TRANSVERSALITY FAMILY OF EXPANDING RATIONAL
SEMIGROUPS
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ABSTRACT. We study finitely generated expanding semigroups of rational maps with over-
laps on the Riemann sphere. We show that if a d-parameter family of such semigroups
satisfies the transversality condition, then for almost every parameter value the Hausdorff
dimension of the Julia set is the minimum of 2 and the zero of the pressure function.
Moreover, the Hausdorff dimension of the exceptional set of parameters is estimated. We
also show that if the zero of the pressure function is greater than 2, then typically the
2-dimensional Lebesgue measure of the Julia set is positive. Some sufficient conditions for
a family to satisfy the transversality conditions are given. We give non-trivial examples
of families of semigroups of non-linear polynomials with the transversality condition for
which the Hausdorff dimension of the Julia set is typically equal to the zero of the pressure
function and is less than 2. We also show that a family of small perturbations of the Sier-
pinski gasket system satisfies that for a typical parameter value, the Hausdorff dimension
of the Julia set (limit set) is equal to the zero of the pressure function, which is equal to
the similarity dimension. Combining the arguments on the transversality condition, ther-
modynamical formalisms and potential theory, we show that for each a € C with |a| # 0,1,
the family of small perturbations of the semigroup generated by {22, az?} satisfies that for
a typical parameter value, the 2-dimensional Lebesgue measure of the Julia set is positive.
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1. INTRODUCTION

A rational semigroup is a semigroup generated by a family of non-constant rational
maps g : C— @, where C denotes the Riemann sphere, with the semigroup operation being
functional composition. A polynomial semigroup is a semigroup generated by a family of
non-constant polynomial maps on C. The work on the dynamics of rational semigroups
was initiated by A. Hinkkanen and G. J. Martin ([8]), who were interested in the role of
the dynamics of polynomial semigroups while studying various one-complex-dimensional
moduli spaces for discrete groups of Mobius transformations, and by F. Ren’s group ([44]),
who studied such semigroups from the perspective of random dynamical systems.

The theory of the dynamics of rational semigroups on C has developed in many directions
since the 1990s ([8, 44, 22, 24, 25, 26, 27, 28, 29, 30, 39, 31, 32, 23, 33, 34, 35, 36, 37]). We
recommend [22] as an introductory article. For a rational semigroup G, we denote by F(G)
the maximal open subset of C where G is normal. The set F (@) is called the Fatou set of
G. The complement J(G) := C\ F(G) is called the Julia set of G. Since the Julia set J(G)
of a rational semigroup G = (f1,..., fm) generated by finitely many elements fi,..., fi
has backward self-similarity i.e.

(1.1) J(G) = fi'(J(G) U U [, (J(G)),

(see [24, 26]), rational semigroups can be viewed as a significant generalization and extension
of both the theory of iteration of rational maps (see [14, 2]) and conformal iterated function
systems (see [11]). Indeed, because of (1.1), the analysis of the Julia sets of rational
semigroups somewhat resembles “backward iterated functions systems”, however since each
map f; is not in general injective (critical points), some qualitatively different extra effort
in the case of semigroups is needed. The theory of the dynamics of rational semigroups
borrows and develops tools from both of these theories. It has also developed its own
unique methods, notably the skew product approach (see [26, 27, 28, 29, 31, 38, 32, 34, 35,
36, 37, 40, 39, 41]).

The theory of the dynamics of rational semigroups is intimately related to that of the
random dynamics of rational maps. The first study of random complex dynamics was
given in [6]. In [3, 7], random dynamics of quadratic polynomials were investigated. The
paper [12] develops the thermodynamic formalism of random distance expanding maps
and, in particular, applies it to random polynomials. The deep relation between these
fields (rational semigroups, random complex dynamics, and (backward) IFS) is explained
in detail in the subsequent papers ([30, 31, 38, 32, 33, 34, 35, 36, 37]) of the first author.
For a random dynamical system generated by a family of polynomial maps on C, let
Ty : C — [0,1] be the function of probability of tending to co € C. In [34, 36, 37] it
was shown that under certain conditions, Tl is continuous on C and varies only on the
Julia set of the associated rational semigroup (further results were announced in [35]). For

example, for a random dynamical system in Remark 1.5, T, is continuous on C and the
set of varying points of T, is equal to the Julia set of Figure 1, which is a thin fractal
set with Hausdorff dimension strictly less than 2. From this point of view also, it is very
interesting and important to investigate the figure and the dimension of the Julia sets of
rational semigroups.
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In this paper, for an expanding finitely generated rational semigroup (f1,..., fm), we
deal at length with the relation between the Bowen parameter §(f) (the unique zero of the
pressure function, see Definition 2.13) of the multimap f = (fi,..., f,n) and the Hausdorff
dimension of the Julia set of (fi,..., f). In the usual iteration of a single expanding
rational map, it is well known that the Hausdorff dimension of the Julia set is equal to
the Bowen parameter and they are strictly less than two. For a general expanding finitely
generated rational semigroup (f1, ..., fim), it was shown that the Bowen parameter is larger
than or equal to the Hausdorff dimension of the Julia set (|25, 28]). If we assume further
that the semigroup satisfies the “open set condition” (see Definition 3.1), then it was shown
that they are equal ([28]). However, if we do not assume the open set condition, then there
are a lot of examples for which the Bowen parameter is strictly larger than the Hausdorff
dimension of the Julia set. In fact, the Bowen parameter can be strictly larger than two
([28, 41]). Thus, it is very natural to ask when we have this situation and what happens
if we have such a case. Let Rat be the set of non-constant rational maps on C endowed
with distance d defined by d(hi, ha) := sup_ & p(h1(z), ha(2)), where p denotes the spherical

distance on C. For each m € N, we set

Exp(m) := {(g1,.-.,9m) € (Rat)™ : {(g1,...,gm) is expanding}.
Note that Exp(m) is an open subset of (Rat)™ (see Lemma 2.9). Let U be a non-empty
bounded open subset of R?. For each A € U, let fx = (fa1,---,f\m) be an element in
Exp(m). We set
G)\ = <.f)\,17 ceey f)\,m>-

We assume that the map A — fy; € Rat, A\ € U, is continuous for each j = 1,...,m. For
every A € U, let s(\) be the zero of the pressure function for the system generated by fy.
Note that the function A — s(\), A € U, is continuous (see Theorem 2.16). For a family
{fi}rev in Exp(m), we define the transversality condition (see Definition 3.7). The
transversality condition was introduced and investigated for a family of contracting IFSs
in [16] (one of first studies of transversality type conditions and applications to Bernoulli
convolutions), [17] (case of IFSs in R), [19] (case of finite IFSs of similitudes in general
Euclidean spaces R? d > 1), [20] (case of infinite hyperbolic or parabolic IFSs in R),
[21] (case of finite parabolic IFSs in R), and [13] (case of skew products and application
to Bowen formulas, examples, partial derivative conditions, etc.). Among these papers
there are several types of definitions of the transversality condition. Our definition of the
transversality condition is similar to that given in [20], though in the present paper we work
on a family of semigroups of rational maps which are not contracting and are not injective.
Note that there are many works of contracting IFSs with overlaps. See the above papers
and [15, 4], etc. Some results of this paper are applicable to the study of contracting IFSs
with overlaps and infinitely many new examples of contracting families of IFSs that satisfy
the transversality condition are found (see Theorem 1.7, Examples 1.8, 4.13, 4.14, 4.15,
Remarks 4.9,4.16).

For any p € N, we denote by Leb, the p-dimensional Lebesgue measure on a p-dimensional
manifold. In this paper, we prove the following.

Theorem 1.1 (Theorem 3.12). Let {f\}rev be a family in Exp(m) as above. Suppose that
{fa}reu satisfies the transversality condition. Then we have all of the following.
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(1) HD(J(G,)) = min{s(A),2} for Lebg-a.e. A € U, where HD denotes the Hausdorff
dimension.

(2) For Lebg-a.e. A € {\ € U : s(\) > 2} we have that Leby(J(Gy)) > 0.

It is very interesting to investigate the Hausdorff dimension of the exceptional set of
parameters in the above theorem. In order to do that, we define the strong transversality
condition (see Definition 3.15), and we prove the following.

Theorem 1.2 (Theorem 3.19). Let {fy}rcv be a family in Exp(m) as above. Suppose that
{fa}rev satisfies the strong transversality condition. Let G be a subset of U. Let & > 0.
Suppose min{§, supyc S(A)} +d — 2 > 0. Then we have

HD({\ € G : HD(J(G,)) < min{¢, s(\)}}) < min{¢, i:gsw} +d—2.

Since HD(J(G))) < s(A) for each A € U, if we further assume sup,c; s(A) < 2 in the
above theorem, then

HD({\ € U : HD(J(G)) # s(\)}) < HD(U) = d.

It is very important to study sufficient conditions for a family of expanding semigroups
to satisfy the strong transversality condition. Let U be a bounded open subset of C.
We say that a family {f\}rcv in Exp(m) as above is a holomorphic family in Exp(m) if
(z,A) — fr(2) € C,(2,)\) € C x U, is holomorphic for each j. For a holomorphic family
in Exp(m), we define the analytic transversality condition (see Definition 3.21). We
prove the following.

Proposition 1.3 (Proposition 3.22). Let {f\} ev be a holomorphic family in Exp(m).
Suppose that {fr}rev satisfies the analytic transversality condition. Then for each non-
empty, relatively compact, open subset U of U, the family {f\}rcur satisfies the strong
transversality condition and, hence, the transversality condition.

By using Proposition 1.3, some calculations involving partial derivatives of conjugacy
maps with respect to the parameters (Lemma 3.24—-Corollary 3.27), and some observation
about the combinatorics of the Julia set (Lemma 3.28), we can produce an abundance of
examples of holomorphic families satisfying the analytic transversality condition, and hence
the strong transversality condition and ultimately the transversality condition. Combining
the above and some further observations, we prove Theorem 1.4 which is formulated below.
We consider the space

P :={g: g is a polynomial, deg(g) > 2}

endowed with the relative topology from Rat. We are interested in families of small per-
turbations of elements in the boundary of the parameter space A in Exp(m), where

A:={(g1,- -, 9m) € Exp(m) : g7 (J({g1. - 9m))) N g5 (T ({91, -, gm))) = D if i # j}.

Theorem 1.4 (Theorem 4.1). Let (dy,dy) € N? be such that dy,dy > 2 and (dy,ds) # (2,2).
Let b=ue" € {0 < |z| < 1}, where 0 <u <1 and § € [0,27). Let a € [0,27) be a number
such that there exists a number n € Z with dy(m + 0) + o = 0 + 2nm. Let B1(z) = 2%
For each t > 0, let g;(2) = te"(z — b)® + b. Then there exists a point t; € (0,00) and an
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open neighborhood U of 0 in C such that the family {fx = (81, g1, + Ag,) }acu with Ao = 0
satisfies all of the following conditions (1)—(iv).
(i) {fa}rev is a holomorphic family in Exp(2) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition.
(ii) For each A € U, s(\) < 2.
(iii) There exists a subset 2 of U with HD(U \ Q) < HD(U) = 2 such that for each
e,
log(dy + d2)
Z?:l dldedg log(dz)
(iv) J(G),) is connected and HD(J(G),)) = s(Xo) < 2. Moreover, G, satisfies the open
set condition. Furthermore, for each t € (0,t1), the semigroup ((1,¢9:) satisfies the

open set condition, Sy (J((B1,90))) N g7 (J((Br, 91))) = 0, the Julia set J((B1, 1))
18 disconnected, and

IOg(dl + dg)

7 4
i1 T og(d:)
where §(B1, g;) denotes the Bowen parameter of (1, gi).

1<

< HD(J(Gy)) = s()\) < 2.

1<

< HD(J ({1, 9))) = 0(br, g¢) < 2,

Moreover, there exists an open neighborhood Y of (81, gs,) in P? such that the family {y =
(71, 72) }yey satisfies all of the following conditions (v)—(viii).
(v) {7 = (m1,72) }yey is a holomorphic family in Exp(2) satisfying the analytic transver-
sality condition, the strong transversality condition and the transversality condition.
(vi) For each v €Y, §(y) < 2, where §(7y) is the Bowen parameter of v = (71, 72)-
(vii) There exists a subset I' of Y with HD(Y \ T') < HD(Y') = 2(dy + da + 2) such that
for each \ € T,

log(dy + d>)
Si) 7 log(d)
(viii) For each neighborhood V' of (81, g+, ) in'Y there exists a non-empty open set W in V'

such that for each v = (y1,72) € W, we have that ’yl_l(J(hl, ’}/2>))ﬂ")/2_1(<](<’)/1, Y2))) #
0 and that J({y1,72)) is connected.

Remark 1.5. For each v = (y1,7%) € P? and p = (p1,p2) € (0,1)? with p; +p = 1, we
consider the random dynamical system such that for each step, we choose y; with probability
pi. For each z € @, let To n p(2) be the probability of tending to oo starting with the initial
value z. Then the function Tay., : C — [0,1] is locally constant on F({y1,72)). Moreover,
this function provides a lot of information about the random dynamics generated by (v, p).
(See [34, 37].) Let {fa}rev be as in Theorem 1.4. Let ¢ = ((1, () = (foagas fro2) Let
p = (1/2,1/2). Then we can show that Ts ¢, is continuous on C and the set of varying
points of Toocp is equal to J(Gy,) = J((C1,()). (For the figure of J(Gy,), see Figure 1.)
Moreover, there exists a neighborhood H of ((1,(2) in P? such that for each v = (71,72) €
H, Toop is continuous on C and locally constant on F({y,72)). It is a complex analogue
of the devil’s staircase and is called a “devil’s coliseum.” (These results are announced
in the first author’s papers (35, 34].) From this point of view also, it is very natural and
important to investigate the Hausdorff dimension of the Julia set of a rational semigroup.

1< <HD(J({11,72))) = 0(7) < 2.
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FIGURE 1. The Julia set of the 2-generator polynomial semigroup G, with
(dy,dy) = (3,2),b=0.1, in Theorem 1.4. G, satisfies the open set condition,
J(G,,) is connected and HD(J(Gy,)) = s(Ao) < 2.

In Theorem 1.4 we deal with 2-generator polynomial semigroups (71, 72) with deg(y1),
deg(v2) > 2, (deg(v1),deg(y2)) # (2,2) for which the planar postcritical set is bounded.
In fact, it is very important to investigate the dynamics of polynomial semigroups with
bounded planar postcritical set (see [31, 38, 32, 23]). There appear many new phenomena
(for example, the Julia sets of such semigroups can be disconnected) in the dynamics of such
semigroups which cannot hold in the usual iteration dynamics of a single polynomial. In
the proof of Theorem 1.4, we use some idea from the study of dynamics of such semigroups.
In the family of Theorem 1.4, for a typical parameter value the Hausdorff dimension of the
Julia set is strictly less than 2 and is equal to the Bowen parameter. Thus it is very natural
to ask what happens for polynomial semigroups (7y1,72) with deg(y;) = deg(y2) = 2 for
which the planar postcritical set is bounded. In this case, by [31, Theorem 2.15], J({71,72))
is connected and ;' (J((y1,72))) N Y3 '(J({71,72))) # 0. Combining Proposition 1.3 and
the lower estimate of the Bowen parameter from [41], which was obtained by using thermo-
dynamic formalisms, potential theory, and some results from [43], we prove the following.

Theorem 1.6 (Corollary 4.5). For each a € C with |a| # 0,1, there exists an open neigh-
borhood Y, of (az?, z*) in P? such that {g = (g1, g2) }gev, is a holomorphic family in Exp(2)
satisfying the analytic transversality condition, the strong transversality condition and the
transversality condition, and for a.e. g = (g1, g2) € Y, with respect to the Lebesgue measure

on P?, we have that Leby(J({g1,92))) > 0.

Note that in the usual iteration dynamics of a single expanding rational map g, the
Hausdorff dimension of the Julia set is strictly less than two. In particular, Leby(J(g)) = 0.

For any a € C with |a| # 0,1, J({az? 2%)) is equal to the closed annulus between
{fweC:|w =1} and {w € C : Jw| = |a|7}, thus int(J((az?, 2?))) # (. However,
regarding Theorem 1.6, it is an open problem to determine, for any other parameter value
(91,92) € Y, with Leba(J({g1,¢2))) > 0, whether int(J({g1, g2))) = @ or not. We have some
partial answers though. At least we can show that for each a € C with |a| # 0,1 and
for each neighborhood W of (az?, 2?) in Y, there exists a non-empty open subset W of
W such that for each (y1,7,) € W, the Fatou set F({71,7,)) has at least three connected
components, and thus the Julia set J({v1,72)) is not a closed annulus. If ¢ € R with
a > 0,a # 1, then we can show that for each neighborhood W of (az?, 2?) in Y, and for
each n € N with n > 3, there exists a non-empty open subset W,, of W such that for each
(71,72) € Wy, F({71,72)) has at least n connected components and J({7;,72)) is not a
closed annulus (see Remark 4.6).



We now consider the expanding semigroups generated by affine maps. Let m > 2. For
each j = 1,...,m, let g;(2) = a;z + b;, where a;,b; € C,|a;| > 1. Let G = (g1, .., Gm)-
Since |a;| > 1, oo € F(G). Hence, by (1.1), J(G) is a compact subset of C which satisfies
J(G) = UL, g9; '(J(G)). Since g; ' is a contracting similitude on C, it follows that J(G)
is equal to the self-similar set constructed by the family {g;',...,g;!} of contracting
similitudes. For the definition of self-similar sets, see [4, 5, 9]. Note that the Bowen
parameter §(gi,...,gm) of (g1,...,9m) is equal to the unique solution of the equation
S Jail 7t = 1,¢ > 0. Thus §(gy,...,0m) is the similarity dimension of {g;',...,g'}.
Conversely, any self-similar set constructed by a finite family {hy,...,h,} of contracting
similitudes on C is equal to the Julia set of the rational semigroup (h;', ..., h-!). By using

Proposition 1.3 and some calculations of the partial derivatives of the conjugacy maps with
respect to the parameters, we prove the following.

Theorem 1.7 (Theorem 4.8). Let m € N with m > 2. For each i = 1,...,m,, let g;(z) =
a;z + b;, where a; € C, |a;| > 1, b; € C. Let G := (g1,...,9m). We suppose all of the
following conditions hold.

(i) For each (i,7) with i # j and gi_l(J(G)) N gj_l(J(G)) #* @,b there exists a number
aij € {1,...,m} such that g;(g;*(J(G)) ﬂgj_l(J<G))) c [ lou

(i) If i, j, k are mutually distinct elements in {1,...,m}, thena%‘i1
g9 ' (J(G)) N g7 H(J(G))) C F(G).
(iii) For each (j,k) with j # k, we have gk(a;ijl) € F(G).
Then, there exists an open neighborhood U of (g1, ..., gm) € (Aut(C))™, where Aut(C) :=
{az+b:a e C\{0},be C}, such that {y = (71,...,Vm) }yev s a holomorphic family in

Exp(m) satisfying the analytic transversality condition, the strong transversality condition
and the transversality condition.

Note that in the above theorem, for each j =1,...,m, J(g;) = {2}

a;—

~

Note also that even if we replace “Aut(C)” by Aut(C) := %j:s ca,b,c,d, € C ad — bc #
0}, similar results hold (see Remark 4.9).

By using Theorem 1.7, we can obtain many examples of families of systems of affine
maps satisfying the analytic transversality condition. In fact, we have the following.

Example 1.8 (Example 4.11). Let p1, pa, p3 € C be such that pipsps makes an equilateral
triangle. For each i = 1,2,3, let g;(z) = 2(z — p;) + pi. Let G = (g1, g2, 93). Then J(G)
is equal to the Sierpinski gasket. It is easy to see that (g1, g2, g3) satisfies the assumptions
of Theorem 1.7. Moreover, §(gy, g2, 93) = HD(J(G)) = 122 < 2. By Theorems 1.7, 1.2

log 2
and 2.15, there exists an open neighborhood U of (gl,gg,ggg) in (Aut(C))® and a Borel
subset A of U with HD(U \ A) < HD(U) = 12 such that (1) {y = (71, %2:73) }yev s a
holomorphic family in Exp(3) satisfying the analytic transversality condition, the strong
transversality condition and the transversality condition, and (2) for each v = (v1,72,73) €

A, HD(J((y1,72,73))) = (71,72, 73) < 2.
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For some other examples including the families related to the Snowflake, Pentakun, Hex-
akun, Heptakun, Octakun and so on, see Examples 4.10, 4.13, 4.14, 4.15 and Remark 4.16.
(For the definition of Snowflake, Pentakun, etc., see [9].) We remark that, up to our best
knowledge, these examples (Examples 1.8, etc.) have not been explicitly dealt with in any
literature of contracting IFSs with overlaps.

In section 2, we introduce and collect some fundamental concepts, notation, and defini-
tions. In section 3, we prove the main results of this paper. In section 4, we describe some
applications and examples. In section 5, we make a remark on similar results for families
of conformal contracting iterated function systems in arbitrary dimensions.

2. PRELIMINARIES

In this section we introduce notation and basic definitions. Throughout the paper, we
frequently follow the notation from [26] and [28].

Definition 2.1 ([8, 44]). A “rational semigroup” G is a semigroup generated by a family of
non-constant rational maps g : C — C, where C denotes the Riemann sphere, with the semi-
group operation being functional composition. A “polynomial semigroup” is a semigroup
generated by a family of non-constant polynomial maps of C. For a rational semigroup G,

we set X
F(G) :={z € C: G is normal in some neighborhood of z}

and we call F(G) the Fatou set of G. Its complement,
J(G) :=C\ F(G)

is called the Julia set of G. If G is generated by a family { f;}; (i.e., G = {fi0---of;, :n €
N,Vfi, € {fi}}), then we write G = (fy, f2,...). For each g € Rat, we set F(g) := F({(g))
and J(g) := J({g))-

Note that for each h € G, h(F(G)) C F(G),h 1 (J(G)) C J(G). For the fundamental
properties of F(G) and J(G), see [8, 22, 26]. For the papers dealing with dynamics of
rational semigroups, see for example [8, 44, 22, 24, 25, 26, 27, 28, 29, 30, 40, 39, 41, 31, 38,
32, 23, 33, 34, 35, 36, 37|, etc.

We denote by Rat the set of all non-constant rational maps on C endowed with distance d
defined by d(hi, hs) := sup, ¢ p(h1(2), ha(2)), where p denotes the spherical distance on C.
For each d € N, we set Raty := {g € Rat : deg(g) = d}. Note that each Rat, is a connected
component of Rat. Hence Rat has countably many connected components. In addition,
each connected component Rat, of Rat is an open subset of Rat and Raty has a structure of
a finite dimensional complex manifold. Similarly, we denote by P the set of all polynomial
maps ¢ : C — C with deg(g) > 2 endowed with the relative topology inherited from Rat.
We set Aut(C) := {az+b:a,b € C,a # 0} endowed with the relative topology inherited
from Rat. For each d € N with d > 2, we set P, := {g € P : deg(g) = d}. Note that each
P4 is a connected component of P. Hence P has countably many connected components. In
addition, each connected component P, of P is an open subset of P and P, has a structure
of a finite dimensional complex manifold. Moreover, Aut(C) is a connected, complex-two-
dimensional complex manifold. We remark that g, — ¢ as n — oo in P U Aut(C) if and
only if there exists a number N € N such that



(i) deg(gn) = deg(g) for each n > N, and
(ii) the coefficients of g,(n > N) converge to the coefficients of g appropriately as
n — oQ.
Thus
P, (C\{0}) x C* and Aut(C) = (C\ {0}) x C.
For more information on the topology and complex structure of Rat and P U Aut(C), the
reader may consult [2].

For each z € C, we denote by TC, the complex tangent space of C at z. Let p:V — C
be a holomorphic map defined on an open set V of C and let z € V. We denote by
Dy, :TC, — TC@(Z) the derivative of ¢ at z. Moreover, we denote by ||¢’(z)|| the norm of
the derivative Dy, at z with respect to the spherical metric on C.

Definition 2.2. For eachm € N, let ,,, := {1,...,m}"N be the space of one-sided sequences
of m-symbols endowed with the product topology. This is a compact metrizable space. For

each f = (f1,..., fm) € (Rat)™, we define a map
f: Yim X C — Ym X C
by the formula

f(waz) = (U(w)7 fwl (Z)),
where (w, z) € ¥, X C, w= (wr,wa,...), and o : ¥, — %, denotes the shift map. The
transformation f . 2, x C — 8, x C is called the skew product map associated with the
multimap f = (f1,..., fm) € (Rat)™. We denote by m : X, X C — X, the projection onto
S and by o : By x C — C the projection onto C. That is, m(w, z) = w and m(w, 2) = 2.
For each n € N and (v, 2) € B, x C, we put

1) (@, 2] == 1 (fan © -+ 0 fur)' (2)I-
We define
Jw(f) ={z¢€ C: {fu, 00 fu, tnen is not normal in any neighborhood of z}

for each w € ¥, and we set

J(f) = Unes, {w} x Ju(f),
where the closure is taken with respect to the product topology on the space 3., X C. J(f) 18
called the Julia set of the skew product map f. In addition, we set F(f) := (S, x C)\ J(f)
and deg(f) = > ity deg(f;). We also set Xy, := U2 {1,...,m}’ (disjoint union). For each
w € X, UXE et |w| be the length of w. For each w € ¥, U XY we write w = (wy, wa, . ..).
For each f = (f1,..., fm) € (Rat)™ and each w = (w1, ...,wy,) € XF , we put

fw ::fwno"'ofwl-
For every n < |w| let w|, = (w1, wa, ..., wy). Ifw € X | we put

W] ={7 € Ep, : T|jw| = w}.

Ifw, 7€ X, US  wAT is the longest initial subword common for both w and 7. Let o be a
fized number with 0 < a < 1/2. We endow the shift space ¥, with the distance p, defined
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as po(w,7) = I with the standard convention that a® = 0. The distance p, induces
the product topology on ¥,,. Denote the spherical distance on C by p and equip the product
space Y, x C with the distance p defined as follows.

p((w,x), (7-7 y)) = max{p&(va)a ﬁ(.fl?, y>}
Of course p induces the product topology on >, X C. If w = (w1, ws,...,w,) € XF and
T = (1,72,...) € X5 UX,, we set wr 1= (W1,Wa, ... ,Wn,T1,T2,...) € L5 UX,,. For a

je{l,...,m}, we set j° :=(4,4,7,...) € Xm.

Remark 2.3. By definition, the set J(f) is compact. Furthermore, if we set G = (f1,..., fm),
then, by [26, Proposition 3.2|, the following hold:
(1) J(f) is completely invariant under f;
(2) f is an open map on J(f);
(3) if #J(G) > 3 and E(G) == {z € C : # Uyeq g~ ({z}) < oo} is contained in F(G),
then the dynamical system (f, J(f)) is topologically exact;
(4) J(f) is equal to the closure of the set of repelling periodic points of f if #J(G) >
3, where we say that a periodic point (w,z) of f with period n is repelling if
1) (w, 2) ]| > 1.
(5) m(J(f)) = J(G).
Definition 2.4 ([28]). A finitely generated rational semigroup G = (f1,..., fm) is said to
be expanding provided that J(G) # 0 and the skew product map f Y, xC = %, xC
associated with f = (f1,..., fm) is expanding along fibers of the Julia set J(f), meaning
that there exist n > 1 and C € (0, 1] such that for alln > 1,

(2.1) mf{||(/") (=)l - z € J())} = Cn",
Definition 2.5. Let G be a rational semigroup. We put

P(G) == Uyec{all critical values of g : C — C} (c C)

and we call P(G) the postcritical set of G. A rational semigroup G is said to be hyper-
bolic if P(G) C F(G).

We remark that if I' C Rat and G is generated by I', then

(2.2) P(G) = U g(U{aIl critical values of h: C — C}).

geGU{Id}  hel

Therefore for each g € G, g(P(G)) C P(G).

Definition 2.6. Let G be a polynomial semigroup. We set P*(G) := P(G) \ {oo}. This
set is called the planar postcritical set of G. We say that G is postcritically bounded if
P*(Q) is bounded in C.

Remark 2.7. Let G = (f1,..., fm) be a rational semigroup such that there exists an ele-
ment g € G with deg(g) > 2 and such that each Mébius transformation in G is loxodromic.
Then, it was proved in [25] that G is expanding if and only if G is hyperbolic.
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Definition 2.8. For each m € N, we define
Exp(m) = {(fi,- ., f) € (Rat)™ : (fi, ... ) is expanding}.

Then we have the following.

Lemma 2.9 ([24, 40]). Exp(m) is an open subset of (Rat)™.

Lemma 2.10 (Theorem 2.14 in [27]). For each f = (fi,...,fn) € Exp(m), J(f) =
Uses,,({w} X Ju(f)) and J({f1, -, fm)) = Uses,, Jo(f)-

Definition 2.11. We set
Epb(m) :={f = (f1,..., fm) € Exp(m)NP™ : (fi1,..., fm) is postcritically bounded}.
Lemma 2.12 ([32, 34]). Epb(m) is open in P™.

Definition 2.13. Let f = (f1,..., fm) € Exp(m) and let f : £,, xC — £, x C be the skew
product map associated with f = (f1,..., fm). For each t € R, let P(t, f) be the topological
pressure of the potential ¢(z) == —tlog ||f'(2)|| with respect to the map f : J(f) — J(f).
(For the definition of the topological pressure, see [18].) We denote by §(f) the unique zero
of the function R >t — P(t, f) € R. Note that the existence and uniqueness of the zero of
the function P(t, f) was shown in [28]. The number 6(f) is called the Bowen parameter

of the multimap f = (f1,..., fm) € Exp(m). i i
Let u > 0. A Borel probability measure p on J(f) is said to be u-conformal for f if the

following holds. For any Borel subset A of J(f) such that f|a: A — J(f) is injective, we
have that

u(f(A)) = / 17 ()" da(2).

We remark that with the notation of Definition 2.13, there exists a unique J(f)-conformal
measure for f (see [28]).

Definition 2.14. For a subset A of @, we denote by HD(A) the Hausdorff dimension of
A with respect to the spherical distance. For each d € N, if B is a subset of R, we denote
by HD(B) the Hausdorff dimension of B with respect to the Euclidean distance on R?. For
a Riemann surface S, we denote by Aut(S) the set of all holomorphic isomorphisms of
S. For a compact metric space X, we denote by C(X) the Banach space of all continuous
complex-valued functions on X, endowed with the supremum norm.

A fundamental fact about the Bowen parameter is the following.

6T(}}§:orem 2.15 ([28, 25]). For each f = (f1,...,fm) € Exp(m), HD(J({f1,..., fm))) <

Another crucial property of the Bowen parameter is the following fact proved as one of
the main results of [40].

Theorem 2.16 ([40]). The function Exp(m) > f + 0(f) € R is real-analytic and plurisub-
harmonic.
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Remark 2.17 ([28, 41]). Let f = (fi,..., fm) € Exp(m). Then there exists a unique equi-

librium state vy with respect to f = J(f) — J(f) for the potential function —3(f)log || f'(2)|.
The f-invariant probability measure vy is equivalent to the 0(f)-conformal measure for f.
()
We have that §(f) = Tiog| Fldv;”
over, §(f) is equal to the “critical exponent of the Poincaré series” of the multimap f. For

the details, see [28, 41].

where h,,f(f) denotes the metric entropy of (f, vy). More-

3. PROOFS AND RESULTS

In this section we state and prove the main results of our paper.

Definition 3.1. Let f = (f1,..., fm) € (Rat)™ and let G = (f1,..., fm). Let also U be a
non-empty open set in C. We say that f (or G) satisfies the open set condition (with U ) if

UL fi(U) CU and fHU)Nf71(U) =0

for each (i,7) with i # j. There is also a stronger condition. Namely, we say that f (or G)
satisfies the separating open set condition (with U ) if

U;nzlffl(U) cU and fifl(U) N f;l(U) =0
for each (i,7) with i # j.

We remark that the above concept of “open set condition” (for “backward IFSs”) is an
analogue of the usual open set condition in the theory of IFSs.
The following theorem is important for our investigations.

Theorem 3.2 ([28]). Let f = (f1,..., fm) € Exp(m). If f satisfies the open set condition,
then HD(J((fr.- . fu}) = 3(F).

It is interesting to ask for an estimate of the Hausdorff dimension of the Julia set of GG in
the case when it is not known whether G satisfies the open set condition or not. The goal
of our paper is to provide answers to this question. We start with introducing the following
setting.

Setting (x): Let d,m € N. Let U be a non-empty bounded open subset of R?. For each
Ae U, let fx = (fars- -, rom) € Exp(m) and let Gy = (fa1,..., fam). We suppose
that {f\}rev is a continuous family of Exp(m), i.e., the map U 3 A\ — f\ € Exp(m)
is continuous. Fix a parameter \g € U. Suppose that for each A € U, there exists
a homeomorphism hy : J(fy,) — J(f) of the form hy(w,z) = (w,hx(w, 2)) such that

hy, = ]d|J(on)’ hyo fr, = fro hy on J(fy,), and such that the map (w, z,A) — hy(w, 2) €

C, (w,z,A) € J(fy,) x U, is continuous. The point \g is called the base point of {f)}aev-
Let C' > 0,7 > 1 be such that for each n € N, inf(wyz)e](ﬁo) (X)) (w, 2)[| = Cn™. For each
A € U, we set s(\) := d(f)), where 6(f)) is the Bowen parameter of the multimap f.

We now will explain (in Definition 3.3 and Remark 3.4) that Setting (*) is natural.
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Definition 3.3. Let M be a finite dimensional complex manifold. Let m € N. For each A\ €
M, let fx = (fa1,---, fam) be an element of Exp(m). We say that { fa}renm s a holomorphic
family in Exp(m) over M if the map X\ — f, € Exp(m),\ € M, is holomorphic. If a
holomorphic family { fa}aem in Exp(m) satisfies that f\ € Epb(m) for each X € M, then
we say that { fx}renm is a holomorphic family in Epb(m).

Remark 3.4. Let {f\}renmr be a holomorphic family in Exp(m) over a complex manifold
M and let \g € M. Then there exists a neighborhood U of Ay such that for the holomorphic
family { fr} e over U, there exists a unique family {hy} cv of conjugacy maps as in Setting
(¥). Moreover, \ — hy(w, 2) is holomorphic. For the proof of this result, see [40, Theorem
4.9, Lemma 6.2] and its proof (in fact, the assumption “ f is simple” in [40, Theorem 4.9]
is not needed).

Remark 3.5. Let {fi}rem be a holomorphic family in Exp(m) over M and let \g € M.
Since the map \ — J(G) is continuous with respect to the Hausdorff metric (|24, Theorem
2.3.4], [40, Lemma 4.1]), there ezist a Mébius transformation «, an open neighborhood U
of X, and a compact subset K of C such that setting Gy = {aogoa™: g€ Gy} for each
A €U, we have J(Gy) C K for each \ € U.

From Lemma 3.6 through Theorem 3.12, we assume Setting (x).

Notation: For a z € R? and r > 0, we denote by B,(x) the open r-ball with center x
with respect to the Euclidean distance. For a y € C and r > 0 we set D,(y) :={z € C:
|z — y| < r}. We denote by Leb, the d-dimensional Lebesgue measure on a d-dimensional
manifold.

Under Setting (%), the following lemma is immediate.

Lemma 3.6. Let s,e > 0 be given with s > €. Then there exist constants v >0 and 6 >0
such that for any (w,z,w', 2", \) € J(fa)? X U, if p((w,2), (W, 2") < v and X\ € Bs(\g),
then
o g -1 < IBWD gy s
ni=a) T < 03 < min{n*=9,n1} and
B 13, @2l
o 5z Talw,2)) < b,

We now give the definition of the transversality condition, the concept of our primary
interests in this paper.

Definition 3.7. Let { fy}rev be as in Setting (x). We say that { f\} ev satisfies the transver-

sality condition (TC) if there exists a constant Cy > 0 such that for each r € (0, diam(C))
and for each (w, z), (W', 2") € J(fx,) with wy # wi,

(3.1) Lebg({\ € U : p(hr(w, 2), ha(w', 2)) < 7}) < Cir?.

Remark 3.8. If {fi}rcv with base A\g € U satisfies the transversality condition, then for
any A\ € U, the family {fr}rev with base N\ satisfies the transversality condition with the
same constant Cy (we just consider the family {h,\h;f},\eU of conjugacy maps).
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Lemma 3.9. Suppose that {fy} ev satisfies the transversality condition. Let o € (0,2).
Then there exists a constant Cy > 0 such that for each (w, 2), (W', 2') € J(fy,) with wy # wi,

/ d\
U pA(E)\<w7 Z)7E>\(w,> Zl))a
Proof. Let (w, 2), (W', 2') € J(f,) with w; # «/. Then

/ d\ B
v plha(w, 2), ha(w', /)

e e e I
—o / " Leby({A € U+ p(Ba(w, 2), Fa(, 2)) < rhyroldr

< Cs.

diam(¢) _ _
:a/ Leby({\ € U : p(hy(w, 2), ha(w', 2)) < r})r=*tdr
0

+ a/ Lebg({\ € U : p(ha(w, 2), ha(W', ) < r})r—*tdr
diam(¢)

diam(c) ) . 1
< /O C’lr .r dr + Lebd<U)[__a/T ]dlam(@)

—a (201 (diam(C))>~* + Lebd(U)(é(diam(@))_“)) :

-«
Thus we have proved our lemma. 0

Lemma 3.10. Suppose that {f\}rev satisfies the transversality condition. Then for each
A € U and for each € > 0, there exists 6 > 0 such that for Lebg-a.e. A € Bgs(A\1),
HD(J(G,)) > min{s(A\),2} —e.

Proof. We may assume that A\; = A\g. Since A — J(G,) is continuous with respect to
the Hausdorff metric in the space of all non-empty compact subsets of C ([24, Theorem
2.3.4], [40, Lemma 4.1]), by conjugating G, with a Mobius transformation, we may assume
without loss of generality that there exists a compact subset K of C such that for each A in
a small neighborhood of X\, J(G,) C K. Let s := min{s(\g),2}. Let ¢ > 0 with ¢ < s. For
this pair (e, s), let v,d > 0 be as in Lemma 3.6. We may assume that v is small enough.
Let uu be the s(\)-conformal measure for fy,. Let yip := p ® . This is a Borel probability
measure on J(fy,)2. For each A € U, let

Ay | s, 2, )
T st Taleo,2) = T, 2

By [4, Theorem 4.13], it suffices to show that
(3.2) R(\) < oo for Lebg-a.e. A € Bs(\).
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In order to prove (3.2), assuming v is small enough, for each (w, z,w’,2') € J(fy,)? with
(w,2) # (W', 2), let n =n(w,z,u,2) € NU{0} be the minimum number such that

cither [ms(ff, (@, 2)) — ma( F (W, 20 = v or wis # Wiy,

For each n € NU {0}, let E, = {(w,2,u,2) € J(fr)? : n(w, 2,0, 2') = n}. Let H :=

{(w,z,w,2) € J(fa)? : (w,2) = (', 2)}. Then we have J(fy,)? = H I 1L,50E, (disjoint
union). We obtain that

o (H) = / L) € T (02,00, 2) € M)

— [ ulfw2due, ) =0,
J(fxg)

Hence, by Lemma 3.6 and Koebe’s distortion theorem, we obtain that

dus(w, z,0', 2")

/ R(\)dA = / d\ / _ it
Bs(Mo) Bsho) () Iha(w, 2) — ha(w', 27) |5

= Z/ dps(w, z, W', z')/ — d_>\
n=0 " &n Bs(o) |ha(w, 2) — ha(w', /)]

200: o ConSt'H(f)\,w\n)/(E)\(w?Z))Hs_ed)‘
< d ) 7 J —_— ~ — ~
>~ n_o/n NZ(CU Z,Ww, 2 ) /B(g()\o) |h>\(f)T\LO(W72)) . h}\(f;\zo(w/7zl))|s—e

3e
00 / s—€(I(s—) \(s—€)n
<5 [ oty [ M T
= /e, Bso)  ha(f3, (W, 2)) = ha(f5, (@', ) [~

Const. | (f;,)'(w, )"~

(f1) (@, 2)| =% (n¥)"dA

- d [l /a ' - = — ~
;/n palw, 7w Z)/JBs(Ao) | (f3 (w, 2)) = P (f3 (@, 2))[5¢
o . Const. || (7Y (w, 2) [~ dA
< d » < ) - ~ 0 — ~ )
= Z/ Gualr zw Z)/I%(Ao) s (3 (@, 2)) — P (J (@, 21)) [

where Const. denotes a constant although all Const. above may be mutually different, and
Frowl = 1d. By Lemma 3.9, it follows that

[ Ran Comst. Y- [ 1) (@ it )
BS()\O) n=0 En

o

< Const. 3200 [ ) @ (o267, 2)
n=0 n

= Comst. (O ) [ dplwz) [ w0 2) O )
n=0 J(fko) En,w,z

— Const. 3 Co 7 / Y @ 2[00 (B ) s, 2),

n=0 J(frg)
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where E, . = {(,2) € J(fx) : (w,2,u,2') € E,}. As, by Koebe’s distortion theorem,
1) (w, 2) [P u(Eyy,.) is comparable with u(f)\o( nwz)), we therefore, obtain that

/ R(M\)d\ < Const. Z Cn~i" < 0.
Bs(Mo)

n=0
Hence, (3.2) holds. Thus, we have proved Lemma 3.10. O

Lemma 3.11. Suppose that { fr} ev satisfies the transversality condition. Suppose s(A\g) >
2. Let ju be the s(\o)-conformal measure on J(fx,) for fr,. Then there exists & > 0 such that
for Lebg-a.e. A € Bs(\), the Borel probability measure (hy).(i) on J(G,) is absolutely
continuous with respect to Leby with L? density and Leby(J(Gy)) > 0

Proof. As in the proof of Lemma 3.10, we may assume that there exists a compact subset
Ky of C such that for each A € U, J(G,)) C Ky. Take an € > 0 with s()\g) — € > 2. For
this € and s = s(\g), take a couple (v,d) coming from Lemma 3.6. We use the notation
and the arguments from the proof of Lemma 3.10. For each A € Bs(\), let vy := (hy).(1).
Then supp vy C J(G,). It is enough to show that v, is absolutely continuous with respect
to Leby with L? density for Lebg-a.e. A € Bs(Xg). In order to do that, we set

/ d)\/D Uy,T dl/)\ )
Bs(to)

D(vy, z) := liminf M

r—0 r2
We remark that if 7 < oo, then by [10, p.36, p.43], for Lebg-a.e. A € Bs(\g), vy is
absolutely continuous with respect to Leby, with L? density. Therefore, it is enough to
show that Z < oco. In order to do that, by Fatou’s lemma, we have

(3.3) 7 < liminf / / de(@(u
Bs(Xo r

where

r—0

Moreover, we have

/(C V/\(B(,I, ’I"))dl/A(l‘) = /(f 2 1{(wysz,,Z/)GJ(JZAO)2%(%2),%(‘07/)Kr}d,ug(w, Z, w', Z/),
A0

where 1, denotes the characteristic function with respect to the set A, and ps := p ® p.
Hence, by using (3.3), we obtain that

1 — —
7 < liminf — Lebys({\ € Bs(Mo) : |ha(w, 2) = ha(W', 2')| < r})dps(w, z,w', 2")

=00 T JI()?

= hmmf—Z/ Lebg({\ € Bs(\o) : [ha(w, 2) — ha(w', )| < r})dpa(w, 2,0, 2).

r—0

By Koebe’s distortion theorem (we take v and § sufficiently small), there exists a constant
K > 0 such that for each n € NU {0}, for each (w, 2,0, 2') € E,, and for each A € Bs(\y),

[Aa(w, 2) = Aa (@', )] 2 K| (fawl,) ()7 AR (@, 2)) = (£, (&, 2)].
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Therefore, by Lemma 3.6, for each n € N U {0}, for each (w,z,u',2') € E, and for each
AE Bg()\o),

[, 2) = ha(w', 2)] = K (f5) (@, )7 1) 7 ha(fry (@, 2)) = Ba(fro (&, 2)))
> K||(f3) (@, ) |7 5(Cn™) i 37 [ (f7, (@, 2)) = ha(fro (&, 2))]
> KCT|(f3) (@, )| (f3, (@, 2)) = Ba(Fro (@', 2))]-
Hence, by transversality condition, for each n and for each (w, z,w’, 2) € E,,
Lebg({\ € Bs(Ao) : |ha(w, 2) — ha(W', 2)| < 1})
< Leba({A € Bs(ho) : [°a(F2 (0, 2)) — Pl (s 2] < (KCH ™| (2 (w, 2)755))
< Const.r?||(f) (w, 2)[|*T2.

IS

£
4

Therefore,

T < Const.y [ [[(f3) (w, 2)*" 2dpa(w, 2,0, 2')

n=0 En

o0

=Const Y- [ dpton) [N @I e ),

where E, . = {(«,2') € J(f\,) : (w, 2,0, 2") € E,}. Thus,

1= CODSt-Z/Jf )(||(f§‘0)’(w,2)||8“0) U Bnws)) - 13 @, 2) |2 dp(w, 2)

n=0

< Const. Z(Cn”)% < 0.

n=0

Hence we have proved Lemma 3.11. U

Theorem 3.12. Let {fi}rev be a family in Exp(m) satisfying Setting (x). Suppose that
{fa}rev satisfies the transversality condition. Let p be the s(Ao)-conformal measure on
J(f,\o) for f,\o. Then we have the following.
(1) HD(J(G\)) = min{s()), 2} for Lebs-a.e. X € U.
(2) For Lebg-a.e. A € {\ € U : s(\) > 2}, the Borel probability measure (hy).(u)
on J(G)) is absolutely continuous with respect to Lebesque measure Leby with L?

density and Lebs(J(Gy)) > 0

Proof. We first prove (1). By [28], we have that HD(J(G))) < min{s()), 2} for each A € U.
Hence it suffices to show that HD(J(G,)) > min{s()\),2} for Lebg-a.e. A € U. Suppose
that this is not true. Then, there exists an € > 0 and a point A\; € U such that A\; is a
Lebesgue density point of the set {\ € U : HD(J(G))) < min{s()),2} — €}. Then there
exists g > 0 such that for each § € (0, dy),

(3.4) Leba({\ € Bs(A\1) : HD(J(G))) < min{s()A),2} —€}) >0
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However, by the continuity of the function A — s()\) (see Theorem 2.16, [40]), if § is small
enough, then s(\) < s(A;) + 5 for each A € Bs(\;). Thus, for all § sufficiently small, we
obtain from (3.4) that

Leba({\ € Bs(\1) : HD(J(Gy)) < min{s(\,), 2} — g}) > 0.

This however contradicts Lemma 3.10. Thus, we have proved assertion (1). Statement (2)
follows from Lemma 3.11. Hence, we have proved our theorem. 0

Remark 3.13. Let {fi}rcv be as in Theorem 3.12. Let v be the equilibrium state with
respect to fr, : J(fag) — J(fr,) for the potential —5(fy,)log ||f//\0|| (see Remark 2.17). Then
for each A\ € U, the Borel probability measure (hy).(p) in Theorem 3.12 is equivalent to
(72)+ ((ha)+ () and (hy).(v) is fa-invariant. Thus (hy). (1) is equivalent to the projection
of an f-invariant Borel probability measure on J(fA).

We now define the strong transversality condition.

Definition 3.14. For eachr > 0 and each subset F' of R?, we denote by N,.(F) the minimal
number of balls of radius r needed to cover the set F.

Let v be a Borel probability measure in R%. Let u > 0. Let E be a Borel subset of RY. We
say that v is a Frostman measure on E with exponent u if v(E) = 1 and if there exists a
constant C > 0 such that for each x € R* and for each r > 0, v(B,(z)) < Cr.

Definition 3.15. Let d € N. Let U be a non-empty bounded open subset of R%. Let { fx}rev
be a family as in Setting (x). We say that {f\}rcv satisfies the strong transversality con-

dition (STC) if there exists a constant C7 > 0 such that for each r € (0,diam(C)) and for
each (w, z), (W', 2") € J(f,) with wy # Wi,

(3.5) N.({N € U : p(hy(w, 2), hp(', 2")) < 7}) < O,

Remark 3.16. The strong transversality condition implies the transversality condition. It
is however not known whether or not there exists a family of multimaps of rational maps (or
contracting conformal IFSs) which satisfies the transversality condition but fails to satisfy
the strong transversality condition.

In the same way as Lemma 3.9 we can prove the following.

Lemma 3.17. Let d € N. Let U be a non-empty bounded open subset of R:. Let { fx}xev be
a family as in Setting (x). Suppose that { fr}rev satisfies the strong transversality condition.
Let v be a Frostman measure in R? with exponent u. Suppose u —d +2 > 0. Then for each
o € (0,u — d+ 2) there exists a constant Cly > 0 such that for each (w,z,w',2") € J(fx,)
with wy # wy,

/ vy <y

U p(h)\<w7 Z)7 h’)x(wla Z/))a

Lemma 3.18. Let d € N. Let U be a non-empty bounded open subset of R%. Let { fx\}acu be
a family as in Setting (x). Suppose that { fr}rev satisfies the strong transversality condition.

Then for each Ay € U, for each € > 0, and for each u > 0, there exists d > 0 such that if v
is a Frostman measure on Bs(\1) with exponent u, then

HD(J(G))) > min{s(\),u —d+ 2} — ¢
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for v-a.e. A € Bs(\1).

Proof. We may assume that A\; = A\g and u —d+2 > 0. Let s := min{s(X\),u —d +2}. We
repeat the proof of Lemma 3.10. The only change is that now we prove fBg()\o) R(N)dv(\) <
oo by using Lemma 3.17. U

We now give an upper estimate of the Hausdorff dimension of the set of exceptional
parameters. Note that if {fx = (fa1,.-.,fom)trer is a family in Exp(m), then by
Theorem 2.15, for each A € U, HD(J(G,)) < s(A), where G := (fa1,..., fom) and

s(A) = d0(fx).

Theorem 3.19. Letd € N. Let U be a non-empty bounded open subset of R%. Let { fx}rev be
a family as in Setting (x). Suppose that { fr}rev satisfies the strong transversality condition.
Let G be a subset of U. Let & > 0. Suppose min{&, supyc S(A)} +d—2 > 0. Then we have

(3.6) HD({X € G : HD(J(G»)) < min{&,s(\)}}) < min{g,?\telgs()\)} +d—2.

Proof. We set k := min{{,sup,cs s(A\)} + d — 2. By the countable stability of Hausdorff
dimension, it is enough to prove that for each n € N,

(3.7) HD({\ € G : HD(J(Gy)) < min{€, s(\)} — %}) <k

Fix n € N. In order to prove (3.7) it suffices to show that for each A\; € G there exists a
0 = 0y, > 0 such that

1

(3.8) HD({X € Bs(\1) : HD(J(G))) < min{&, s(\)} — E}) < K.

To prove (3.8), suppose that it is false. Then there exists A\; € G such that for each § > 0,
1

(3.9) HD({\ € Bs(\1) : HD(J(G))) < min{&, s(\)} — ﬁ}) > K.

Choose 0 > 0 so small that the statement of Lemma 3.18 holds with ¢ = 5~ and [s(\) —

s(A1)| < 5 for each A € Bs(A1) (by the continuity of s()), see Theorem 2.16). Then,
) 1
{A € Bs(A\1) : HD(J(G))) < min{¢, s(A\)} — ﬁ}
1
C {X € Bs(\) : HD(J(G))) < min{¢, s(\)} — %} = FE.

Hence HD(E) > k. By Frostman’s Lemma (see [4, Corollary 4.12]), there exists a Frostman
measure v on the set E with exponent u = k. By Lemma 3.18, for v-a.e. A we have

1 1
HD(J(G))) > min{s(\),k — d + 2} — — = min{s(\;), min{&,sup s(\)}} — —.
2n pYte; 2n
This is a contradiction since for each A € E we have HD(J(G))) < min{&, s(A;)} — 5~ and
min{¢, s(A1)} < min{s(\;), min{&, sup s(\)}}.
AeG

Thus we have proved Theorem 3.19. 0
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By continuity of s(A) (see Theorem 2.16, [40]), as an immediate consequence of Theo-
rem 3.19, we get the following estimate for the local dimension of the exceptional set.

Corollary 3.20. Let d € N. Let U be a non-empty bounded open subset of R%. Let { fr}rer
be a family as in Setting (x). Suppose that { fr}rev satisfies the strong transversality con-
dition. Let £ > 0. Suppose min{&, s(\1)} +d —2 > 0. Then, we have all of the following.

(1) For each A\ € U, we have
lig(l) HD({X € B,(\1) : HD(J(G))) < min{&, s(A\)}}) < min{, s(A)} +d — 2.

(2) If, in addition to the assumptions of our corollary, s(\1) < 2, then
hr% HD({X € B,(A\1) : HD(J(G))) # s(M\)}) <d— (2 —s(\1)) < d=HD(U).

We now give a sufficient condition for a holomorphic family { f)}er to satisfy the strong
transversality condition.

Definition 3.21. Let U be an open subset of C%. Let {fx}xev = {(fa1,---s fam) brev be
a holomorphic family in Exp(m) over U. We set Gy = (fa1,..., fam) for each X € U.
Let Ao € U be a point. Suppose that for each N € U, there exists a homeomorphism
hy: J(frg) — J(fr) of the form hy(w, z) = (w, ha(w, 2)) such that hy, = [d‘J(on)’ hyo fr, =
frohy on J(fx,), and such that for each (w,z) € J(fx,) the map (w,z,\) — hy(w,z) €
C, (w,z,\) € J(fay) X U, is continuous and the map X — hy(w, z) is holomorphic. We say
that the family { fx}rev satisfies the analytic transversality condition (ATC) if the following
hold.
(a) J(Gy) C C for each A € U.
(b) For each (w, 2,0, 2, N) € J(fr,)? X U, let Guzur r(N) := ha(w, 2) — ha(w', 2). Then
for each (w, 2,0, 2", \) € J(fa)? X U with gy .o »(N) = 0 and wy # W}, we have

BLUZLUIZ/ 8LAIZLU/Z/
VAgw,Z,w’,Z’(A) # 0, where VAQW,Z,w’,Z’(/\) = <%T()\>’ SR gé#()\))'
Proposition 3.22. Let U be a bounded open subset of C¢. Let {f\}xeu be a holomorphic
family in Exp(m) over U. Suppose that { fr}reu satisfies the analytic transversality condi-
tion. Then for each non-empty, relative compact, open subset U' of U, the family { f\}rev
satisfies the strong transversality condition, and consequently, the transversality condition.

Proof. Let A\g € U and let hy and g, ,..(A) be as in Definition 3.21. We set

W= {(Wa valaz/7C) € J(f/\0>2 xU: gw,z,w’,z’(C) =0 and Wi 7& wi}
For each A € U write A = (Ay,..., ). Let (w, 2,0, 2',() € W. Then Vxgu»w . (¢) # 0.

Without loss of generality, we may assume that 8‘(]%/\’1“’/’2'(@“ ) # 0. Then by the arguments
in [1, page 154], there exists a neighborhood Ag of (w,z,w’,2'), a constant § > 0, and a
constant ro > 0, such that for each (z,y,2’,y’) € Ay and for each (Mg, ..., \g) € Das((a) X

X Das(Cq), Setting oy o/ rarng( A1) = Gy (A1, ..., Ag) for each Ay € Doys((1), we
have that

(1) Goya’ g/ rarry 1S Injective on Dos(¢r), and

(ii) there exists a holomorphic function .y .y xs...2y © D2ry(0) — Das(¢1) such that

gx»ylezy/7>‘27"'7Ad © axay7x/7ylv)‘2"")‘d = Id on D2T0 (0)

-----
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We may assume that there exists a constant Cy > 0 such that for each (z,y,2’,y") € Ay,
for each (Ag,..., A\, 2) € H;l:g Dss(¢;) x Doy (0), and for each j = 2,...,d, we have

(3.10) |O'/;,y,z’y',)\2 ’’’’’ )\d(z)| < Cp, and ‘Gax,y,x/,g,;% ,,,,, )\d(z) < C,.
J
For every (z,y,2’,y") € Ao and for every r € (0,79),
d
{0 € [T Ds(G) + |gaargr M- M) < 7}
Jj=1 )

= {(Cgararrenna(2): Aoy M)+ N2y M) € [[ Ds(), 2 € Di(0)}
d .

- qu,yw’y’(H D5<CJ) X DT(O)),
j=2

where W,y 0 (A2, Ads2) = (Qgary aeng(2)s Ao s Ad). Let Ay =[]0, Ds(¢;) x

.....

D,(0). Then there exists a constant C; > 0 such that for each r > 0, N,(A,) < Cy (1)@=,
Let {Ej}j-VQAT) be a family of r-balls with A, C U?Z;AT) E;. By (3.10), there exists a
constant Cy > 0 such that for each (z,y,2',y") € Ay, for each r € (0,79) and for each j €
{1,...,N.(A)}, Uy yw oy (E;) is included in a Cor-ball. Therefore, there exists a constant
C3 > 0 such that for each (x,y,2',y') € Ag and r € (0,70), Np(Vy oy (A,)) < Cyri2e,
Hence, we obtain

d
NT({()‘lv SRR /\d) € H D5(Cj) : |g$,y,x’,y’(/\17 ceey /\d>| < T}) < C3T2_2d.
7j=1

Therefore, for each non-empty relative compact open subset U’ of U, the family {f\}icv
satisfies the strong transversality condition and, consequently, the transversality condition.
O

Remark 3.23. If d = 1 and the strong transversality condition holds (which is equivalent
to that inf{p(a,b) : a € f/\_’il(J(GA)),b € f):;(J(G,\)),)\ e U,i# j} > 0}), then the analytic
transversality condition is not satisfied. However, it s not known whether or not there
exists a holomorphic family of multimaps of rational maps (or contracting conformal IFSs
on C) which satisfies the strong transversality condition but fails to satisfy the analytic
transversality condition.

Looking at Proposition 3.22 we see that in order to obtain a sufficient condition for a

holomorphic family { f\}er in Exp(m) to satisfy the strong transversality condition, it is
90,20 2! ()‘)

important to calculate —=%5=*~—. We give now several methods of doing this.
J

Lemma 3.24. Let U be a bounded open set subset of C. Let \g € U. Let {f,\},\E_U =
{fr1s---s fumbrer be a holomorphic family in Exp(m). For each A € U, let Gy, hy, hy be
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as in Setting (). Suppose that for each A € U, J(G)) C C. Then for each (w,z) € J(f),

8%(%2) o = 1 afk,wn(f)\o,W\nq (Z))
(3.11) T'A:/\O = Z f//\mw'n(z) (_ O\ ‘,\_/\0) ’

n=1

where f, o, %5 the identity map.

Proof._Since fA Oih =hyo fAO, we have that for each A € U and for each (w,z) € (](f)\o)7
Frw (ha(w, 2)) = ha(0(w), fagw (2)). Hence

Ofrews ~ - Oh(w, oh s Prown

O i, 29) + 1 (i, 2 22022 OO o))
Therefore,

aﬁ)\@), Z) . 1 af)\,wl <Z> 8%)\(0((4)), f)\o,wl (Z))
(312) e = e (— oy =rt Y \A:AO)-

[terating this calculation, since the right hand side of (3.11) converges due to the expand-
ingness of G,, we obtain equation (3.11). O

We remark that the calculation like (3.11) is a well-known technique in contracting IFSs
with overlaps (e.g. [20]), though in Lemma 3.24 we deal with “expanding” semigroups in
which each map may not be injective.

We now provide several corollaries of Lemma 3.24.

Corollary 3.25. Let (g1,...,9m) € Exp(m). Let U be a bounded open subset of C. Let
Xo € U. For each \ € U, let ay € Aut(C). We assume that the map C x U > (z,\) —
ay(z) € C is holomorphic, and that a, = Id. For each A € U let

f)\ = (917"'79771—1705)\0977100[;1)'

Suppose that {fr}rev s a holomorphic family in Exp(m) which satisfies the Setting ().
Further, letting Gy, hy, hy be as in the Setting (¥) assume that U 3 X — hy(w, 2) is holomor-
phic. Note that if U is small enough, then we do not need any extra hypotheses, namely, by
Lemma 2.9 and Remark 3.4, { fr} ev is automatically a holomorphic family in Exp(m) sat-
isfying Setting (%), and the map U > X\ — hy(w, z) is holomorphic. In any case we also extra
assume that for each A € U, J(G)) C C (see Remark 3.5). For eachw = (wy,...,w,) € 3%,
let gy = gu, © -+ 0 gu,. Then, we have all of the following.

(1) For each (w,z2) € J(f,\o),

Ohy(w, 2)
O\

where

0fw,=1,....m—1
an(2) = 9ax (9w, (2) dax(go1, (2)) .
{g;n(gwln1<z))<_Tl|,\:,\o) + Aga—i"h:)\o if w, = m. (gw|0 = 1d.)
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(2) Let j #m, 8= jm™ and v = mj>. Then for each z € C with (8,z) € J(fx,),

Ohx (8, 2) _ 1 dax(yg,(2))
NS g5(2) O\

o\
and for each z € C with (v,2) € J(ﬁ\o),

)
A=Xo

()| )| 1 da(gn(2)
2 A=Xo oA A=Xo 9 (2) oA A=Xo
Proof. 1t is easy to see that
O(argmay ' (2)) _ dax(z) dax(gm(2))
(3.13) X . = m(z) (c)—)\})\:)\o + T‘A:AO'

By Lemma 3.24 and (3.13), statement (1) holds. We now prove statement (2). By the
uniqueness of the conjugacy map hy ([40, Theorem 4.9]), we have for each A close to A\g and
for each j # m, that hy(j=,2) = 2z (2 € Jj(fa,) = J(g;)) and hx(m™,2) = ax(2) (z €
Jmoe(fry) = J(gm)). Therefore, by (3.12) and (3.13), statement (2) holds. O

Corollary 3.26. Let (g1,...,9m) € Exp(m) N (Aut(C) UP)™. Let U be a bounded open
subset of C with 0 € U. Let \g =0 € U. Let j € NU {0} with 0 < j < deg(g,,). For each
Ae U, let
=191, g1, gm + AZ).

Assume that {fr}rev s a holomorphic family in Exp(m) satisfying the Setting (x). Fur-
ther, letting G, hy, hy be as in the Setting (x) suppose that the map U > X +— hy(w, 2)
s holomorphic. Note that if the open set U is small enough, then by Lemma 2.9 and Re-
mark 3.4, {fx}rev is automatically a holomorphic family in Exp(m) satisfying the Setting
(%) and the map U > X + hy(w, 2) is holomorphic. For each w = (wi,...wy,) € X%, let
G = Gu, © - 0 Gu,. Then, for each (w,z) € J(f,),

Ohy(w, 2) =1
— a~ = anp\2),
I hoxg ; 9o, (2) )

where
a,(2) = {—§9w|n1<2>)j if Wy =m
0 wan 7£ m.

Proof. The proof follows immediately from Lemma 3.24. U

Corollary 3.27. Let (g1,...,9m) € Exp(m) N (Aut(C) U P)™. Let U be a bounded open
subset of C with 0 € U. Let \y =0 € U. For each \ € U, let

f)\ = (91; co s 9m—1,9m + Ag;n)

Assume that { fx}xev s a holomorphic family in Exp(m) satisfying the Setting (x). Further,
letting Gy, hy, hy be as in Setting (x) suppose that \ + hy(w,z) is holomorphic. Note
that if the open set U is small enough, then by Lemma 2.9 and Remark 3.4, {f\}rev is
automatically a holomorphic family in Exp(m) satisfying Setting (%) and the map U > X\ —
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ha(w, 2) is holomorphic. For each w = (w1, ...wy,) € Xy, lel gy = Gu, © " © gu,. Then, for
each (w,z) € J(fr,),

Ohy(w, z) =1
— = an(2),
I hox ; g&i}\n(z)
where
an(z) _ _glv/n(gw|n—1(z)) Zf Wp =M
0 if w, # m.
Proof. By Lemma 3.24, our Corollary holds. O

Lemma 3.28. Let U be a bounded open set in C. Let \g € U. Let { fx}rev = {fots-- -, Fromfrev
be a holomorphic family in Exp(m) satisfying Setting (x). Letting Gy, hy, hy be as in Setting
(%) we suppose that U 3 \ — E,\(w, z) is holomorphic. Note that if U is small enough, then
by Lemma 2.9 and Remark 3.4, {x} ev is automatically a holomorphic family in Exp(m)
satisfying Setting (*) and X\ — hy(w,z) is holomorphic. Suppose that for each A € U,
J(G)y) C C. We also require all of the following conditions to hold.

(i) For each (i,§) withi # j and fy.;(J(Gx))Nfr 5 (J(Gr,)) # 0, there exists a number

o5 € {L s 7m} such that f)\o,i<f)\_0%i(‘](G>\o)) N f)\_o%](J(GAo))) C J(f)xo,aij)'
(i) Ifi,j, k are mutually distinct elements in {1,...,m}, then
Fro(Froi(J(Gxg)) N [ (T(Gro))) € F(Gy)-
(ili) For each (j,k) with j # k, fagk(J(froj)) C F(Gy,)-
(iv) If i # j and if z € f3,5(J(Gy,)) N f/\’o%j(J(G,\O)) (note: for such z, by (i)— (iii) we
have z € Jmf;(f)\o) N Jjaﬁ(f,\o)), then

V)\(E/\(mff» Z) - E,\(j()é;?, Z))|)\:)\0 7£ 0.

Then, there exists an open neighborhood Uy of Ao in U such that {f\}xev, satisfies the
analytic transversality condition, the strong transversality condition and the transversality
condition.

Proof. By conditions (i),(ii), (iii), Lemma 2.10 and Remark 2.3(1), we obtain that
{(w,z,W,2) € J(fa)? : w1 # W, ho(w, 2) — ho(w', ') = 0}

B o U fGag, =03 2) € J(h)? 2 = 2 € FLUGA) N 5T G}
(4,5):1#7

From (3.14) and condition (iv), we conclude that there exists an open neighborhood Uy of g

in U such that {f)}ev, satisfies the analytic transversality condition. By Proposition 3.22,

shrinking Uy if necessary, it follows that { f)}cv, satisfies the strong transversality condition
and the transversality condition. 0

Lemma 3.29. Let di,dy € N with di < dy. Let U be a bounded open subset of C% and
let V be a bounded open subset of C%. Let {f\}rev be a holomorphic family in Exp(m)
over U with base point Ny satisfying the analytic transversality condition. Let {g,} ev
be a holomorphic family in Exp(m) over V and let o € V. Suppose that there exists a
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holomorphic embedding n : U — V with n(Xo) = Yo such that gy = fr for each A € U.
Then there exists an open neighborhood W of v in V' such that {g,}~ew is a holomorphic
family in Exp(m) over W with base point vy satisfying the analytic transversality condition,
the strong transversality condition, and the transversality condition.

Proof. By Remark 3.4, there exists an open neighborhood W of 4y in V' such that {g, },ew
satisfies Setting (x) and letting h., h, be as in Setting (x), for each (w, z) € J(g,,) the map
W 2 v+ h,(w, 2) is holomorphic. Let hQ(w, 2) = (w,ﬁg(w, z)) be the conjugacy map as in
the Setting (x) for the family {f\} cr. Then shrinking U if necessary, by the uniqueness of
the family of conjugacy maps (see Remark 3.4), we obtain h,y) = h for each A € U. Since
{fx}reu satisfies the analytic transversality condition, shrinking W if necessary, it follows
that {g, },ew satisfies the analytic transversality condition. By Proposition 3.22, shrinking
W if necessary again, we obtain that {g,},ew satisfies the strong transversality condition
and the transversality condition. ([l

Remark 3.30. By Lemma 3.24, Corollaries 3.25, 3.26,3.27, Lemmas 3.28, 3.29, and
Proposition 3.22, we can obtain many examples of holomorphic families { fx}ev in Exp(m)
satisfying the analytic transversality conditions, the strong transversality condition and the
transversality condition. In the following section we will provide various kinds of examples
of the holomorphic families satisfying the analytic transversality condition.

4. APPLICATIONS AND EXAMPLES

In this section, we apply the results of the previous one to describe various examples and
to solve a variety of emerging problems. For a polynomial g € P, we set

K(g) :={z € C:{g"(2) }nen is bounded in C}

and we recall that K (g) is commonly referred to as the filled in Julia set of the polynomial
g.

Theorem 4.1. Let (dy,ds) € N? be such that dy,dy > 2 and (dy, dy) # (2,2). Let b = ue® €
{0 < |z] < 1}, where 0 <u <1 and 0 € [0,27). Let a € [0,27) be a real number such that
there exists an integer n € Z with do(m +0) + a = 0+ 2nmw. Let B1(z) = z%. For each t > 0,
let gi(2) = te'(z —b)¥ +b. Then there exists a point t; € (0,00) and an open neighborhood
U of 0 in C such that the family {f» = (81,91 + Ag),) }rev with Ao = 0 satisfies all the
conditions (i)—(iv).
(i) {fa}rev is a holomorphic family in Epb(2) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition.
(ii) For each A € U, s(\) < 2, where we recall that s(X\) = §(f)).
(i) There exists a subset Q of U with HD(U \ Q) < HD(U) = 2 such that for each
e,
log(d + dy)

24
Zj:l di+ds log(d)

(iv) J(Gy,) is connected and HD(J(G),)) = s
set condition. Furthermore, for eacht € (

1<

< HD(J(Gy)) = s(\) < 2.

(Ao) < 2. Moreover, Gy, satisfies the open
0,t1), (01, gi) satisfies the separating open
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set condition, By (J((B1, 9:)))Ngy (T ({Br, ) = 0, J((B1, 9:)) is disconnected, and

1
BB ) Hp(g((61,g) = 5(6h,00) < 2
Zj:l d1+do log(dl)
Moreover, there exists an open connected neighborhood Y of (81, gs,) in P? such that the
family {v = (71,72) }oey satisfies all the conditions (v)—(viii).
(v) {7 = (m1,72) }yey is a holomorphic family in Epb(2) satisfying the analytic transver-
sality condition, the strong transversality condition and the transversality condition.
(vi) For each vy €Y, §(7) < 2.
(vii) There exists a subset I' of Y with HD(Y \T') < HD(Y') = 2(dy + d2 + 2) such that
for each A € T,

1<

log(dy + da)
Z?:l dltiidg log(d;)

(viii) For each neighborhood V' of ((1,gs,) in'Y there exists a non-empty open set W in V

such that for eachy = (y1,72) € W, we have that v (J({(1,72))) 3 (J({11,72))) #
0 and that J({y1,72)) is connected.

Proof. Let zy € {|z| = 1} = J(B1) be a point such that |2 — b] = sup,c s(g,)[2 — b|. Then
29 = ™9 Let v :=|z0—b| = 1+b|. Let z; := 2b— 2. Then z; € {z: [z —b| = v} \ J(B).
We note that

1< <HD(J((71,12)) = 6(7) <2.

(41) g(%)dg—l(Z()) = 2.
Let r € (1 —wu,1). Then D(b,r) C int(K(f;)). We also note that for each ¢t > 0,
(4.2) g (D(b,7)) = D(b, (r/t)7=).
Let R € R be any real number such that
1
(4.3) R > exp (d1d2 v dg(_dl logr + dydy log 2)) :

We take R satisfying (4.3) so large that
31 31
(4.4) D <b, ZR%) c 674D, R)) € D (b, §Rd1) cc D(b, R),

where A CC B denotes that A is contained in a compact subset of B. Let agr = 1/R%~1.
By (4.3), we obtain

ro\ @ 1
(4.5) (—) >2R% .
ar
We remark that
(4.6) J(gap) ={2:12—=b=(1/ag)®2"} ={z: |z — b| = R}.
We take a large R so that

(4.7) D (b, %Rdﬂ> S K (5.
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Then by (4.7), (4.4), (4.5), (4.2) and (4.6), we get that
1 1 3 L 3 L
k() 0 (b gr% ) cc b (b 3RE) € () < D (0,575

CC D(b, (r/ag)®) = g, (D(b,7)) C gun (K(51))
CC int(K(gay))-

(4.8)

-

Since the function R — ag is continuous and limg_., ., ar = 0, it follows from (4.8) that
(4.9) t; :=sup {t € [0,1/v"271 Ve € (0,1), K(31) C int(B;7 (K (ge)))
' cCint(g. ' (K(B))) cC int(K(gc))} > 0.

By the definition of ¢;, we get that

(4.10) K(p1) € 6 (K (9) € 9, (K (51)) € K (g1,
Therefore, by (2.2),
(4.11) P*({B1,q1)) C K(By) for each t € (0,t4].

In addition, for each t € (0,t),

(4.12) By (K (ge) \ int(K (81))) I gy (K (ge) \ int(K (B1))) € K(ge) \ int(K(5r)).

In particular, for each t € (0,¢;), the multimap (3, g;) satisfies the separating open set
condition with A; := int(K(g:)) \ K (51). Moreover, by (4.12), (1.1) and [8, Corollary 3.2],
for each t € (0,t1), the Julia set J({f1,¢:)) is disconnected. Furthermore, by the definition
(4.9) of t1, for each t € (0,t1), we have that ¢;(K(f;)) C int(K(51)). Therefore, by (2.2),
for every t € (0,t1), P*({f1,9:)) C int(K(B1)) € F((61,9:)). Thus for each t € (0,t),
(081, 9:) € Epb(2). Since (1, g;) satisfies the open set condition, [28, Theorem 1.2] implies
that for every t € (0,¢1), HD(J({f1,:))) = d(01, g:). Moreover, by (4.12), [8, Corollary 3.2],
and (1.1), J((B1,g:)) is a proper subset of A, for each ¢ € (0,¢;). Thus by [29, Theorem
1.25], HD(J({B1, g1))) < 2 for each t € (0,t1).
We now prove the following claim.

Claim 1: We have t; < ——. In particular, J(5;) N J(g,) = 0.

In order to prove this claim, suppose on the contrary that ¢; = 1}(12%1 Then J(gi,) =
{z:]z—=b =v} and 2o € J(1) N J(gs,)- By (4.10), g, (K(51)) C K(B1). Hence g, (20) €
K(B1) N J(gy,). Since g4, (20) = z1 € J(01), we obtain J(gs,) Nint(K(51)) # 0. However,
since K(01) C K(gi,) (see (4.10)), we obtain a contradiction. Thus, we have proved Claim
1.

We now prove the following claim.

Claim 2: We have K(8;) C int(87 (K (g:,))) and g;," (K(31)) C int(K(gy,)). In particular,
K(@)  int(g (K(31))) and g, (K(31)) C int(K (5))

To prove Claim 2, suppose J(31) N B, (J(gs,)) # 0. Then J(31) N J(gs,) # 0, and this
contradicts Claim 1. Similarly, we must have that g;.'(J(41)) N J(g:,) = 0. Therefore, we
have proved Claim 2.

Since g, (K (£1)) C int(K(f;)) (Claim 2), from (2.2) it is easy to see that P*({((1,¢9+,)) C
int(K(81)) C F ({01, gt,)). Therefore, (51, g,) € Epb(2). We now prove the third claim.

Claim 3: 8, (J(g,)) # 95, (J ().
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To prove Claim 3, let ¢, be Green’s function on C\ K (f;) (with pole at infinity) and ¢, be
Green’s function on C\ K (gy, ). Then ¢1(z) = log |2| and ¢y(2) = log |z|—|—ﬁ log t1+0(ﬁ).
Note that since J(f1) C int(K (g, )) (Claim 2), we have ﬁlog t1 < 0. It is easy to see
that Green’s function @5 on C \ 9, (K (1)) satisfies ¢3(2) = é(g@l(gtl(z))) = log |z| +
2 logty + O(é) Similarly, Green’s function ¢, on C\ 87 (K (g, )) satisfies ¢4(2) =

d—llwg(ﬁl( 2)) = lOg|Z| + g logti + O(1/z]). Therefore, if 57 (J(g4)) = g5, (J(B1)),
then — log t1 = o log t1. Since (dq,ds) # (2,2), we obtain logt; = 0. However, this
contradlcts log t1 < 0. Thus we have proved Claim 3.

Let A := 1nt( (gtl)) \ K(f1). By (4.10) and Claim 2, A is a non-empty open set in
C and 87 (4) Ug;,'(A) C A and B;'(A) N g, (A) = 0. Hence (61, g1, ) satisfies the open
set condition with A. Combining it with the expandingness of (31, g¢,), [28, Theorem 1.2]
1mphes that HD(J({81,94))) = 0(B4, gi,). Moreover, by Claim 3, we have that 3;*(A) U
;' (A) is a proper subset of A. Therefore by [8, Corollary 3.2] and (1.1), J({31,gs,)) is
a proper subset of A. Combining it with the expandingness of (3, g;,) again and [29,
Theorem 1.25], we obtain HD(J ({51, gt,))) < 2. Hence, §(51, g,) = HD(J({B1,91))) < 2.
By Lemma 2.12 and Theorem 2.16, there exists an open neighborhood Y; of (3y, g¢,) in P?
such that for each v = (y1,72) € Yy, v € Epb(2) and () < 2

We now consider the holomorphic family {f\} ey in Epb(2), where U is a small open
neighborhood of 0. Let Ay = 0. Let G, hy, hy be as in the Setting (%) (see Remark 3.4).
By (4.10) and Claim 2, it is easy to see that {f\},cy satisfies conditions (i),(ii),(iii) in
Lemma 3.28 with aqo = 2,91 = 1. Let 2z € f)\_ofl(J(GAO)) N f/\_O{Z(J(G,\O)) = 87 (J(g1,)) N
9. (J(1)). Then by Corollary 3.27,

(4.13)
O(ha (21, 2) — ha (12, 2)) = —9,, (g5, (B (2) =
- _1-
A=Xo ; (95" o 1) (2) % (98, Oﬁl z)

o\
_ 1 _ :
| Zn 2@ BB ang d;72d1|z\d1_1 <1,it follows that
o1, 5) — Ta(12, )
o))

Therefore, by Lemma 3.28, shrinking U if necessary, we obtain that {f)},cy satisfies the
analytic transversality condition, the strong transversality condition and the transversality
condition. Since §(1, g1,) = s(Ao) < 2 and A — s(A) is continuous, shrinking U if necessary,
we obtain that for each A € U, s(\) < 2. Therefore, by Theorems 3.19 and 2.15, there exists
a subset Q of U with HD(U \ 2) < HD(U) = 2 such that for each A € Q, HD(J(G))) =
s(A) < 2.

By the definition of ¢, we have 87" (J(g:,)) N g, (J(B1) ;é (. In particular,

)
B (I (B 90))) Vg (J((Br, gu,))) #

Combining this with the fact that the semigroup (0, gs,) is postcritically bounded, [33,
Theorem 1.7, Theorem 1.5(2)] implies that the Julia set J({31, g:,)) = J(G,,) is connected.
Since { fA}AeU satisfies the analytic transversality condition, by using Lemma 3.29 and

Since > 07 2| = 206

1

0.
A=Xo 7
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shrinking Yj if necessary, we obtain that {y = (71,72) }1ey, satisfies the analytic transver-
sality condition, the strong transversality condition and the transversality condition. Since
d(y) < 2 for each v € Yy, Theorems 3.19, 2.15 and 2.16 imply that there exists a subset
[ of Yy with HD(Yy \ I') < HD(Yy) = 2(d; + d2 + 2) such that for each v = (y1,72) € T,
HD(J({v1,72))) = 6(7) < 2. Let ¢y € 87 (J(g¢,)) N g5, (J(B1)). Let wy = Bi(co) € J(gtl)A.
There exists an open neighborhood Y; of ¢, in P and a holomorphic map ¢ : ¥ — C
such that ((g;,) = wo and ((12) € J(72) for each 75 € Yj. Let & be a well-defined in-
verse branch of §; defined on a neighborhood Dy of wy in C such that &(wo) = ¢o. Let
N(72) := 72 0& 0 ((72), which is defined on an open neighborhood By of g;, in Y. Then 7 is
holomorphic on By. Moreover, 1(gs,) € J(51). Furthermore, by the definition of ¢;, for each
t close to t; with t < t;, we have 1(g:) € J(01). Hence 7 is not constant on By. Therefore,
for each neighborhood V' of (81, ¢:,) in Yp, there exists an element 7, with (51,7,) € V
such that n(7,) € C\ K(f). In particular,

(4.14) Bri(J (7)) N7 (C\ K (Br)) #0.

Moreover, by (4.10) and Claim 3, 37" (J(gi,)) N int(g;," (K (B1))) # 0. Therefore, we may
assume that

(4.15) B (J (7)) Nint(75 (K (B1)) # 0.
By (4.14) and (4.15), there exists an open neighborhood W of (1,7%,) in V such that for
each (¢Y1,1) € W,
VT (T (v2) N3 (T (4n) # 0.
In particular,
1 (T (1, 92))) N by (T ({1, 902))) # 0.

Combining this with the fact that the semigroup (¢1,1) is postcritically bounded, [33,
Theorem 1.7, Theorem 1.5(2)] implies that the Julia set J((11,12)) is connected for each

(Y1, 2) € W.
Finally, we remark that by [41, Theorem 3.15], for any (71,72) € Epb(2) with deg(y,) =

dy,deg(y) = do, if y1(2) = 2% and y»(2) = a(z — b)% + b with b # 0, then we have
log(dy + ds)

232':1 dldTidQ log(d;)

Thus we have proved Theorem 4.1. O

1<

< 5(71;72)-

Figure 1 represents the Julia set of the 2-generator polynomial semigroup G, with
(dy,d2) = (3,2),b = 0.1. For the relation between Theorem 4.1 and random complex
dynamics, see Remark 1.5.

We now fix a complex number a as required in the proposition below and we consider a
family of small perturbations of the multimap (22, az?). In the following we will see that
for a typical value of the perturbation parameter, the 2-dimensional Lebesgue measure of
the Julia set of the corresponding semigroup is positive.

Proposition 4.2. Let A = {a € C: |a| # 0,1, and |2+ a+ £| # 4}. Let a € A be a
point. For each b € C, let fy1(z) := az® (independent of b) and fy2(z) := (2 — b)* + b and
let fy :== (fo1, fo2) € P2 For each b € C, let Gy := {(fp1, fo2). Then there exists an open
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neighborhood U of 0 in C such that {f,}vev is a holomorphic family in Epb(2) satisfying
Setting (x) with base point 0 and all of the following hold.

(1) The family { f,}vev satisfies the analytic transversality condition, the strong transver-
sality condition and the transversality condition.

(2) For Lebg-a.e. b€ U, Leby(J(Gy)) > 0.

(3) For each b € U, let hy be the conjugacy map of the form hy(w, z) = (w, hy(w, 2))
between fo = J(fo) — J(fo) and fo : J(fy) — J(fy) as in Setting (). Let p be
the s(0)-conformal measure on J(fo) for fo. Then for Lebs-a.e. b € U, the Borel
probability measure (hy),(1) on J(Gy) is absolutely continuous with respect to Lebsy
with L? density.

Proof. 1t is easy to see that P*(Gg) = {0}. Therefore f, € Epb(2). By Lemma 2.12, there
exists an open neighborhood U of 0 such that for each b € U, f, € Epb(2). By Remark 3.4,
shrinking U if necessary, for each b € U, there exists a unique conjugacy map f, of the
form hy(w,z) = (w, hy(w, 2)) between fo = J(fo) — J(fo) and f, : J(fy) — J(f) as in

Setting (), and b — hy(w, 2),b € U, is holomorphic for each (w,z) € J(fy). It is easy to
see that J(Gy) is equal to the closed annulus between J(fy1) = {z € C: |z| = 1/|a|} and
J(fo2) ={z € C:|z] =1}, and that

foi (J(Go)) N fo3(J(Go)) = {z € T |2 = a2} = fo ! (J(f02)) = foz (J(for))-
Therefore,
(4.16) {<w7z>w/7 Zl) S J(f0)2 W 7£ Wiaﬁo(wa Z) - EO(“}:?Z/) = 0}
C{(12%,2,21%°,2) i z2=2 e {w e C: |w|=|a|72}}.

By Corollary 3.25, for each z € {w € C: |w| = |a|_%},

O(hy(21%°, 2) — hy(12%°, 2)) 1 1
ob b0 2z 2za
Since a € A, it is easy to see that for each z € {w € C : |w| = |a|"2}, 1 — + — 5= # 0.
Therefore, for each z € {w € C: |w| = |a|*%},
8(%(21”,2) —Eb(12°°,z)) 7& 0.
ob b0

Combining this with (4.16), and shrinking U if necessary, we obtain that the family { f,}yers
satisfies the analytic transversality condition. By Proposition 3.22, shrinking U if neces-
sary, the family { f; }ser satisfies the strong transversality condition and the transversality
condition. By [41, Corollary 3.19], for each b € U \ {0}, s(b) > 2. Hence, by Theorem 3.12,
statements (2) and (3) of our proposition hold. Thus, we have proved our proposition. [J

Theorem 4.3. Let a € C with |a| > 1. For each X € C, let fy1(z) := az* (independent of
A) and fr2(z) := 22+ X and let f := (fa1, fra) € P2 For each X\ € C, let Gy := (fa1, fr2)-
Then there ezists an open neighborhood U of 0 in C such that {fa}rev is a holomorphic
family in Epb(2) satisfying Setting (%) with base point 0 and all of the following hold.
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(1) The family { fr}rev satisfies the analytic transversality condition, the strong transver-
sality condition and the tmnsversalz’ty condition.

(2) For Lebg-a.e. A € U, Leby(J(Gy)) >

(3) For each A € U, let hy be the conjugacy map of the form hy(w,z) = (w, ha(w, 2))
between fo : J(fo) — J(fo) and fx : J(fr) — J(f,\) as in Setting (*) (with \g = 0).
Let ju be the s(0)-conformal measure on J(fo) for fo. Then for Leby-a.e. A € U, the
Borel probability measure (hy).(p) on J(Gy) is absolutely continuous with respect
to Leby with L? density.

Proof. 1t is easy to see that P*(Gy) = {0} C F(Gjp). Therefore fy € Epb(2). By Lemma 2.12,
there exists an open neighborhood U of 0 such that for each A € U, f\ € Epb(2). By Re-
mark 3.4, shrinking U if necessary, for each A € U, there exists a unique conjugacy map
hy of the form hy(w, z) = (w, ha(w, 2)) between fo = J(fo) — J(fo) and fy : J(fr) — J(fx)
as in Setting (%) with \g = 0, and A +— hy(w, 2) is holomorphic. It is easy to see that
J(Gy) is equal to the closed annulus between J(fp1) = {# € C : |z| = 1/|a|} and
J(fo2) = {z € C: |z| = 1}, and that f;(J(Go)) N fo3(J(Go)) = {z € C : |2] =
jal =2} = fo1 (J(fo2)) = f5,5(J(fou)). Therefore,

(4 17) {(w,z,w', Zl) € ‘](f~0)2 FWi 7é WIDEO(W’ Z) - ED(“/?Z,) = 0}
. C{(12°,2,21°,2) : 2 =2 € {w € C : |w| = |a| 2 }}.

1

By Corollary 3.26, we obtain that for each z € Jy(fo) = {w € C : Jw| = |a| "2},

Oh (21, 2) -1
O\ —o 227
and for each z € J12oo(f0) ={weC:|uw = ]a|_%},
Ohy(12%°, z) - >
2 A=0 - nz; fo 12001, (2 ; 2"az H]}l fo 1200, (2)
Therefore, for each z € {w € C: |w| = |a|’%},
‘aﬁ,\(ﬂ“’,z) ~ Lt and ‘aﬁA(lzm,z) - 1|a| !
N | 2 x| =2
Thus, for each z € {w € C: |w| = |a|_%},
Oha(21®,2)| (127, 2) 40,
O\ \—0 O\ V=0

Combining it with (4.17), and shrinking U if necessary, we obtain that the family { fy}iev
satisfies the analytic transversality condition. By Proposition 3.22, shrinking U if neces-
sary, the family {f\} cv satisfies the strong transversality condition and the transversality
condition. By [41, Corollary 3.19], for each A € U\ {0}, s(\) > 2. Hence, by Theorem 3.12,
statements (2) and (3) of our theorem hold. Thus, we have proved our theorem. O
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Corollary 4.4. Let a € C with |a| > 1. Let V be an open subset of C2. Let \g € V. Let
{fx = (fa1, Fr2)baev be a holomorphic family in Exp(2) NP2, Suppose that there exists an
open neighborhood W of 0 in C and a holomorphic embedding n : W — V with n(0) = Ao
such that for each ¢ € W, fy)(2) = (az?, 2% + ¢). Then there exists an open neighborhood
U of Ao in V such that {fr}rev is a holomorphic family in Epb(2) satisfying Setting (x)
with base point g and all of the following hold.

(1) The family { fr} ev satisfies the analytic transversality condition, the strong transver-
sality condition and the transversality condition.

(2) For Lebgg-a.e. A € U, Lebo(J(Gy)) > 0.

(3) For each A € U, let hy be the conjugacy map of the form hy(w, z) = (w, hy(w, 2))
between fr, = J(fr,) — J(fao) and fr : J(fr) — J(fr) as in Setting (x). Let p
be the s(Xo)-conformal measure on J(fx,) for fx,. Then for Lebyg-a.e. A € U, the
Borel probability measure (hy).(n) on J(Gy) is absolutely continuous with respect
to Leby with L? density.

Proof. By Theorem 4.3, there exists an open neighborhood W, of 0 in C such that {(az?, 22+
¢) }eew, is a holomorphic family in Epb(2) satisfying the analytic transversality condition.
Hence, by Lemma 3.29, there exists an open disk neighborhood U of )y in C¢ such that
{f>}rev is a holomorphic family in Epb(2) satisfying the analytic transversality condition,
the strong transversality condition and the transversality condition. For each A € U, we
set () = f\ € Epb(2) N P3. By [41, Corollary 3.19],

{9 = (91,92) € Epb(2) NP} : d(g) < 2}
= {(a1(z —b)* + b, az(z — b)> +b) : a,a € C\ {0},b € C}.

Let A := {(a;(z—0)*+b,a3(2 —b)?+b) : a;,ay € C\{0},b € C}. Then A is a holomorphic
subvariety of Epb(2)NP2. Hence W' (A) is a proper holomorphic subvariety of U. Therefore
Lebog({A € U : s(\) < 2}) = 0. Thus, by Theorem 3.12, statements (2) and (3) of our
corollary hold. O

From Corollary 4.4 we immediately obtain the following.

Corollary 4.5. For each a € C with |a| # 0,1, there exists an open neighborhood Y, of
(az?,2?) in P? such that {g = (g1, g2) } gev, is a holomorphic family in Epb(2)NPs satisfying
Setting (x) with base point (az?, z?) and all of the following hold.
(1) The family {g = (91, 92)}4ev, satisfies the analytic transversality condition, the
strong transversality condition and the transversality condition.
(2) For a.e. g = (g1,92) € Y, with respect to the Lebesgue measure on P3,
Leb2(J(<gl, 92>)) > 0.
(3) Let Ao = (az?,2%) € Y, and for each g = (g1,92) € Ya, let h, be the conjugacy
map of the form hy(w,z) = (w, hy(w,2)) between fr, = J(fro) — J(fr,) and f,
J(f,) — J(f,) as in Setting (x). Let u be the s(\o)-conformal measure on J(fy,)
for f,\o. Then for a.e. g € Y, with respect to the Lebesgue measure on Pz, the Borel

probability measure (hy).(1t) on J({g1,g2)) is absolutely continuous with respect to
Leby with L? density.
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Remark 4.6. For an a € C with |a] # 0,1, J((az?, 2?)) is equal to the closed annulus
between {w € C : |w| =1} and {w € C: |w| = |a|™'}, thus int(J({az?, 2%))) # 0. However,
regarding Corollary 4.5, it is an open problem to determine for any other parameter value
(91,92) € Y, with Leba(J({91,92))) > 0, whether int(J({g1,92))) = @ or not. (By [31,
Theorem 2.15], at least we know that for each (v1,72) € Ya, J({71,72)) is connected.) Let
a € (0,1) C R. It is easy to see that for a small € > 0, setting g1.(z) = a(z + €)* — ¢
and go(2) = 22, we have J(g1c) = {w € C: |lw+¢€| =a'}, J(g) = {z € C: |w| = 1},
Bl (171 —6) < 1y () and ol 2y (11,0 =) gy iy (1,07 —e) € 10~ ]
Thus for each n € N with n > 3 there exists a small neighborhood V,, of the above (g1, g2)
in'Y, such that for each (y1,72) € V., F({71,72)) has at least n connected components and
J((71,72)) is not a closed annulus. Since € > 0 can be taken arbitrary small, we can deduce
that for any a € R with a > 0,a # 1, for each neighborhood W of (az? 2%) in Y, and
for each n € N with n > 3, there exists a non-empty open subset W,, of W such that for
each (y1,72) € Wi, F((71,72)) has at least n connected components and J((y1,72)) is not
a closed annulus. A similar argument shows that for any a € C with |a| # 0,1, for each
neighborhood W of (az%, 2%) in'Y, there exists a non-empty open subset 1474 of W such that
for each (y1,72) € W, F((y1,72)) has at least three connected components and J((y1,72))
s not a closed annulus.

We now consider families of systems of affine maps.

Remark 4.7. Let m > 2. For each j = 1,...,m, let g;(z) = a;z + b;, where a;,b; €
C,la;] > 1. Let G = (g1,...,gm). Since |a;| > 1, co € F(G). Hence, by (1.1), J(G) is
a compact subset of C which satisfies J(G) = U, 9; '(J(@)). Since g;* is a contracting
similitude on C, it follows that J(G) is equal to the self-similar set constructed by the family
{g7%, ..., 91} of contracting similitudes. For the definition of self-similar sets, see [4, 5, 9].
Note that §(g1, ..., gm) is equal to the unique solution of the equation Y ., |a;|™" =1,t >
0. Thus 6(g1,...,gm) is the similarity dimension of {g;",...,g'}. Conversely, any self-
similar set constructed by a finite family {hy,..., hy} of contracting similitudes on C is

equal to the Julia set of the rational semigroup (hy',... h ).

Theorem 4.8. Let m € N with m > 2. For each i = 1,...,m, let g;(z) = a;z + b;, where
a; € C,la;| > 1, b; € C. Let G :=(g1,-..,gm). We suppose all of the following conditions.
(i) For each (i,j) with i # j and g;'(J(G)) N g; ' (J(G)) # 0, there exists a number

a;; € {1,...,m} such that

() N e € {0 )
(i) If 4, j, k are mutually distinct elements in {1, ... ,77;]}, then
(g ' (J(G) N g ' (J(G))) C F(G).
(iii) For each (j,k) with j # k, g <ai]1) € F(G).
Then, there ezists an open neighborhood U of (g1,...,9m) € (Aut(C))™ such that {y =

(Y1, -+ -y Ym) }yev @S @ holomorphic family in Exp(m) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition.
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Proof. We first note that for each j, J(g;) = {a_fjl}. By conditions (i) and (iii), o; # i

for each (i,7) with ¢ # j. By Lemma 2.9 and Remark 3.4, there exists a small open
neighborhood U of (g1, ..., gm) in (Aut(C))™ such that {y},cv is a holomorphic family in
Exp(m) satisfying Setting (x) with base point 7 = (g1, ..., gm) and letting h., h,, G, be as
in Setting (x), the map v +— h,(w, 2),7 € U, is holomorphic. We shall prove the following
claim.

Claim 1: If i # j and 2 € g; '(J(G)) N g; ' (J(G)), then

(4.18) vw<h'y(i0‘§;7 %) — E,(joz;??, ZO))|7=70 # 0.

In order to prove Claim 1, let i # j and 2z € g; '(J(G)) N gj_l(J(G)). To show (4.18),
by conjugating G by a map z +— z — a:fil, we may assume that b; = 0. Let V be a small

open neighborhood of 0 in C and let A :={(g1,...9i-1,9 + A2, gix1, - - -, Gm) }rev. For this

holomorphic family in Exp(m), let hg,ﬁg be the conjugating maps as in Setting () with

base point \g = 0. By Corollary 3.26 and that b; = 0, we have
—0 . —0 , .

8h/\(za§§’,20) —20 d Oh,(jass, o)

Ji?
= = 0.
oA

an
A=0 a; o\

A=0
By (iii), we have zy # 0. Therefore,
-0, —0, .
ah/\(zaff, 20) B th(]a;?f, 20) 40
2 A=0 2 A=0 '

Thus, we have proved Claim 1. From this claim and from Lemma 3.28, shrinking U if
necessary, we obtain that {y},cy satisfies the analytic transversality condition, the strong
transversality condition and the transversality condition. Thus we have proved Theo-
rem 4.8. U

Remark 4.9. Regarding Theorem 4.8, even if we replace “Aut(C)” by “Aut(@) 7 we obtain
similar results by using Lemma 3.29.

We give some examples to which we can apply Theorem 4.8. It seems true that those
examples have not been dealt with explicitly in any literature of contracting IFSs with
overlaps.

Example 4.10. Let g1(2) = 2z and go(2) = 22— 1. Let G = (g1, g2). Then J(G) = [0,1]. It
is easy to see that (g1, 92) satisfies the assumptions of Theorem 4.8. Moreover, §(g1, gs) =
HD(J(G)) =1 < 2. By Theorems 4.8, 3.19 and 2.15, there exists an open neighborhood U
of (g1, 92) in (Aut(C))? and a subset A of U with HD(U \ A) < HD(U) = 8 such that (1)
{7 = (m,7%) }rev is a holomorphic family in Exp(2) satisfying the analytic transversality
condition, the strong transversality condition and the transversality condition, and (2) for

each v = (71,72) € A, HD(J({11,72))) = d(71,72) < 2.

Example 4.11. Let py,p2,p3 € C be such that pipaps makes an equilateral triangle. For
each i = 1,2,3, let g;(z) = 2(z — pi) + pi. Let G = (91,92, 93). Then J(G) is equal to
the Sierpinski gasket. It is easy to see that (g1, go,g3) satisfies the assumptions of The-

orem 4.8. Moreover, 6(g1,92,93) = HD(J(G)) = }gig < 2. By Theorems 4.8, 3.19 and
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2.15, there exists an open neighborhood U of (g1, g2, 93) in (Aut(C))? and a subset A of
U with HD(U \ A) < HD(U) = 12 such that (1) {y = (m,%2,73)}}ev is a holomor-
phic family in Exp(3) satisfying the analytic transversality condition, the strong transver-
sality condition and the transversality condition, and (2) for each v = (y1,72,73) € A,

HD(J(WL’YZ,’Y:@))) = 5(’71,’72,’73) < 2.

Remark 4.12. Regarding Example 4.11, for each open neighborhood U of (g1, g2, g3) in
(Aut(C))3, there erists an open set V in U such that for each v = (71,72,73) € V,
HD(J({(71,72,73))) = d(71,72,73) < 2. However, we can show that for each open neigh-
borhood U of (g1, g2, g3) in (Aut(C))3,

HD({V = (/71772773) eU: HD(J(<71772773>)) # 5(71772773)}) > 10.

Example 4.13. For each j = 1,...,6, let p; := exp(2jmy/—1/6). Let p; := 0. For each
jg=1,...,7, let g;(z) = 3(z — p;) + pj. Let G = (g1,...,g7). Then J(G) is equal to the
Snowflake (see [9, Example 3.8.12], Figure 2). It is easy to see that (g1, ..., g7) satisfies the
assumptions of Theorem 4.8 (see Figure 2). Moreover, §(g1,...,g7) = HD(J(G)) = }ggg <
2. By Theorems 4.8, 3.19 and 2.15, there exists an open neighborhood U of (g1, ..,g7)
in (Aut(C))" and a subset A of U with HD(U \ A) < HD(U) = 28 such that (1) {y =
(71, - - -Y7) }yev ts a holomorphic family in Exp(7) satisfying the analytic transversality con-
dition, the strong transversality condition and the transversality condition, and (2) for each

Y=,...,77) € A, HD(J((y1,--577))) = 0(y1, -, v7) < 2.

Example 4.14. For each j = 1,...,5, let p; := exp(2jn/—1/5). For each j = 1,...,5,
let gj(z) = ﬁg(z —pj)+p;. Let G = (g1,...,95). Then J(G) is equal to the Pentakun (]9,
Example 3.8.11], Figure 2). It is easy to see that (g1,...,gs) satisfies the assumptions of

Theorem 4.8 (see Figure 2). Moreover, 6(g1,...,g5) = HD(J(G)) = bg}ogi ; < 2. By The-
55

orems 4.8, 3.19 and 2.15, there exists an open neighborhood U of (g1, ..., gs) in (Aut(C))®
and a subset A of U with HD(U \ A) < HD(U) = 20 such that (1) {v = (71,---75) }ev 1S
a holomorphic family in Exp(5) satisfying the analytic transversality condition, the strong
transversality condition and the transversality condition, and (2) for eachy = (y1,...,75) €

A HD(T (11 35))) = 671, 1 75) < 2.

Example 4.15. There are infinitely many analogues of Sierpinski gasket or Pentakun which
are called Hexakun, Heptakun, Octakun and so on (see [9, page 119]). As in Example 4.1/,
for each such analogue, we obtain similar results on the family of small perturbations of the
system of the analogue.

FIGURE 2. (From left to right) Snowflake, Pentakun
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Remark 4.16. Regarding Examples 4.10—4.15, even if we replace “Aut(C)” by “Aut(@) 7
we obtain similar results by using Lemma 3.29.

As we see in Examples 4.10-4.15 and Remark 4.16, we have many examples to which we
can apply Theorem 4.8.

5. REMARKS

We finally give a remark.

Remark 5.1. We can prove similar results to those in sections 3, 4 (especially Theo-
rems 3.12, 3.19, Proposition 3.22, Lemma 3.24, Theorem 4.8) for a family {®}rcy =
{2 ticrbacu of hyperbolic conformal iterated function systems (CIFSs) on an open subset
V of RP(p € N) without the open set condition, where @} : V — V is a contracting con-
formal map, and U is a bounded open subset of R%, d > p. For each A\ € U, we consider
the limit set J(®*) of ®*. In the above setting, the definition of the transversality condi-
tion is modified such that the right hand side of (3.1) is replaced by CyrP. The definition
of the strong transversality condition is modified such that the right hand side of (3.5) is
replaced by C|rP~% If p = 2 and each ) is a holomorphic map, then we can define “an-
alytic transversality family” just like Definition 3.21. The number “2" (which represents

the dimension of the phase space C) in results of the previous sections are replaced by the
number p. These results will be stated and will be proved in the authors’ upcoming paper

[42].
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