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Abstract. Conditions are given which imply that certain non-autonomous analytic iterated func-

tion systems in the complex plane C have pointwise thin, and thus hereditarily non uniformly

perfect, attractor sets. Examples are given to illustrate the main theorem, as well as to indicate

how it generalizes other results. Applications to non-autonomous Julia sets are also given.

1. Introduction

This paper can be regarded as a complementary paper to [3]. Whereas the focus of [3] is to give

conditions for an analytic non-autonomous iterated function system (NIFS) to have a uniformly

perfect attractor, this paper looks to the other extreme and gives conditions for an analytic NIFS

to have a hereditarily non uniformly perfect (HNUP) attractor.

We exclude from our focus analytic autonomous systems since results found in [7] show that such

an attractor is often uniformly perfect (see also [4] for uniformly perfectness results regarding similar

autonomous systems). Certain constructions in [8] are non-autonomous iterated function systems

shown to have HNUP attractors. (Those examples were not presented as attractors, but rather as

Cantor-like constructions. However, Example 2.1 (see also [3]) shows how they can be viewed as

non-autonomous attractors.) We look to generalize such results here, and we begin, as done in [3],

by following [6] to introduce the main framework and definitions (with some key differences) of

NIFS’s. We also note that attractors of NIFS’s are often Moran-set constructions (see [10] for good

exposition of such).

1.1. NIFS’s. A non-autonomous iterated function system (NIFS) Φ on the pair (U,X) is given by

a sequence Φ(1),Φ(2),Φ(3), . . . , such that each Φ(j) is a collection of non-constant functions (ϕ
(j)
i :

U → X)i∈I(j) , where each function maps the non-empty open connected set U ⊂ C into a compact

set X ⊂ U such that there exists 0 < s < 1 and a metric d on U with d(ϕ(z), ϕ(w)) ≤ sd(z, w)
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for all z, w ∈ X and all ϕ ∈ ∪∞j=1Φ(j). We also require d to induce the Euclidean topology on X,

and note that the system is uniformly contracting on the metric space (X, d). The system is called

autonomous if I(j) and Φ(j) are independent of j.

We define a NIFS and its corresponding attractor set (see Definition 1.3) to be analytic (respec-

tively, conformal) if all the maps are analytic (respectively, conformal) on U . Note that here and

throughout conformal means analytic and one-to-one (globally on U , not just locally). The main

object of interest to this paper is the analytic NIFS, and so the condition imposed that each ϕ map

U into X allows us, under this condition of analyticity, to take the metric d to be the hyperbolic

metric on U (see Section 2).

Important differences from [6] in the above setup include that we do not impose an open set

condition in our definition. However, for several of our results we shall require the following even

stronger condition.

Definition 1.1 (Strong Separation Condition). We say that NIFS Φ on (U,X) satisfies the Strong

Separation Condition when

ϕ(j)
a (X) ∩ ϕ(j)

b (X) = ∅,

for each j ∈ N and distinct a, b ∈ I(j).

Given an NIFS, we wish to study the limit set (or attractor) which we define with the help of the

next definition.

Definition 1.2 (Words). For each k ∈ N, we define the symbolic spaces

Ik :=

k∏
j=1

I(j) and I∞ :=

∞∏
j=1

I(j).

Note that a k-tuple (ω1, . . . , ωk) ∈ Ik may be identified with the corresponding word ω1 · · ·ωk.

When ω∗ ∈ I∞ has ω∗j = ωj for j = 1, . . . , k, we call ω∗ an extension of ω = ω1 . . . ωk ∈ Ik.

Definition 1.3. For all k ∈ N and ω = ω1 · · ·ωk ∈ Ik, we define ϕω := ϕ
(1)
ω1 ◦ · · · ◦ ϕ

(k)
ωk with

Xω := ϕω(X) and Xk :=
⋃
ω∈Ik

Xω.

The limit set (or attractor) of Φ is defined as

J = J(Φ) :=

∞⋂
k=1

Xk.
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Remark 1.1. The attractor J is not necessarily compact (e.g., J is not compact for the autonomous

system given in Example 4.3 of [7]). However, if each index set I(j) is finite, then each Xk is compact

and hence so is J .

Notation to be used throughout: Let q be a metric. For a set F ⊆ C, we define its diameter

to be diamqF = sup{q(z, w) : z, w ∈ F}. We define the distance between sets E,F ⊂ C to be

distq(E,F ) = inf{q(z, w) : z ∈ E,w ∈ F}. Also, for w ∈ C and r > 0 we define the open disk,

closed disk, and circle, respectively, by ∆q(w, r) = {z : q(z, w) < r},∆q(w, r) = {z : q(z, w) ≤ r}

and Cq(w, r) = {z : q(z, w) = r}. If no metric is noted, then it is assumed that the metric is the

Euclidean metric. Lastly, the open unit disk in C is denoted D.

Remark 1.2 (Projection Map). Let ω∗ ∈ I∞ be arbitrary. Then the compact sets ϕω∗1 ···ω∗n(X)

decrease with diamd(ϕω∗1 ···ω∗n(X)) ≤ sndiamd(X)→ 0 as n→∞ and thus ∩∞n=1ϕω∗1 ···ω∗n(X) contains

just a single point that we call πΦ(ω∗). Note that πΦ(ω∗) ∈ J since it clearly belongs to each

ϕω∗1 ···ω∗n(X) ⊆ Xn. We call πΦ : I∞ → J the projection map.

Also note that for any non-empty compact X̃ ⊆ X which is forward invariant under Φ, i.e.,

ϕ(X̃) ⊆ X̃ for all ϕ ∈ ∪∞j=1Φ(j), we have that ∩∞n=1ϕω∗1 ···ω∗n(X̃) = ∩∞n=1ϕω∗1 ···ω∗n(X) since each is a

singleton set with the set on the left being a subset of the set on the right. We can thus say that

the projection map πΦ is independent of the choice of non-empty compact forward invariant set X.

Remark 1.3 (Pieces of Xk). The limit set J = ∩∞k=1Xk is a decreasing intersection sets Xk, an

important property of the Xk being that they are unions of what we call pieces of the Xk, each of

which must contain a limit point. More precisely, note that for any k ∈ N and ω = ω1 · · ·ωk ∈ Ik,

we have that the piece ϕω(X) of Xk, for which diamd(ϕω(X)) ≤ skdiamd(X), contains the point

πΦ(ω∗) ∈ J for any extension ω∗ ∈ I∞ of ω. Note also that the pieces of Xk are not necessarily

components of Xk since the pieces may overlap.

In the NIFS systems studied in [6] (see Definition and Lemma 2.4 there, which makes essential

use of the open set condition and a geometric condition on X, neither of which we impose here), it

must be the case that πΦ(I∞) = J . We do not necessarily have this in all cases (see Example 1.1

of [3]), but we do note that the Strong Separation Condition is strong enough to allow the proof

in [6] to apply. Combining this with Lemma 1.1 in [3], gives the following result.

Lemma 1.1. Let Φ be a NIFS on (U,X). Then,

J(Φ) = πΦ(I∞),
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and so, if πΦ(I∞) is compact, then J(Φ) = πΦ(I∞). Furthermore, if Φ satisfies the Strong Separation

Condition, then J(Φ) = πΦ(I∞).

In certain examples, it is convenient to change the set X to another forward invariant compact

set. The following result shows that such a change to X, though it may affect J (see Example 1.2

of [3]), will not affect J , the main object we study in this paper.

Lemma 1.2 (Lemma 1.2 in [3]). Let X̃ 6= ∅ be a compact subset of X that is forward invariant

under NIFS Φ on (U,X), i.e., ϕ(X̃) ⊆ X̃ for all ϕ ∈ ∪∞j=1Φ(j). Then, calling X̃k :=
⋃
ω∈Ik ϕω(X̃),

we have

J(Φ) =

∞⋂
k=1

Xk =

∞⋂
k=1

X̃k.

Hence, if each X̃k is compact, then J(Φ) =
⋂∞
k=1Xk =

⋂∞
k=1 X̃k.

Given an NIFS Φ(1),Φ(2),Φ(3), . . . on some (U,X), we note that by excluding Φ(1),Φ(2), . . . ,Φ(j−1),

the sequence Φ(j),Φ(j+1),Φ(j+2), . . . also forms an NIFS (which formally would be Φ̃(1), Φ̃(2), Φ̃(3), . . .

where each Φ̃(k) = Φ(k+j−1)). The new NIFS would then induce sets as in Definition 1.3, which we

denote as X
(j)
ω , X

(j)
k , and J (j) with the superscript used to indicate the relationship to the original

NIFS. In particular, for the original NIFS the sets Xk may also be denoted X
(1)
k . See Example 1.1,

illustrated in Figure 1, where the superscript indicates the column and the subscript indicates the

row where a given set resides (noting that row 0 refers to the top row).

Remark 1.4 (Invariance Condition). Note that for any j ≥ 1 and k ≥ 0, we can unpack the relevant

definitions (defining each X
(j)
0 = X) to see the following invariance condition

(1.1)
⋃
i∈I(j)

ϕ
(j)
i (X

(j+1)
k ) = X

(j)
k+1,

which is illustrated in Figure 1 as a way of relating the diagonally adjacent sets X
(j)
k+1 and X

(j+1)
k .

Additional hypotheses lead to the following result.

Lemma 1.3 (Lemma 1.3 in [3]). Let Φ be a NIFS on (U,X). When Φ(j) is finite, we have⋃
i∈I(j)

ϕ
(j)
i

(
J (j+1)

)
= J (j).

Hence, when Φ(j) is finite and J (j+1) is compact (e.g., when all Φ(k), for k ≥ j, are finite), we see

that
⋃
i∈I(j) ϕ

(j)
i

(
J (j+1)

)
= J (j).
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Figure 1. Table illustrating Example 1.1 with a1 = 1
3 , a2 = 1

4 , and a3 = 1
5 . Note

that sets in each column decrease down to the corresponding limit set, i.e., for each

j ∈ N we have ∩∞k=1X
(j)
k = J (j). Also, note that diagonally adjacent sets X

(j)
k+1 and

X
(j+1)
k are related by the invariance condition (1.1) in Remark 1.4.

Example 1.1. Let X = [0, 1] denote the closed unit interval. Consider a sequence (aj) such that

each 0 < aj ≤ 1/3, and define maps ϕ
(j)
1 (z) = ajz and ϕ

(j)
2 (z) = aj(z − 1) + 1. Then the families of

maps Φ(j) = {ϕ(j)
1 , ϕ

(j)
2 } define an NIFS. See Figure 1.

Strictly speaking, one has to first establish an open set U ⊆ C (e.g., ∆(0, 10)) and corresponding

compact subset X (e.g., ∆(0, 9)) to satisfy the NIFS condition that each ϕ
(j)
i maps U into X, and

then use Lemma 1.2 to replace X by the forward invariant set [0, 1] without changing the limit set

J . However, in later examples we shall leave it to the reader to check that such a procedure can be

executed.
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Remark 1.5 (Combining Stages). It will be useful later to analyze a limit set of some NIFS Φ by

first combining stages. Here we present what this means, in particular, showing that this does not

alter the limit set. First, for families of maps Γ1,Γ2, . . . ,Γn, we define Γ1 ◦ Γ2 ◦ · · · ◦ Γn to be

{f1 ◦ f2 ◦ · · · ◦ fn : fi ∈ Γi}.

Given an NIFS Φ(1),Φ(2),Φ(3), . . . on some (U,X), we can create a new NIFS by combining finite

strings of stages as follows. Consider any strictly increasing sequence (kn)∞n=1 of positive integers

and define a new NIFS Φ̃ by Φ̃(1) = Φ(1) ◦ · · · ◦Φ(k1), Φ̃(2) = Φ(k1+1) ◦ · · · ◦Φ(k2), and, in general for

n > 1, Φ̃(n) = Φ(kn−1+1) ◦ · · · ◦ Φ(kn).

Notice that Φ̃ inherits all the defining properties of an NIFS from Φ. Furthermore, J(Φ̃) =⋂∞
n=1Xkn =

⋂∞
k=1Xk = J(Φ), since the sets Xk are decreasing.

1.2. Hereditarily non Uniformly Perfect Sets. We call a doubly connected domain A in C that

can be conformally mapped onto a true (round) annulus Ann(w; r,R) = {z : r < |z − w| < R}, for

some 0 < r < R, a conformal annulus with the modulus of A given by mod A = log(R/r), noting

that R/r is uniquely determined by A (see, e.g., the version of the Riemann mapping theorem for

multiply connected domains in [1]).

Definition 1.4. A conformal annulus A is said to separate a set F ⊂ C if F ∩A = ∅ and F intersects

both components of C \A.

The following well-known lemma (see, e.g., Theorem 2.1 of [5]) often allows one to replace a

conformal annulus with an easier to work with round annulus.

Lemma 1.4. Any conformal annulus A ⊂ C of sufficiently large modulus contains an essential true

annulus B (i.e., B separates the boundary of A) with mod A = mod B+O(1). Since, for any R > 3r

and any w′ ∈ ∆(w, r), the true annulus Ann(w′; 2r,R − r) is an essential annulus of Ann(w; r,R),

we may choose B to be centered at any given point in the bounded component of C \A.

Definition 1.5. A compact subset F ⊂ C with two or more points is uniformly perfect if there

exists a uniform upper bound on the modulus of each conformal annulus which separates F .

The concept of hereditarily non uniformly perfect was introduced in [8] and can be thought of as

a thinness criterion for sets which is a strong version of failing to be uniformly perfect.

Definition 1.6. A compact set E ⊂ C is called hereditarily non uniformly perfect (HNUP) if no

subset of E is uniformly perfect.
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Often a compact set is shown to be HNUP by showing it satisfies the following stronger property

of pointwise thinness. This is done in several examples in [8, 2, 3], and will be done in the proof of

Corollary 1.1.

Definition 1.7. A set E ⊂ C is pointwise thin at z ∈ E if there exists a sequence of conformal

annuli An each of which separates E, has z in the bounded component of its complement, and such

that mod An → +∞ while the Euclidean diameter of An tends to zero. A set E ⊂ C is called

pointwise thin when it is pointwise thin at each of its points.

Note that any pointwise thin compact set is HNUP since none of its points can lie in a uniformly

perfect subset. Also note that if E is pointwise thin, then E is pointwise thin at each point of E

(but not necessarily pointwise thin at each point of E as the next example illustrates).

Example 1.2 (Closure of pointwise thin is not pointwise thin). The set E = {2−n : n ∈ N} is

trivially pointwise thin, but its closure E is not pointwise thin at 0 since the reader can check that

the modulus of any round annulus separating E and containing 0 must be bounded by log 2.

1.3. Statements of the Main Results. In this paper, we prove Theorem 1.1 and Corollary 1.1,

regarding conformal NIFS’s having the Strong Separation Condition, and Theorem 1.2, regarding

analytic NIFS’s which do not require the Strong Separation Condition but do require a certain type

of separation condition.

Theorem 1.1. Let Φ be a conformal NIFS on (U,X), with X connected, satisfying the Strong

Separation Condition and the following

Separating Annuli Condition: there exists a sequence of conformal annuli {Ajn}n∈N, where each

Ajn and the bounded component of C \ Ajn are in X, such that for all n ∈ N the annulus

Ajn separates X
(jn)
1 where mod Ajn →∞ as n→∞.

For each n ∈ N, choose mn ∈ I(jn) such that the set ϕ
(jn)
mn (X) is surrounded by Ajn (which can

be done since X is connected and Ajn separates X
(jn)
1 ), and fix ω = (ω1, ω2, . . . ) ∈ I∞ such that

ωjn = mn for all n ∈ N. Then, J is pointwise thin at πΦ(ω).

Remark 1.6. The Separating Annuli Condition can be visualized in Figure 1 in Example 1.1 by

considering annuli Aj of maximum modulus separating the two components in each X
(j)
1 (in row 1),

noting that mod Aj →∞ exactly when aj → 0.
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Corollary 1.1. Let Φ be a conformal NIFS on (U,X), with X connected, satisfying the Strong

Separation Condition. Suppose along some subsequence jn, we have 2 ≤ #Φ(jn) <∞ for all n ∈ N.

Define, for each n ∈ N,

bjn = min{dist(ϕ
(jn)
i (X), ∂X) : i ∈ I(jn)},

δjn = min{dist(ϕ(jn)
a (X), ϕ

(jn)
b (X)) : a, b ∈ I(jn) with a 6= b}

and

ηjn = max{diam(ϕ
(jn)
i (X)) : i ∈ I(jn)}.

Suppose for some c > 1, we have δjn ≤ cbjn for all n ∈ N. Further suppose
δjn
ηjn
→ ∞ as n → ∞.

Then, J = πΦ(I∞) is pointwise thin (and thus HNUP when J is compact).

Remark 1.7. Since each δjn ≤ diam(X), we see that we may choose c = diam(X)
infn{bjn}

when infn{bjn} > 0.

Remark 1.8. Since each δjn ≤ diam(X), we see that for
δjn
ηjn
→ ∞ we must have ηjn → 0. In such

a situation then, Φ cannot satisfy the Derivative Condition from [3] (a key assumption required to

prove uniform perfectness of J in Theorem 2.1 of [3]) which states that there exists η > 0 such that

for all ϕ ∈ ∪j∈NΦ(j) we have |ϕ′| ≥ η on X. See Remark 5.1 of [3].

Remark 1.9. Corollary 1.1 applies much more generally when we recall that one can combine stages

in the manner described in Remark 1.5. Specifically, we may show J(Φ) is pointwise thin by applying

Corollary 1.1 to any Φ̃ created by combining stages in Φ. This technique of combining stages is used

to analyze Example 4.2 of [3] (see also Example 2.2 in this paper).

Theorem 1.2. Suppose Φ is an analytic NIFS such that J (n), for some integer n > 1, is pointwise

thin (e.g., when the NIFS given by Φ(n),Φ(n+1),Φ(n+2), . . . , satisfies the hypotheses of Corollary 1.1

with each Φ(j) finite). Suppose also that Φ̃(1) = Φ(1)◦· · ·◦Φ(n−1) is finite with ϕa(J (n))∩ϕb(J (n)) = ∅

for all distinct ϕa, ϕb ∈ Φ̃(1) (e.g., when Φ satisfies the Strong Separation Condition). Then J(Φ) is

pointwise thin.

This paper is organized as follows. Section 2 contains basic results regarding the hyperbolic metric

and images of pointwise thin sets under analytic maps, along with some examples to show that our

main result generalizes Theorem 4.1(1) of [8] and Example 4.2 of [3]. Section 3 contains applications

of Corollary 1.1 to non-autonomous Julia sets along polynomial sequences. Section 4 is then used

to prove the Theorem 1.1, Corollary 1.1, and Theorem 1.2.
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2. Basic Facts and Examples

The main object of interest to this paper is the analytic NIFS. This allows us, via the next

result used similarly in [7], to employ the hyperbolic metric in the definition of NIFS. In particular,

any sequence Φ(1),Φ(2),Φ(3), . . . , where each Φ(j) is a collection of non-constant analytic functions

(ϕ
(j)
i : U → X)i∈I(j) , where each function maps the non-empty open connected set U ⊂ C into

a compact set X ⊂ U , will automatically be uniformly contracting with respect to the hyperbolic

metric on U . Note that U ⊆ C must support a hyperbolic metric since U cannot be the plane or

punctured plane else the image of U under a non-constant analytic map would have to be dense in

C.

Lemma 2.1. [Lemma 2.1 of [7]] If the analytic function ϕ maps an open connected set U ⊂ C into

a compact set X ⊂ U , then there exists 0 < s < 1, which depends on U and X only, such that

d(ϕ(z), ϕ(w)) ≤ sd(z, w) for all z, w ∈ X where d is the hyperbolic metric defined on U .

The following result follows from Lemma 1.4 and the fact that locally non-constant analytic maps

are either conformal or behave like z 7→ zk for some k ∈ N, which can distort the modulus of an

annulus by at most a factor of k. We leave the details to the reader noting, however, that one may

follow the style of argument used to prove Proposition 3.1 of [3].

Proposition 2.1. Let f : U → C be non-constant and analytic on open connected U ⊂ C. Suppose

that E ⊂ U is pointwise thin at z ∈ E. Then f(E) is pointwise thin at f(z) ∈ f(E).

We now present examples to illustrate Corollary 1.1, showing how it generalizes the ad hoc

methods of [8] and [3].

Example 2.1. Each set Iā in Theorem 4.1 of [8] is a limit set of a NIFS suitably chosen as follows.

Set X = [0, 1], fix m ∈ {2, 3, . . . }, and choose 0 < a ≤ 1
m+1 . Fix a sequence ā = (a1, a2, . . . ) such

that 0 < ak ≤ a for k = 1, 2, . . . . For each k ∈ N, set Φ(k) to be the collection {ϕ(k)
1 , . . . , ϕ

(k)
m }

of linear maps, each with derivative ak, such that the images ϕ
(k)
1 (X), . . . , ϕ

(k)
m (X) are m equally

spaced subintervals of X with ϕ
(k)
1 (X) = [0, ak] and ϕ

(k)
m (X) = [1− ak, 1]. Example 1.1, illustrated

in Figure 1, is such an NIFS (with m = 2). Each set Xk then coincides with what [8] calls Ik, and

consists of mk basic intervals. And the limit set J then coincides with what [8] calls Iā.

Theorem 4.1(1) of [8] shows that J pointwise thin (and thus HNUP) when lim inf ak = 0. We now

show that this also follows from Corollary 1.1. In order to use this corollary we set U = ∆( 1
2 , 0.7) and

X = ∆( 1
2 , 0.6), recalling that Lemma 1.2 shows that J is unchanged by this change of X from [0, 1].
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Selecting a subsequence akn → 0, the reader can quickly check that infn{bkn} > 0, infn{δkn} > 0,

and ηkn = akn · diam(X) → 0, and thus Corollary 1.1 applies (since Φ clearly satisfies the Strong

Separation Condition). We also note that when lim inf ak = 0, Corollary 1.1 shows J is pointwise

thin even when the strict setup above is considerably relaxed (e.g., the sets ϕ
(k)
1 ([0, 1]), . . . , ϕ

(k)
m ([0, 1])

do not need to be equally spaced subintervals of [0, 1]).

Lastly, note that Theorem 4.1(2) of [8] shows that J is uniformly perfect when lim inf ak > 0,

which also follows from the more general Theorem 2.1 of [3] as detailed in Example 4.1 of [3].

Example 2.2. We now show how Corollary 1.1 can be applied to Example 4.2 of [3]. Set f1(z) =

z
3 , f2(z) = z+2

3 and f3(z) = 1
3 (z − 1

2 ) + 1
2 . We fix a sequence of postive integers (lj), and create

NIFS Ψ on (U,X) with U = ∆( 1
2 , 0.7) and X = ∆( 1

2 , 0.6) by stipulating that, for each k ∈ N,

Ψ(k) = {f1 ◦ f lk3 , f2 ◦ f lk3 }. We now show that sup lj = +∞ implies J(Ψ) is pointwise thin (noting

that use of Theorem 2.1 of [3] as detailed Example 4.2 of [3] shows that sup lj < +∞ implies J(Ψ)

is uniformly perfect).

Select a subsequence lkn →∞. Since the images f1 ◦f lk3 (X) ⊆ f1(X) ⊂ Int(X) and f2 ◦f lk3 (X) ⊆

f2(X) ⊂ Int(X), the reader can quickly check that Ψ clearly satisfies the Strong Separation Condition

and infn{bkn} > 0, infn{δkn} > 0, and ηkn = diam(X)

3
lkn

+1 → 0 (since each map in Ψ(kn) is linear with

derivative 1

3
lkn

+1 ). Hence, Corollary 1.1 applies.

3. Applications to Non-Autonomous Julia Sets

Given a sequence of complex polynomials (Pj), define its Fatou set F = F((Pj)) by

F = {z ∈ C : {Pn ◦ · · · ◦ P2 ◦ P1}∞n=1 is a normal family on some neighborhood of z}

where we take our neighborhoods with respect to the spherical topology on C. We then define the

Julia set J = J ((Pj)) to be the complement C \ F .

Theorem 3.1. Let f be a polynomial on C of degree at least 2. Suppose f has no critical values

in D and that f−1(D) ⊂ D. Fixing a sequence aj ∈ C with each |aj | > 1, we define polynomials

Pj(z) = ajf(z). Then

(1) J ((Pj)) is uniformly perfect if and only if lim sup |aj | <∞, and

(2) J ((Pj)) is pointwise thin (and HNUP) if and only if lim sup |aj | =∞.

Remark 3.1. For a, c ∈ C with |c| > 1 and |a| − |c| > 1, one may choose f(z) = az2 + c in the above

theorem. Note then that |z| ≥ 1 implies |f(z)| = |az2 +c| ≥ |a|−|c| > 1, i.e., f(C\D) ⊆ C\D, which

gives that f−1(D) ⊂ D. Also, clearly the sole critical value of f is c /∈ D. Hence applying the above
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theorem with such an f and a suitable sequence (aj) with lim sup |aj | =∞, we can create a simple

sequence of polynomials with pointwise thin (and thus HNUP) Julia set without the complicated

arguments presented in [2].

Proof. (1) The Julia set of a bounded sequence of polynomials is known to be uniformly perfect (see

Theorem 1.21 of [9]).

(2) Suppose lim sup |aj | = ∞, and choose a subsequence ajn such that |ajn | → ∞. We complete

the proof by showing J ((Pj)) is pointwise thin and compact. Calling d the degree of f , we note that

f has d well defined inverse branches f1, . . . , fd, on some open connected set U = ∆(0, 1 + ε) ⊃ D

since all critical values of f lie outside of D. Furthermore, we note that we may choose U such that

f−1(U) ⊂ D. Hence, each Pj has d well defined inverse branches on U given by ϕ
(j)
i (z) = fi(

z
aj

) for

i = 1, . . . , d.

For each j ∈ N, let Φ(j) = {ϕ(j)
1 . . . , ϕ

(j)
d } and note that these families form an NIFS Φ on (U,X)

where X = D. For each j, note that ϕ
(j)
i (X) = fi(∆(0, 1

|aj | )) ⊂ fi(X) ⊂ Int(X) for i = 1, . . . , d.

Hence, Φ satisfies the Strong Separation Condition and, using the notation of Corollary 1.1, we also

see that for each n ∈ N,

bjn ≥ b0 := min{dist(fi(X), ∂X) : i ∈ {1, . . . , d}} > 0,

δjn ≥ δ0 := min{dist(fa(X), fb(X)) : a, b ∈ {1, . . . , d} with a 6= b} > 0

and

ηjn = max{diam(ϕ
(jn)
i (X)) : i ∈ {1, . . . , d}} = max{diam(fi(∆(0,

1

|ajn |
))) : i ∈ {1, . . . , d}} → 0.

Since inf{bjn} > 0, Corollary 1.1 yields that J(Φ) is pointwise thin since
δjn
ηjn
≥ δ0

ηjn
→∞. Further,

we note that J(Φ) is compact since each I(j) is finite.

The result then follows by showing that J ((Pj)) = J(Φ). Note that J(Φ) = {z ∈ C : Pj ◦ · · · ◦

P1(z) ∈ D for each j}. Also note that C \ D is forward invariant under each Pj , and so it follows

from Montel’s Theorem that C \ J(Φ) ⊆ F((Pj)), i.e., J ((Pj)) ⊆ J(Φ). Since J(Φ) is pointwise

thin, it is clear that J(Φ) has no interior. This implies that any z ∈ J(Φ), which necessarily has

as its orbit contained in the compact subset f1(X) ∪ · · · ∪ fd(X) of D, must be arbitrarily close to

points whose orbits escape D. Hence, J(Φ) ⊆ J ((Pj)). �

Corollary 3.1. Let f be a polynomial on C of degree at least 2. Suppose f has no critical values in

D and that f−1(D) ⊂ D. Let τ be a probability measure on C \D with unbounded support. Then for
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almost all sequences (aj) ∈
∏∞
j=1(C \ D) with respect to τ̃ =

⊗∞
j=1 τ , the maps Pj = aj · f define a

sequence of polynomials whose Julia set J ((Pj)) is pointwise thin.

Proof. For N ∈ N, set BN = {(aj) : |aj | ≤ N for all j} and note that since τ has unbounded

support, τ̃(BN ) = 0 by the law of large numbers. Hence, τ̃(∪N∈NBN ) = 0, i.e., the set of bounded

sequences has τ̃ -measure zero. The result then follows from Theorem 3.1. �

4. Proof of the Main Results

In this section we prove the Theorem 1.1, Corollary 1.1, and Theorem 1.2.

Proof of Theorem 1.1. Note that since the NIFS Φ is conformal and both the annulus Ajn and its

bounded complementary component lie inside X ⊂ U , we see that πΦ(ω) ∈ ϕω1···ωjn−1
(ϕ

(jn)
mn (X))

(see Remark 1.3) is surrounded by the conformal annulus A′jn = ϕω1···ωjn−1(Ajn), which separates

ϕω1···ωjn−1
(X

(jn)
1 ) ⊆ X

(1)
jn

. See Figure 2. We claim that A′jn ∩X
(1)
jn

= ∅, from which it follows that

A′jn separates X
(1)
jn

, and thus separates J . Since mod Aj′n = mod Ajn → ∞ with diam(A′jn) → 0,

we see that J is pointwise thin at πΦ(ω).

To prove the claim, suppose towards a contradiction that A′jn meets

X
(1)
jn

=
⋃

ω∗∈Ijn
ϕω∗(X) =

⋃
ω∗1 ···ω∗jn−1∈Ijn−1

⋃
ω∗jn∈I

(jn)

ϕω∗1 ···ω∗jn−1
(ϕω∗jn (X))

=
⋃

ω∗1 ···ω∗jn−1∈Ijn−1

ϕω∗1 ···ω∗jn−1
(X

(jn)
1 ).

Hence, A′jn meets ϕω∗1 ···ω∗jn−1
(X

(jn)
1 ) for some ω∗1 · · ·ω∗jn−1 ∈ Ijn−1. Note that ω∗1 · · ·ω∗jn−1 6=

ω1 · · ·ωjn−1 since A′jn separates ϕω1···ωjn−1
(X

(jn)
1 ). However, since X

(jn)
1 ⊆ X, Ajn ⊆ X, and

ϕω∗1 ···ω∗jn−1
(X)∩ϕω1···ωjn−1(X) = ∅ by the strong separation condition, we see that ϕω∗1 ···ω∗jn−1

(X
(jn)
1 )

cannot meet A′jn = ϕω1···ωjn−1(Ajn), which is a contradiction. �

Proof of Corollary 1.1. Pick an arbitrary ω ∈ I∞. For each n, choose some zn ∈ ϕ(jn)
ωjn

(X), and define

Ajn = Ann(zn; ηjn ,
δjn
c ), which by definition of ηjn must surround ϕ

(jn)
ωjn

(X). Hence by definition

of δjn , the annulus Ajn must separate X
(jn)
1 . Lastly, since

δjn
c ≤ bjn ≤ dist(ϕ

(jn)
ωjn

(X), ∂X), we see

that ∆(zn,
δjn
c ) ⊆ X. Thus by Theorem 1.1, noting that mod Ajn = log

δjn
cηjn

→ ∞, we see that J

is pointwise thin at πΦ(ω). The proof is then complete by noting that since Φ satisfies the Strong

Separation Condition, Lemma 1.1 implies J = πΦ(I∞). �

Proof of Theorem 1.2. Consider the analytic NIFS Φ̃ given by Φ̃(1) = Φ(1) ◦ · · · ◦Φ(n−1) and Φ̃(j) =

Φ(j+n−2) for each j > 1. Hence, by Remark 1.5, we see that J(Φ) = J(Φ̃). By Proposition 2.1, for
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Figure 2. Table illustrating the proof of Theorem 1.1 using the system of Example 1.1.

each ϕ ∈ Φ̃(1) the set φ
(
J (n)

)
is pointwise thin. Lemma 1.3 gives that J (1) =

⋃
ϕ∈Φ̃(1) ϕ

(
J (n)

)
, and

the result follows since the finite disjoint union of compact pointwise thin sets is pointwise thin. �
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