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Abstract: We investigate the random complex dynamics and the dynamics of semigroups

of rational maps on Ĉ. We see that in the random complex dynamics, the chaos easily

disappears. We investigate the iteration of the transition operator M acting on the space

of continuous functions on Ĉ. It turns out that under certain conditions, each finite linear

combination ϕ of unitary eigenvectors of M can be regarded as a complex analogue of the

devil’s staircase. By using Birkhoff’s ergodic theorem and potential theory, we investigate

the non-differentiability and the pointwise Hölder exponent of ϕ. The contents of this

presentation are included in my preprint “Random complex dynamics and semigroups of

holomorphic maps” which is available from my webpage above or from

http://arxiv.org/abs/0812.4483. Date: May 18, 2009.
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1 Introduction
First, we consider the random dynamics on R.

• Let h1(x) = 3x and h2(x) = 3(x − 1) + 1 (x ∈ R).
• We take an initial value x ∈ R, and at every step, we choose the map h1 with probability

1/2 and h2 with probability 1/2, and map the point under the chosen map hj .

• Let T+∞(x) be the probability of tending to +∞ starting with the initial value x ∈ R.

Then, T+∞ is continuous on R, varies only on the Cantor middle third set (which is a thin

fractal set), and monotone.

T+∞ is called the devil’s staircase. This is a typical example of singular functions.
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We will consider a complex analogue of this story.
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2 Preliminaries
Definition 2.1.

• We denote by Ĉ := C ∪ {∞} ∼= S2 the Riemann sphere and denote by d the spherical

distance on Ĉ.

• We set Rat:={h : Ĉ → Ĉ | h is a non-const. rational map} endowed with the distance η

defined by η(f, g) := supz∈Ĉ d(f(z), g(z)).
• We set P := {g : Ĉ → Ĉ | g is a polynomial map, deg(g) ≥ 2} endowed with the

relative topology from Rat.

• Note that Rat and P are semigroups where the semigroup operation is functional

composition.

• A subsemigroup G of Rat is called a rational semigroup.

• A subsemigroup G of P is called a polynomial semigroup.

Definition 2.2. Let G be a rational semigroup.

• We set F (G) := {z ∈ Ĉ | ∃ nbd U of z s.t. G is equicontinuous on U}.
This F (G) is called the Fatou set of G.

• We set J(G) := Ĉ \ F (G). This is called the Julia set of G.

• If G is generated by {h1, . . . , hm} as a semigroup, we write G = 〈h1, . . . , hm〉.
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Lemma 2.3. Let G be a rational semigroup. Then F (G) is open and J(G) is compact.

Moreover, for each h ∈ G,

h(F (G)) ⊂ F (G) and h−1(J(G)) ⊂ J(G).

However, the equality h−1(J(G)) = J(G) does not hold in general.

Remark 2.4. The fact we do not have h−1(J(G)) = J(G) is the difficulty in this theory.

However, we ‘utilize’ this fact for the study of the random complex dynamics.

Lemma 2.5. If a rational semigroup G is generated by a compact subset Λ of Rat, then

J(G) =
∪

g∈Λ g−1(J(G)). In particular, if G = 〈h1, . . . , hm〉, then

J(G) =
∪m

j=1 h−1
j (J(G)). This property of J(G) is called the backward self-similarity.

Definition 2.6. For a topological space X, we denote by M1(X) the space of all Borel

probability measures on X endowed with the weak topology.

Remark 2.7. If X is a compact metric space, then M1(X) is a compact metric space.

From now on, we take a τ ∈ M1(Rat) and we consider the (i.i.d.) random dynamics on Ĉ
such that at every step we choose a map h ∈ Rat according to τ.
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Definition 2.8. Let τ ∈ M1(Rat).

(1) We set C(Ĉ) := {ϕ : Ĉ → C | ϕ is conti.} endowed with the sup. norm ‖ ‖∞.

(2) Let Mτ : C(Ĉ) → C(Ĉ) be the operator defined by Mτ (ϕ)(z) :=
∫
Rat ϕ(g(z)) dτ(g),

where ϕ ∈ C(Ĉ), z ∈ Ĉ.

(3) We set C(Ĉ)∗:= {ρ : C(Ĉ) → C | ρ is linear and continuous} endowed with the weak

topology.

(4) Let M∗
τ : C(Ĉ)∗ → C(Ĉ)∗ be the dual of Mτ . That is, M∗

τ (ρ)(ϕ) := ρ(Mτ (ϕ)) for

each ρ ∈ C(Ĉ)∗ and for each ϕ ∈ C(Ĉ).
Note that M∗

τ (M1(Ĉ)) ⊂ M1(Ĉ).
(5) We set

Fmeas(τ) := {µ ∈ M1(Ĉ) | ∃ nbd B of µ in M1(Ĉ) s.t.

{(M∗
τ )n|B : B → M1(Ĉ)}n∈N is equicontinuous on B}.

(6) We set Jmeas(τ) := M1(Ĉ) \ Fmeas(τ).
(7) Let Uτ be the space of all finite linear combinations of unitary eigenvectors of

Mτ : C(Ĉ) → C(Ĉ), where an eigenvector is said to be unitary if the absolute value of

the corresponding eigenvalue is 1.

(8) Let B0,τ := {ϕ ∈ C(Ĉ) | Mn
τ (ϕ) → 0 as n → ∞}.

(9) Let τ̃ := ⊗∞
j=1τ ∈ M1((Rat)N).

(10) Let Gτ be the rational semigroup generated by supp τ.
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The following is the key to investigating the random complex dynamics.

Definition 2.9. Let G be a rational semigroup. We set

Jker(G) :=
∩

h∈G

h−1(J(G)).

This is called the kernel Julia set of G.

Remark 2.10. Jker(G) is a compact subset of J(G). Moreover, for each h ∈ G,

h(Jker(G)) ⊂ Jker(G).

Lemma 2.11. Let Γ be a compact subset of P. If there exists an f0 ∈ P and a

non-empty open subset U of Ĉ such that {f0 + c | c ∈ U} ⊂ Γ, then the polynomial

semigroup G generated by Γ satisfies that Jker(G) = ∅.

The above lemma implies that from a point of view, for most τ ∈ M1(P) with compact

support, we have Jker(Gτ ) = ∅.

Question 2.12. What happens if Jker(Gτ ) = ∅?
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3 Results
Theorem 3.1 (Theorem A, Cooperation Principle). Let τ ∈ M1(Rat) be s.t. supp τ is

compact. Suppose Jker(Gτ ) = ∅ and J(Gτ ) 6= ∅. Then, we have all of the following.

(1) Fmeas(τ) = M1(Ĉ) (Chaos disappears!).

(2) B0,τ is a closed subspace of C(Ĉ) and C(Ĉ) = Uτ ⊕ B0,τ .

(3) dimC Uτ < ∞.

(4) For each ϕ ∈ Uτ and for each connected component U of F (Gτ ), ϕ|U is constant.

(5) For ∀z ∈ Ĉ, ∃Az ⊂ (Rat)N with τ̃(Az) = 1 with the following property.

– ∀γ = (γ1, γ2, . . .) ∈ Az, ∃δ = δ(z, γ) > 0 s.t. diamγn · · · γ1(B(z, δ)) → 0 as n → ∞,

where diam denotes the diameter w.r.t. the spherical distance.

(6) For τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ (Rat)N, the 2-dim. Leb. meas. of

Jγ := {z ∈ Ĉ | {γn ◦ · · · ◦ γ1}n∈N is not equiconti. on ∀nbd of z} is equal to zero.

(7) There exist at least one and at most finitely many minimal sets of Gτ in Ĉ, where we

say that a non-empty compact subset K of Ĉ is a minimal set of Gτ in Ĉ if K is

minimal in {L ⊂ Ĉ | ∅ 6= L is compact,∀g ∈ Gτ , g(L) ⊂ L} w.r.t. ⊂ .

(8) Let Lτ be the union of minimal sets of Gτ . Then ∀z ∈ Ĉ ∃Cz ⊂ (Rat)N with τ̃(Cz) = 1
s.t. ∀γ = (γ1, γ2, . . .) ∈ Cz, d(γn · · · γ1(z), Lτ ) → 0 as n → ∞.

Remark 3.2. Theorem A describes new phenomena which cannot hold in the usual

iteration dynamics of a single g ∈ Rat with deg(g) ≥ 2.
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Definition 3.3. Let τ ∈ M1(P). We set τ̃ := ⊗∞
j=1τ ∈ M1(PN). For any z ∈ Ĉ, we set

T∞,τ (z) := τ̃({γ ∈ PN | γn ◦ · · · ◦ γ1(z) → ∞ as n → ∞}),

where γ = (γ1, γ2, . . . , γn, . . .).

T∞,τ (z) is the probability of tending to ∞ ∈ Ĉ starting with the initial value z ∈ Ĉ with

respect to the random dynamics on Ĉ such that at every step we choose a map h ∈ P
according to τ.

Theorem 3.4. Let τ ∈ M1(P) be such that supp τ is compact. Suppose that

Jker(Gτ ) = ∅. Then, T∞,τ : Ĉ → [0, 1] is continuous on the whole Ĉ. Moreover, for each

connected component U of F (Gτ ), T∞,τ |U is constant. Furthermore, Mτ (T∞,τ ) = T∞,τ

and T∞,τ ∈ Uτ .

Remark 3.5. Such a function T∞,τ is called

a devil’s coliseum

provided that T∞,τ 6≡ 1. In fact, T∞,τ is a complex analogue of the devil’s staircase.

For the graph of T∞,τ , see Figure 2 (page 11) and Figure 3 (page 12).
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We now consider the non-differentiability of non-const. elements ϕ ∈ Uτ at J(Gτ ).

Theorem 3.6 (Theorem B). Let h1, h2 ∈ P and let 0 < p1, p2 < 1 with p1 + p2 = 1.

We set τ :=
∑2

i=1 piδhi ∈ M1(P). Let

P (Gτ ) :=
∪

h∈Gτ
{all critical values of h : Ĉ → Ĉ} (⊂ Ĉ).

We assume that

(a) Gτ is hyperbolic (i.e. P (Gτ ) ⊂ F (Gτ )),
(b) h−1

1 (J(Gτ )) ∩ h−1
2 (J(Gτ )) = ∅, and

(c) ∃z ∈ C s.t.
∪

h∈Gτ
{h(z)} is bounded in C.

Then, we have all of the following statements (1), (2), (3).

(1) Jker(Gτ ) = ∅, T∞,τ ∈ Uτ and T∞,τ is non-constant.

(2) dimH(J(Gτ )) < 2, where dimH denotes the Hausdorff dimension w.r.t. Euclidean dist.

(3) ∃ dense A ⊂ J(Gτ ) with dimH(A) > 0 s.t. ∀z ∈ A, ∀non-const. ϕ ∈ Uτ ,

the pointwise Hölder exponent of ϕ at z

:= inf{α ∈ R | limy→z
|ϕ(y)−ϕ(z)|

|y−z|α = ∞}

= entropy of (p1,p2)

“averaged Lyapunov exponent”
< 1

and ϕ is not differentiable at z. (av. Lyap. exp. is represented by pi, deg(hi), and an

integral related to the random Green’s functions.)
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We describe the detail of statement (3) of Theorem B.

• Let Γ = {h1, h2} and for each (γ, y) = ((γ1, γ2, . . .), y) ∈ ΓN × C, we set

Gγ(y) := lim
n→∞

1
deg(γn ◦ · · · ◦ γ1)

max{log |γn ◦ · · · ◦ γ1(y)|, 0}

• For each γ ∈ ΓN, let µγ := ddcGγ ∈ M1(Jγ) ⊂ M1(J(Gτ )), where dc := i
2π (∂ − ∂).

We set µ :=
∫
ΓN µγ dτ̃(γ) ∈ M1(J(Gτ )).

• For each γ = (γ1, γ2, . . .) ∈ ΓN, let Ω(γ) :=
∑

c Gγ(c), where c runs over all critical

points of γ1 in C.

Then, regarding (3) of Theorem B, we have the following.

(a) dimH(A) ≥ dimH(µ) =
P2

i=1 pi log deg(hi)−
P2

i=1 pi log pi
P2

i=1 pi log deg(hi)+
R

ΓN Ω(γ) dτ̃(γ)
.

(b)
entropy of (p1,p2)

“averaged Lyapunov exponent”

= −
P2

i=1 pi log pi
P2

i=1 pi log deg(hi)+
R

ΓN Ω(γ) dτ̃(γ)
.

Remark 3.7. In the proof of statement (3) of Theorem B, we use Birkhoff’s ergodic

theorem (ergodic theory), Koebe distortion theorem (function theory), and the random

Green’s functions and calculation of Lyapunov exponent (potential theory).
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4 Example

Proposition 4.1. Let h1 ∈ P be hyperbolic.

• Suppose that K(h1) is connected and intK(h1) 6= ∅, where

K(h1) := {z ∈ C | {hn
1 (z)}n∈N is bounded}.

• Let b ∈ intK(h1).
• Let d ∈ N with d ≥ 2 be s.t. (deg(h1), d) 6= (2, 2).

Then ∃c > 0 s.t. ∀a ∈ C with 0 < |a| < c,

setting h2(z) = a(z − b)d + b,

{h1, h2} satisfies the assumption of Theorem B, i.e.,

(a) G = 〈h1, h2〉 is hyperbolic,

(b) h−1
1 (J(G)) ∩ h−1

2 (J(G)) = ∅, and

(c) ∃z ∈ C s.t.
∪

h∈G{h(z)} is bounded in C.
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5 Summary

• We simultaneously develop the theory of random complex dynamics and that of the

dynamics of semigroups of holomorphic maps.

• Both fields are related to each other very deeply.

• In the random complex dynamics, the chaos easily disappears, due to the cooperation of

the generator maps.

• In the random complex dynamics, if the chaos disappears, then in the limit stage,

singular functions on the complex plane (devil’s coliseums) appear. They are complex

analogues of the devil’s staircase or Lebesgue’s singular functions. Thus, even if the

chaos disappears, we still have a kind of complexity. In fact, the chaos disappears in

“C0” sense, but the chaos may remain in “C1” sense. In this context, the pointwise

Hölder exponent of the complex singular functions are important.

• Under certain conditions, the pointwise Hölder exponent of the complex singular

functions are represented by the ratio of entropy of the given probability and the

averaged Lyapunov exponent, which can be calculated by the probability, degree of

generators, and an integral related to the random Green’s functions.
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