈ [0,∞), there exist {φn}n∈N in C∞
0 (R2) such that ∥φn∥L2(R2) = 1 and ∥(−∆ −

µ)φn∥L2(R2) → 0 as n → ∞ by Weyl’s criterion (Hislop and Sigal [7], Theorem 5.10). We take

x(ω,B, ℓ, k) ∈ Rd as in (4.3). However the vector potential in (4.4) needs to be modified, since ∇ · Aω

appears on the operator Hω. Thus we use a vector potential of the Coulomb gauge: we take ℓ(n) ∈ N so

that

suppφn ⊂ {x : |x| ≤ ℓ(n)− 1},

and take a vector potential as

(4.9) Aω(x) =

∫
R2

dyχ̃ℓ(n)(y − x(ω,B, ℓ, k))
B + B̃ω(y)

2π|x− y|2

−x2 + y2

x1 − y1

 ,

where χ̃ℓ(n) is a [0, 1]-valued smooth function on R2 such that χ̃ℓ(n)(x) = 1 for |x| ≤ ℓ(n) − 1 and

χ̃ℓ(n)(x) = 0 for |x| ≥ ℓ(n). Then we have ∇ ·Aω(x) = 0 and

|Aω(x)| ≤ 2ℓ(n)/k

on suppφn(· − x(ω,B, ℓ(n), k)) ⊂ {x : |x − x(ω,B, ℓ(n), k)| ≤ ℓ(n) − 1}. Thus φn(· − x(ω,B, ℓ(n), k))

belongs to the domain of Hω,

Hωφn(· − x(ω,B, ℓ(n), k)) = (−∆+ 2iAω · ∇+ |Aω|2)φn(· − x(ω,B, ℓ(n), k)),

and we can estimate as

∥(Hω − µ)φn(· − x(ω,B, ℓ(n), k))∥L2(R2)

≤∥(−∆− µ)φn∥L2(R2) +
4ℓ(n)

k
∥∇φn∥L2(R2) +

(2ℓ(n)
k

)2
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and

∥∇φn∥L2(R2) ≤
√
∥(−∆− µ)φn∥L2(R2) + µ.

By Weyl’s criterion, we see that µ belongs to the spectral set of Hω.

(ii) In the proof of (i), let µ be an element of spec(H0). For almost all ω and any ℓ, k ∈ N, we take

x(ω, ℓ, k) ∈ R2 as in (4.5), and we take ℓ(n) ∈ N such that suppφn ⊂ {x : |x| ≤ ℓ(n)− 1}. We divide the

vector potential similar to that in (4.9) as Aω(x) = Aω(x)1 + Aω(x)2, where Aω(x)1 is same with (4.6),

and

Aω(x)2 =

∫
R2

dyχ̃ℓ(n)(y − x(ω,B, ℓ, k))
B̃ω(y)

2π|x− y|2

−x2 + y2

x1 − y1

 .

On the set {x ∈ R2 : |x− x(ω, ℓ(n), k)| ≤ ℓ(n)− 1}, we have

|Aω(x)2| ≤ 2ℓ(n)

k

and

|Aω(x)2| ≤ Bℓ(n)

2
.

Then we have

∥(Hω − µ)φn(· − x(ω, ℓ(n), k))∥L2(R2)

≤∥(H0 − µ)φn∥L2(R2) +
4ℓ(n)

k
∥∇φn∥L2(R2) + ℓ(n)2

2

k

(2
k
+B

)
and

∥∇φn∥L2(R2) ≤
√
∥(H0 − µ)φn∥L2(R2) + µ.

By Weyl’s criterion, we see that µ belongs to the spectral set of Hω.

2

For the spectrum of the operator Hω, the asymptotic distribution and the Anderson localization at

low energies are studied in [21] and [22].

Acknowledgements. – The author would like to express his gratitude to the referee for many

valuable comments. Li and Shao’s reference [14] is introduced by the referee. By the reference, the

author knows many related results and this paper is improved. This work was supported by JSPS

KAKENHI grant JP20K03629.

11



References

1. Ando, K., Iwatsuka, A., Kaminaga, M. and Nakano, F., The spectrum of the Schrödinger operators with Poisson type

random potential Annales Henri Poincaré, 7, 145–160 (2006).
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