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Abstract

We investigate the dynamics of semigroups generated by a family of polynomial maps on
the Riemann sphere such that the postcritical set in the complex plane is bounded. The
Julia set of such a semigroup may not be connected in general. We show that for such a
polynomial semigroup, if A and B are two connected components of the Julia set, then one
of A and B surrounds the other. From this, it is shown that each connected component of
the Fatou set is either simply or doubly connected. Moreover, we show that the Julia set of
such a semigroup is uniformly perfect. An upper estimate of the cardinality of the set of all
connected components of the Julia set of such a semigroup is given. By using this, we give
a criterion for the Julia set to be connected. Moreover, we show that for any n € NU {X¢},
there exists a finitely generated polynomial semigroup with bounded planar postcritical set
such that the cardinality of the set of all connected components of the Julia set is equal to n.
Many new phenomena of polynomial semigroups that do not occur in the usual dynamics of
polynomials are found and systematically investigated.

1 Introduction

The theory of complex dynamical systems, which has its origin in the important work of Fatou and
Julia in the 1910s, has been investigated by many people and discussed in depth. In particular,
since D. Sullivan showed the famous “no wandering domain theorem” using Teichmiiller theory in
the 1980s, this subject has attracted many researchers from a wide area. For a general reference
on complex dynamical systems, see Milnor’s textbook [16] or Beardon’s textbook [3].

There are several areas in which we deal with generalized notions of classical iteration theory
of rational functions. One of them is the theory of dynamics of rational semigroups (semigroups
generated by a family of holomorphic maps on the Riemann sphere (C), and another one is the
theory of random dynamics of holomorphic maps on the Riemann sphere.

In this paper, we will discuss the dynamics of rational semigroups.

A rational semigroup is a semigroup generated by a family of non-constant rational maps
on C, where C denotes the Riemann sphere, with the semigroup operation being functional com-
position ([13]). A polynomial semigroup is a semigroup generated by a family of non-constant
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polynomial maps. Research on the dynamics of rational semigroups was initiated by A. Hinkkanen
and G. J. Martin ([13, 14]), who were interested in the role of the dynamics of polynomial semi-
groups while studying various one-complex-dimensional moduli spaces for discrete groups, and by
F. Ren’s group([48, 12]), who studied such semigroups from the perspective of random dynamical
systems. Moreover, the research on rational semigroups is related to that on “iterated function
systems” in fractal geometry. In fact, the Julia set of a rational semigroup generated by a com-
pact family has “ backward self-similarity” (cf. Lemma 3.1-2). For other research on rational
semigroups, see [19, 20, 21, 47, 22, 24, 44, 43, 45, 46], and [27]-[40].

The research on the dynamics of rational semigroups is also directly related to that on the
random dynamics of holomorphic maps. The first study in this direction was by Fornaess and
Sibony ([10]), and much research has followed. (See [4, 6, 7, 5, 11, 33, 34, 37, 38, 39, 40].)

We remark that the complex dynamical systems can be used to describe some mathematical
models. For example, the behavior of the population of a certain species can be described as the
dynamical system of a polynomial f(z) = az(1 — z) such that f preserves the unit interval and the
postcritical set in the plane is bounded (cf. [8]). It should also be remarked that according to the
change of the natural environment, some species have several strategies to survive in the nature.
From this point of view, it is very important to consider the random dynamics of such polynomials
(see also Example 1.4). For the random dynamics of polynomials on the unit interval, see [26].

We shall give some definitions for the dynamics of rational semigroups:

Definition 1.1 ([13, 12]). Let G be a rational semigroup. We set
F(G) :={z € C| G is normal in a neighborhood of z}, and J(G) := C\ F(G).

F(G) is called the Fatou set of G and J(G) is called the Julia set of G. We let (hy, ha,...) denote
the rational semigroup generated by the family {h;}. The Julia set of the semigroup generated by
a single map ¢ is denoted by J(g).

Definition 1.2.

1. For each rational map g : C — C, we set C’V( ) := {all critical values of g : C — C}.
Moreover, for each polynomial map g : C — C, we set CV*(g) := CV(g) \ {o0}.

2. Let G be a rational semigroup. We set P(G) := U, CV(g) (C C). This is called the
postcritical set of G. Furthermore, for a polynomial semigroup G, we set P*(G) := P(G)\
{oo}. This is called the planar postcritical set (or finite postcritical set) of G. We say
that a polynomial semigroup G is postcritically bounded if P*(G) is bounded in C.

Remark 1.3. Let G be a rational semigroup generated by a family A of rational maps. Then, we
have that P(G) = Uyequqray 9(Unea CV(h)), where Id denotes the identity map on C, and that
9(P(@Q)) C P(G) for each g € G. From this formula, one can figure out how the set P(G) (resp.
P*(@)) spreads in C (resp. C). In fact, in Section 2.6, using the above formula, we present a
way to construct examples of postcritically bounded polynomial semigroups (with some additional
properties). Moreover, from the above formula, one may, in the finitely generated case, use a
computer to see if a polynomial semigroup G is postcritically bounded much in the same way as
one verifies the boundedness of the critical orbit for the maps f.(z) = 22 + ¢.

Example 1.4. Let A := {h(2) = c2*(1-2)" | a,b €N, ¢ > 0, c(=% PR )a(aer)b < 1} and let G be the
polynomial semigroup generated by A. Since for each h € A, h([0,1]) C |0,1] and CV*(h) C [0,1],
it follows that each subsemigroup H of G is postcritically bounded.

Remark 1.5. It is well-known that for a polynomial g with deg(g) > 2, P*({g)) is bounded in C
if and only if J(g) is connected ([16, Theorem 9.5]).
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As mentioned in Remark 1.5, the planar postcritical set is one piece of important information re-
garding the dynamics of polynomials. Concerning the theory of iteration of quadratic polynomials,
we have been investigating the famous “Mandelbrot set”.

When investigating the dynamics of polynomial semigroups, it is natural for us to discuss the
relationship between the planar postcritical set and the figure of the Julia set. The first question
in this regard is:

Question 1.6. Let G be a polynomial semigroup such that each element g € G is of degree at
least two. Is J(G) necessarily connected when P*(G) is bounded in C?

The answer is NO.

Example 1.7 ([47]). Let G = (23, %) Then P*(G) = {0} (which is bounded in C) and J(G)
is disconnected (J(G) is a Cantor set of round circles). Furthermore, according to [31, Theorem
2.4.1], it can be shown that a small perturbation H of G still satisfies that P*(H) is bounded in
C and that J(H) is disconnected. (J(H) is a Cantor set of quasi-circles with uniform dilatation.)

Question 1.8. What happens if P*(G) is bounded in C and J(G) is disconnected?
Problem 1.9. Classify postcritically bounded polynomial semigroups.

In this paper, we show that if G is a postcritically bounded polynomial semigroup with dis-
connected Julia set, then co € F(G) (cf. Theorem 2.20-1), and for any two connected components
of J(G), one of them surrounds the other. This implies that there exists an intrinsic total order
“ <7 (called the “surrounding order”) in the space Jg of connected components of J(G), and
that every connected component of F/(G) is either simply or doubly connected (cf. Theorem 2.7).
Moreover, for such a semigroup G, we show that the interior of “the smallest filled-in Julia set”
K (@) is not empty, and that there exists a maximal element and a minimal element in the space
Jo endowed with the order < (cf. Theorem 2.20). From these results, we obtain the result that
for a postcritically bounded polynomial semigroup G, the Julia set J(G) is uniformly perfect, even
if G is not generated by a compact family of polynomials (cf. Theorem 2.22).

Moreover, we utilize Green’s functions with pole at infinity to show that for a postcritically
bounded polynomial semigroup G, the cardinality of the set of all connected components of J(G)
is less than or equal to that of J(H), where H is the “real affine semigroup” associated with
G (cf. Theorem 2.12). From this result, we obtain a sufficient condition for the Julia set of a
posteritically bounded polynomial semigroup to be connected (cf. Theorem 2.14). In particular,
we show that if a postcritically bounded polynomial semigroup G is generated by a family of
quadratic polynomials, then J(G) is connected (cf. Theorem 2.15). The proofs of the results in
this and the previous paragraphs are not straightforward. In fact, we first prove (1) that for any
two connected components of J(G) that are included in C, one of them surrounds the other; next,
using (1) and the theory of Green’s functions, we prove (2) that the cardinality of the set of all
connected components of J(G) is less than or equal to that of J(H), where H is the associated
real affine semigroup; and finally, using (2) and (1), we prove (3) that co € F(G), int(K(G)) # 0,
and other results in the previous paragraph.

Moreover, we show that for any n € NU {Rg}, there exists a finitely generated, postcritically
bounded, polynomial semigroup G such that the cardinality of the set of all connected components
of J(G) is equal to n (cf. Proposition 2.26, Proposition 2.28 and Proposition 2.29). A sufficient
condition for the cardinality of the set of all connected components of a Julia set to be equal to Ry is
also given (cf. Theorem 2.27). To obtain these results, we use the fact that the map induced by any
element of a semigroup on the space of connected components of the Julia set preserves the order
< (cf. Theorem 2.7). Note that this is in contrast to the dynamics of a single rational map h or a
non-elementary Kleinian group, where it is known that either the Julia set is connected, or the Julia
set has uncountably many connected components. Furthermore, in Section 2.6 and Section 2.4,
we provide a way of constructing examples of postcritically bounded polynomial semigroups with
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some additional properties (disconnectedness of Julia set, semi-hyperbolicity, hyperbolicity, etc.)
(cf. Proposition 2.40, Theorem 2.43, Theorem 2.45). For example, by Proposition 2.40, there exists
a 2-generator postcritically bounded polynomial semigroup G = (hq, ho) with disconnected Julia
set such that h; has a Siegel disk.

As we see in Example 1.4 and Section 2.6, it is not difficult to construct many examples, it
is not difficult to verify the hypothesis “postcritically bounded”, and the class of postcritically
bounded polynomial semigroups is very wide.

Throughout the paper, we will see many new phenomena in polynomial semigroups that do not
occur in the usual dynamics of polynomials. Moreover, these new phenomena are systematically
investigated.

In Section 2, we present the main results of this paper. We give some tools in Section 3. The
proofs of the main results are given in Section 4.

There are many applications of the results of postcritically bounded polynomial semigroups in
many directions. In the sequel [36], by using the results in this paper, we investigate the fiberwise
(sequencewise) and random dynamics of polynomials and the Julia sets. We present a sufficient
condition for a fiberwise Julia set to be of measure zero, a sufficient condition for a fiberwise Julia
set to be a Jordan curve, a sufficient condition for a fiberwise Julia set to be a quasicircle, and
a sufficient condition for a fiberwise Julia set to be a Jordan curve which is not a quasicircle.
Moreover, using uniform fiberwise quasiconformal surgery on a fiber bundle, we show that for a
G € Gyis, there exist families of uncountably many mutually disjoint quasicircles with uniform
dilatation which are parameterized by the Cantor set, densely inside J(G). In the sequel [37],
we classify hyperbolic or semi-hyperbolic postcritically bounded compactly generated polynomial
semigroups, in terms of the random complex dynamics. It is shown that in one of the classes,
for almost every sequence v, the Julia set J, of v is a Jordan curve but not a quasicircle, the
unbounded component of C \ J4 is a John domain, and the bounded component of C\ J, is not
a John domain. Moreover, in [37, 36], we find many examples with this phenomenon. Note that
this phenomenon does not hold in the usual iteration dynamics of a single polynomial map g with
deg(g) > 2. In the sequel [38, 42], we investigate the Markov process on C associated with the
random dynamics of polynomials and we consider the probability T, (2) of tending to co € C
starting with the initial value z € C. Applying many results of this paper, it will be shown in
[42] that if the associated polynomial semigroup G is postcritically bounded and the Julia set is
disconnected, then the function 77, defined on C has many interesting properties which are similar
to those of the Cantor function. In fact, under certain conditions, Th is continuous on C and varies
precisely on the Julia set, of which Hausdorff dimension is strictly less than two. (For example,
if we consider the random dynamics generated by two polynomials hy = g% hy := g3, where
g1(z) == 22 —1, g2(2) == 22/4, then T, is continuous on C and T varies precisely on the Julia set
(Figure 1) of the semigroup generated by hi, ha. See [38, 33].) Such a kind of “singular functions
on the complex plane” appear very naturally in random dynamics of polynomials, and the results
of this paper (for example, the results on the space of all connected components of a Julia set) are
the keys to investigating that. (The above results have been announced in [33, 34, 39].)

Moreover, as illustrated before, it is very important for us to recall that the complex dynamics
can be applied to describe some mathematical models. For example, the behavior of the population
of a certain species can be described as the dynamical systems of a polynomial i such that A
preserves the unit interval and the postcritical set in the plane is bounded. When one considers
such a model, it is very natural to consider the random dynamics of polynomial with bounded
posteritical set in the plane (see Example 1.4).

In the sequel [24], we give some further results on postcritically bounded polynomial semigroups,
by using many results in this paper and [36, 37]. Moreover, in the sequel [35], we define a new kind
of cohomology theory, in order to investigate the action of finitely generated semigroups (iterated
function systems), and we apply it to the study of the dynamics of postcritically bounded finitely



Postcritically Bounded Polynomial Semigroups I 5

generated polynomial semigroups G. In particular, by using this new cohomology theory, we can
describe the space Jg of connected components of Julia sets of G, we can give some estimates
on the cardinality of Jg, and we can give a sufficient condition for the cardinality of the space
of connected components of the Fatou set of G to be infinity. In [38, 40, 41], we investigate the
random complex dynamics and the dynamics of transition operator, by developing the theory of
random complex dynamics and that of dynamics of rational semigroups, simultaneously. It is
shown that regarding the random dynamics of complex polynomials, generically the chaos of the
averaged system disappears due to the cooperation of the generators, even though each map itself
in the system has a chaotic part. We call this phenomenon “cooperation principle”. Moreover,
we see that under certain conditions, in the limit state, complex analogues of singular functions
(continuous functions on C which vary only on the Julia set of associated rational semigroup G)
naturally appear. The above function T, is a typical example of this complex analogue of singular
function.

Acknowledgement: The author thanks R. Stankewitz for many valuable comments.

2 Main results

In this section we present the statements of the main results. Throughout this paper, we deal with
semigroups G that might not be generated by a compact family of polynomials. The proofs are
given in Section 4.

2.1 Space of connected components of a Julia set, surrounding order

We present some results concerning the connected components of the Julia set of a postcritically
bounded polynomial semigroup. The proofs are given in Section 4.1.
The following theorem generalizes [47, Theorem 1].

Theorem 2.1. Let G be a rational semigroup generated by a family {hy}rea. Suppose that there
exists a connected component A of J(G) such that $A > 1 and Jycp J(hr) C A. Moreover, suppose
that for any A € A such that hy is a Mobius transformation of finite order, we have h;l(A) C A
Then, J(G) is connected.

Definition 2.2. We set Rat : = {h : C — C | h is a non-constant rational map} endowed with
the topology induced by uniform convergence on C with respect to the spherical distance. We set
Poly := {h : C — C | h is a non-constant polynomial} endowed with the relative topology from
Rat. Moreover, we set Polyges>2 := {g € Poly | deg(g) > 2} endowed with the relative topology
from Rat.

Remark 2.3. Let d > 1, {p,}nen a sequence of polynomials of degree d, and p a polynomial.
Then, p, — p in Poly if and only if the coefficients converge appropriately and p is of degree d.

Definition 2.4. Let G be the set of all polynomial semigroups G with the following properties:
e cach element of G is of degree at least two, and
e P*(G) is bounded in C, i.e., G is postcritically bounded.
Furthermore, we set G.on, = {G € G | J(G) is connected} and Gy;s = {G € G | J(G) is disconnected}.

Notation: For a polynomial semigroup G, we denote by J = Jg the set of all connected com-
ponents J of J(G) such that J C C. Moreover, we denote by J = Jg the set of all connected
components of J(G).
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Remark 2.5. If a polynomial semigroup G is generated by a compact set in Polygeg>2, then
oo € F(G) and thus 7 = J.

Definition 2.6. For any connected sets K1 and K5 in C, “K; < K5” indicates that K1 = K», or
K is included in a bounded component of C\ Ks. Furthermore, “K; < K" indicates K1 < Ky
and K7 # Ks. Note that “<” is a partial order in the space of all non-empty compact connected
sets in C. This “<” is called the surrounding order.

Theorem 2.7. Let G € G (possibly generated by a non-compact family). Then we have all of the
following.

1. (J, <) is totally ordered.
2. Each connected component of F(QG) is either simply or doubly connected.

3. For any g € G and any connected component J of J(G), we have that g=1(J) is connected.
Let g*(J) be the connected component of J(G) containing g=*(J). If J € T, then g*(J) € J.
If Ji,Jo € J and J; < Jo, then g~ (J1) < g7 1 (J2) and g*(J1) < g*(Ja).

For the figures of the Julia sets of semigroups G € Gy;s, see figure 1 and figure 2.

Figure 1: The Julia set of G = (g2, 93), where g1(2) := 22 — 1, ga(2) = %2. G € Guis, G is
hyperbolic, and #(Jg) > No.

2.2 Upper estimates of #(.7)

Next, we present some results on the space J and some results on upper estimates of ﬂ(j ). The
proofs are given in Section 4.2 and Section 4.3.

Definition 2.8.
1. For a polynomial g, we denote by a(g) € C the coefficient of the highest degree term of g.

2. We set RA := {az +b € R[z] | a,b € R,a # 0} endowed with the topology such that,
an + b, — ax + b if and only if a,, — a and b,, — b. The space RA is a semigroup with the
semigroup operation being functional composition. Any subsemigroup of RA will be called
a real affine semigroup. We define a map ¥ : Poly — RA as follows: For a polynomial g €
Poly, we set ¥(g)(z) := deg(g)x + log|a(g)].

Moreover, for a polynomial semigroup G, we set U(G) := {¥(g) | g € G} (C RA).
3. We set R := R U {£o0} endowed with the topology such that {(r,+00]},cr makes a fun-

damental neighborhood system of +o0o, and such that {[—o0,7)},er makes a fundamental
neighborhood system of —oo. For a real affine semigroup H, we set

M(H):={z €R|3h € H,h(z) =z, [W(z)] > 1} (C R),

where the closure is taken in the space R. Moreover, we denote by M g the set of all connected
components of M(H).
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4. We denote by  : RA — Poly the natural embedding defined by n(z — az+b) = (z — az+b),
where z € R and z € C.

5. We define a map © : Poly — Poly as follows. For a polynomial g, we set ©(g)(z) = a(g)z3°8),
Moreover, for a polynomial semigroup G, we set ©(G) := {O(g) | g € G}.

Remark 2.9.

1. The map ¥ : Poly — RA is a semigroup homomorphism. That is, we have ¥(g o h) =
U(g)oW¥(h). Hence, for a polynomial semigroup G, the image ¥(G) is a real affine semigroup.
Similarly, the map © : Poly — Poly is a semigroup homomorphism. Hence, for a polynomial
semigroup G, the image ©(G) is a polynomial semigroup.

2. The maps ¥ : Poly — RA, n: RA — Poly, and © : Poly — Poly are continuous.

Definition 2.10. For any connected sets M; and M5 in R, “My <, M5” indicates that M7 = My,
or each (x,y) € My x M, satisfies x < y. Furthermore, “M; <, My” indicates M; <, Ms and
My # Ms.

Remark 2.11. The above “<,” is a partial order in the space of non-empty connected subsets of
R. Moreover, for each real affine semigroup H, (Mg, <,.) is totally ordered.

The following theorem gives us some upper estimates of Ij(jg).
Theorem 2.12.

1. Let G be a polynomial semigroup in G. Then, we have ﬁ(jg) < #(My(g)). More precisely,
there emsts an injective map T JG — My q) such that if Ji,J2 € Jo and J; < Ja, then
U(Jy) < U(J).

2. If G € Gy;s, then we have that M(¥(G)) C R and M(¥(G)) = J(n(P(Q))).
3. Let G be a polynomial semigroup in G. Then, #(Jg) < #( n(q;(g)))

Corollary 2.13. Let G be a polynomial semigroup in G. Then, we have §(Jg) < ﬁ(j@(g)). More
precisely, there ea:ists an injective map 0:Js— j@(G) such that if J1, Jo € Jg and J; < Ja, then
O(1) € Jo(a): O(J2) € Jo(c), and O(J1) < O(Ja).

The following three theorems give us sufficient conditions for the Julia set of a G € G to be
connected.

Theorem 2.14. Let G = (hy,...,hy) be a finitely generated polynomial semigroup in G. For
each j = 1,...,m, let a; be the coefficient of the highest degree term of polynomial h;. Let o :=
min;j_; . )m{mlogm]u and 1= maxj_1, ,W{Wlog\aﬂ} We set [o, 0] .= {x € R|
a<z< B} If [o, 8] C UL, (k)" ([, B]), then J(G) is connected.

Theorem 2.15. Let G be a polynomial semigroup in G generated by a (possibly non-compact)
family of polynomials of degree two. Then, J(G) is connected.

Theorem 2.16. Let G be a polynomial semigroup in G generated by a (possibly non-compact)
family {hy}xen of polynomials. Let ay be the coefficient of the highest degree term of the polynomial
hy. Suppose that for any X\,§ € A, we have (deg(he) — 1)log|ax| = (deg(hy) — 1)log|ae|. Then,
J(QG) is connected.

Remark 2.17. In [35], a new cohomology theory for (backward) self-similar systems (iterated
function systems) was introduced by the author of this paper. By using this new cohomology
theory, for a postcritically bounded finitely generated polynomial semigroup G, we can describe
the space of connected components of G and we can give some estimates on §(Jg) and §(My(q)).
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2.3 Properties of J
In this section, we present some results on J. The proofs are given in Section 4.3.

Definition 2.18. For a polynomial semigroup G, we set

K(G):={zeC| U {g9(2)} is bounded in C}

geG
and call K(G) the smallest filled-in Julia set of G. For a polynomial g, we set K (g) := K({g)).

Notation: For a set A C C, we denote by int(A) the set of all interior points of A.

Proposition 2.19. Let G € G. If U is a connected component of F(G) such that U N K(G) # 10,
then U C int(K(G)) and U is simply connected. Furthermore, we have K(G)NF(G) = int(K(Q)).

Notation: For a polynomial semigroup G with co € F(G), we denote by F(G) the connected
component of F'(G) containing co. Moreover, for a polynomial g with deg(g) > 2, we set Fiio(g) 1=

Foo({9))-

The following theorem is the key to obtaining further results of postcritically bounded polyno-
mial semigroups in this paper, and those of related random dynamics of polynomials in the sequel
[36, 42]. We remark that Theorem 2.20-5 generalizes [47, Theorem 2.

Theorem 2.20. Let G € Gy;s (possibly generated by a non-compact family). Then, under the
above notation, we have the following.

1. We have that co € F(G) (thus J = J) and the connected component Fo(G) of F(G)
containing oo is simply connected. Furthermore, the element Jmax = Jmax(G) € J containing
OF (@) is the unique element of J satisfying that J < Jmax for each J € J.

2. There exists a unique element Jyin = Jmin(G) € J such that Jyin < J for each glement
J € J. Furthermore, let D be the unbounded component of C\ Juin. Then, P*(G) C K(G) C
C\ D and O0K(G) C Jmin.

3. If G is generated by a family {hy}rcn, then there exist two elements A\1 and Ao of A satisfying:

(a) there exist two elements J; and Jy of J with Jy # Jo such that J(hy,) C J; for each
1=1,2;

(b) J(h>\1) N Jmin = @;
(¢) for each n € N, we have hy"(J(hy,)) N J(hr,) =0 and by (J(hy,)) NI (hy,) = 0; and

(d) hx, has an attracting fized point z1 in C, int(K (hy,)) consists of only one immediate
attracting basin for z1, and K(hy,) C int(K(hy,)). Furthermore, z; € int(K (hy,)).

4. For each g € G with J(g) N Jmin = 0, we have that g has an attracting fized point z, in C,
int(K(g)) consists of only one immediate attracting basin for zy, and Jmin C int(K(g)). Note
that it is not necessarily true that z4 = zy when g, f € G are such that J(g) N Jmin = 0 and
J(f) N Jmin = O (see Proposition 2.26).

5. We have that int(K(G)) # 0. Moreover,

(a) C\ Juin is disconnected, $.J > 2 for each J € J, and
(b) for each g € G with J(g)NJmin = 0, we have that Juin < ¢*(Jmin), 9~ (J(G))NTmin = 0,

9(K(G) U Jmin) C int(K(G)), and the unique attracting fived point z, of g in C belongs

to int(K(Q)).
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6. Let A be the set of all doubly connected components of F(G). Then, |Jyc 4 A C C and (A, <)
is totally ordered.

We present a result on uniform perfectness of the Julia sets of semigroups in G.

Definition 2.21. A compact set K in C is said to be uniformly perfect if K > 2 and there exists
a constant C' > 0 such that each annulus A that separates K satisfies that mod A < C, where
mod A denotes the modulus of A (See the definition in [15]).

Theorem 2.22.

1. Let G be a polynomial semigroup in G. Then, J(G) is uniformly perfect. Moreover, if zy €
J(QG) is a superattracting fized point of an element of G, then zy € int(J(G)).

2. If G€G and oo € J(G), then G € Geopn and oo € int(J(Q)).

3. Suppose that G € Ggis. Let z1 € J(G) N C be a superattracting fized point of g € G. Then
z1 € Int(Jmin) and J(g) C Jmin-

We remark that in [14], it was shown that there exists a rational semigroup G such that J(G)
is not uniformly perfect.
We now present results on the Julia sets of subsemigroups of an element of Gg;s.

Proposition 2.23. Let G € Gg;s and let Ji,Jo € T = Jg with J, < Js. Let A; be the unbounded
component of C\ J; for each i = 1,2. Then, we have the following.

1. Let Q1 = {9 € G| 3J € Juwith J; < J, J(g) C J} and let Hy be the subsemigroup of G
generated by Q1. Then J(Hy) C Jy U A;.

2. Let Qy ={g € G|3J € Jwith J < Jo, J(g) C J} and let Hy be the subsemigroup of G
generated by Qa. Then J(Hs) C C\ As.

3. Let Q={9g€G|3J € Jwith J; <J < Jo, J(g) C J} and let H be the subsemigroup of G
generated by Q. Then J(H) C Jy U (41 \ Asg).

Proposition 2.24. Let G be a polynomial semigroup generated by a compact subset I' of Polygeg>o.
Suppose that G € Ga;s. Then, there exists an element hy € T' with J(h1) C Jmax and there exists
an element hy € T' with J(h2) C Jmin-

2.4 Finitely generated polynomial semigroups G € Gy such that 2 <
1(Ja) < No

In this section, we present some results on various finitely generated polynomial semigroups G €
Gais such that 2 < ﬁ(jg) < Ng. The proofs are given in Section 4.4.

It is well-known that for a rational map g with deg(g) > 2, if J(g) is disconnected, then
J(g) has uncountably many connected components (See [16]). Moreover, if G is a non-elementary
Kleinian group with disconnected Julia set (limit set), then J(G) has uncountably many connected

components. However, for general rational semigroups, we have the following examples.

Theorem 2.25. Let G be a polynomial semigroup in G generated by a (possibly non-compact)
family I' in Polygeg>2. Suppose that there exist mutually distinct elements Jy, ..., J, € Ja such that
for each h € T and each j € {1,...,n}, there exists an element k € {1,...,n} with h=*(J;)NJ}, # 0.
Then, we have #(Jg) = n.

Proposition 2.26. For any n € N with n > 1, there exists a finitely generated polynomial semi-

group Gy = (h1,... han) in G satisfying #(Ja,) = n. In fact, let 0 < € < 3 and we set for
each j = 1,...,n, a;(z) = %ZQ and B;(z) == jl(z — €)% + . Then, for any sufficiently large
| € N, there ewists an open neighborhood V of (a},...,al, 8L, ..., BL) in (Poly)®™ such that for
any (hi,...,han) € V, the semigroup G = (hq,...,hay) satisfies that G € G and tt(jg) =n.
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Theorem 2.27. Let G = (hy,...,hm) € Gais be a polynomial semigroup with m > 3. Suppose that
there exists an element Jy € J such that U;n:_ll J(h;) C Jo, and such that for each j =1,...,m—1,

we have hj_l(J(hm)) N Jo # 0. Then, we have all of the following.
1. 4(J) = .
2. JO = Jmin; or JO = Jmax~
3. If Jo = Jmin, then Jmax = J(hn), J(G) = Jmax WU, enigo) () ™" (Jinin), and for any J €

with J # Jmax, there exists no sequence {C;}jen of mutually distinct elements ofj such
that min.ec, d(z,J) — 0 as j — oo.

4o If Jo = T, then Junin = J (hin), J(G) = Jinin WU, ens g0y (m) ™™ (Jmax), and for any J € J
with J # Juin, there exists no sequence {C;}jen of mutually distinct elements ofj such that
min.ec; d(z,J) — 0 as j — oo.

Proposition 2.28. There exists an open set V in (Polyqeg>2)® such that for any (hi, ha,hs) €V,
G = (hy, ha, hs) satisfies that G € Gais, U, J(h;) C Juin(G), Jmax(G) = J(h3), hi'(J(hs)) N

j=1 J

Junin(G) # 0 for each j = 1,2, and #(Ja) = No.
Proposition 2.29. There exists a 3-generator polynomial semigroup G = (hy, ha, h3) in Gais such

that U?Zl(hj)fl(Jmax(G)) C Jnin(G), Jmax(G) = J(h3), ﬁ(jg) = Ry, there exists a superattracting
fized point zg of some element of G with zo € J(G), and int(Juin(G)) # 0.

As mentioned before, these results illustrate new phenomena which can hold in the rational
semigroups, but cannot hold in the dynamics of a single rational map or Kleinian groups.

For the figure of the Julia set of a 3-generator polynomial semigroup G € Gg;s such that
tJe = No, see figure 2.

Figure 2: The Julia set of a 3-generator hyperbolic polynomial semigroup G € Gg;s such that
1(Jc) = No.

Remark 2.30. In [35], a new cohomology theory for (backward) self-similar systems (iterated
function systems) was introduced by the author of this paper. By using it, for a finitely generated
G € G, we can describe the space Jg of connected components of J(G), and we can give some
estimates on #(Jg). Moreover, by using this new cohomology, a sufficient condition for the cardi-
nality of the set of all connected components of the Fatou set of a postcritically bounded finitely
generated polynomial semigroup G to be infinity was given.

2.5 Hyperbolicity and semi-hyperbolicity
In this section, we present some results on hyperbolicity and semi-hyperbolicity.

Definition 2.31. Let G be a polynomial semigroup generated by a subset I' of Polyqeg>2. Suppose
G € Ggis. Then we set Ty := {h € T' | J(h) C Jmin}, where Jp;, denotes the unique minimal
element in (7, <) in Theorem 2.20-2. Furthermore, if T'yin # 0, let Giin,r be the subsemigroup
of G that is generated by I'yipn-
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Remark 2.32. Let G be a polynomial semigroup generated by a compact subset I' of Polygeg>2.
Suppose G € Gg;s- Then, by Proposition 2.24, we have T'yin # 0 and T'\ T, # 0. Moreover, i,
is a compact subset of I'. For, if {h,, }neny C I'min and h,, — hoo in T, then for a repelling periodic
point zg € J(hso) of heo, we have that d(zo, J(hn)) — 0 as n — oo, which implies that zg € Juin
and thus he € I'pin-

The following Proposition 2.33 means that for a polynomial semigroup G € Gg;s generated by
a compact subset I' of Polygeg>2, we rarely have the situation that “I" \ I'yi, is not compact.”

Proposition 2.33. Let G be a polynomial semigroup generated by a non-empty compact subset T’
of Polygeg>2. Suppose that G € Gg;s and that T'\ T'in s not compact. Then, both of the following
statements 1 and 2 hold.

1. Let h € Doin. Then, J(h) = Juin(G), K(h) = K(G), and int(K (h)) is a non-empty connected
set.

2. Fither

(a) for each h € Tyin, h is hyperbolic and J(h) is a quasicircle; or

(b) for each h € iy, int(K(h)) is an immediate parabolic basin of a parabolic fized point
of h.

Definition 2.34. Let G be a rational semigroup.
1. We say that G is hyperbolic if P(G) C F(QG).

2. We say that G is semi-hyperbolic if there exists a number § > 0 and a number N € N such
that for each y € J(G) and each g € G, we have deg(g : V — B(y, d)) < N for each connected
component V of g=1(B(y,)), where B(y,d) denotes the ball of radius § with center y with
respect to the spherical distance, and deg(g : - — -) denotes the degree of a finite branched
covering.

Remark 2.35. There are many nice properties of hyperbolic or semi-hyperbolic rational semi-
groups. For example, for a finitely generated semi-hyperbolic rational semigroup G , there exists
an attractor in the Fatou set ([27, 30]), and the Hausdorff dimension dimg(J(G)) of the Julia
set is less than or equal to the critical exponent s(G) of the Poincaré series of G ([30]). If we
assume further the “open set condition”, then dimg(J(G)) = s(G) ([32, 45]). Moreover, if G € G
is generated by a compact set I' and if G is semi-hyperbolic, then for each sequence v € I'N, the
basin of infinity for v is a John domain and the Julia set of + is locally connected ([30]). In [37], by
using the above result, we classify hyperbolic or semi-hyperbolic postcritically bounded compactly
generated polynomial semigroups, in terms of the random complex dynamics. It is shown that in
one of the classes, for almost every sequence vy, the Julia set J, of - is a Jordan curve but not a
quasicircle, the unbounded component of C \ J, is a John domain, and the bounded component of
C\ J, is not a John domain. Moreover, in [37, 36], we find many examples with this phenomenon.
Note that this phenomenon does not hold in the usual iteration dynamics of a single polynomial
map g with deg(g) > 2.

We now present some results on semi-hyperbolic or hyperbolic polynomial semigroups in Gg;s.
These results are used to construct examples of semi-hyperbolic or hyperbolic polynomial semi-
groups G € Gg;s (see the proof of Proposition 2.40). Therefore these are important in terms of the
sequel [36, 37].

Theorem 2.36. Let G be a polynomial semigroup generated by a non-empty compact subset I' of
Polydeg>2. Suppose that G € Gais. If Gmin,r s semi-hyperbolic, then G is semi-hyperbolic.
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Theorem 2.37. Let G be a polynomial semigroup generated by a mnon-empty compact subset T' of
Polydeg>2. Suppose that G € Gas. If Gmin,r @5 hyperbolic and (UheF\F CV*(h)) N Jmin(G) = 0,
then G is hyperbolic.

min

Remark 2.38. In [24], it will be shown that in Theorem 2.37, the condition (U,ep\r,,,, CV*(h))N
Jmin(G) = 0 is necessary. For the figures of the Julia sets of hyperbolic polynomial semigroups
G € Gyis, see figure 1 and figure 2.

min

Proposition 2.39. Let G be a polynomial semigroup generated by a non-empty compact subset T’
of Polydeg>2. Suppose that G € Guis and that T' \ I'min s not compact. Suppose that statement 2a
in Theorem 2.33 holds. Then, both of the following statements hold.

1. We have that Gmin,r s hyperbolic and G is semi-hyperbolic.
2. Suppose further that (Uper\r,,,. CV*(h) N Jmin(G) = 0. Then G is hyperbolic.

2.6 Construction of examples

In this section, we present a way to construct examples of semigroups G in Gg;s (with some
additional properties). These examples are important in terms of the sequel [36, 37].

Proposition 2.40. Let G be a polynomial semigroup generated by a compact subset I of Polygeg>2.
Suppose that G € G and int(K(G)) # 0. Let b € int(K(G)). Moreover, let d € N be any positive
integer such that d > 2, and such that (d,deg(h)) # (2,2) for each h € T. Then, there exists a
number ¢ > 0 such that for each a € C with 0 < |a| < ¢, there exists a compact neighborhood
V of gu(2) = a(z — b)? + b in Polyaeg>2 satisfying that for any non-empty subset V' of V, the
polynomial semigroup Hp y: generated by the family T UV’ belongs to Ga;s, IA((HRV/) = K(G)
and (TUV )min C T Moreover, in addition to the assumption above, if G is semi-hyperbolic (resp.
hyperbolic), then the above Hr v+ is semi-hyperbolic (resp. hyperbolic).

Remark 2.41. By Proposition 2.40, there exists a 2-generator polynomial semigroup G = (hy, ho)
in Gg;s such that hy has a Siegel disk.

Definition 2.42. Let d € N with d > 2. We set ); := {h € Poly | deg(h) = d} endowed with the
relative topology from Poly.

Theorem 2.43. Let m > 2 and let da, . ..,dm € N be such that d; > 2 for each j =2,...,m. Let
h1 € Vg, with int(K(h1)) # 0 be such that (h1) € G. Let ba,bs, ..., by € int(K(hy)). Then, both of
the following statements hold.

1. Suppose that (h1) is semi-hyperbolic (resp. hyperbolic). Then, there exists a number ¢ > 0
such that for each (ag,as,...,ay,) € C™ 1 with 0 < |aj| <c (j =2,...,m), setting hj(z) =
aj(z — b))% +b; (5 =2,...,m), the polynomial semigroup G = (hi,...,hy) satisfies that
GeG, K(G)=K(hy) and G is semi-hyperbolic (resp. hyperbolic).

2. Suppose that (h1) is semi-hyperbolic (resp. hyperbolic). Suppose also that either (i) there
exists a j > 2 with d; > 3, or (i) deg(h1) = 3, by = --- = by,. Then, there exist
a2,a3,...,am > 0 such that setting h;j(z) = a;(z — bj)dj +0b; (j =2,...,m), the poly-
nomial semigroup G = (b, ha, ... hy) satisfies that G € Gais, K(G) = K(h1) and G is
semi-hyperbolic (resp. hyperbolic).

Definition 2.44. Let m € N. We set
® Hp = {(h1,...,hm) € (Polyqeg>2)™ | (A1, .., hy) is hyperbolic},

o By = {(h1,---,hm) € (Polygeeg>2)™ | (R1,..., hm) € G}, and
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® Dy = {(h1,-- -, hm) € (Polygeg>2)™ | J((h1, ..., hm)) is disconnected}.
Moreover, let 7y : (Polygeg>2)™ — Polygeg>o be the projection defined by m(hi, ..., ) = hi.
Theorem 2.45. Under the above notation, all of the following statements hold.

1. Hum, Hon N By, Hin 0\ Dy and Hyy, O By N Dy, are open in (Poly geg>2)"™-

2. Let dy,...,dy € N be such that d; > 2 for each j =1,...,m.
Then, 71 : Hn N By N (Vay X -+ X Vg, ) — Hi N By N Yy, is surjective.

3. Let di,...,dm € N be such that dj > 2 for each j = 1,...,m and such that (di,...,dn) #
(2,2,...,2). Then, 71 : Hyn N By, N Dy N (Vay X -+ X Va,,) = H1 N By N Yy, is surjective.

Remark 2.46. Combining Proposition 2.40, Theorem 2.43, and Theorem 2.45, we can construct
many examples of semigroups G in G (or G4;s) with some additional properties (semi-hyperbolicity,
hyperbolicity, etc.).

3 Tools

To show the main results, we need some tools in this section.

3.1 Fundamental properties of rational semigroups
Notation: For a rational semigroup G, we set E(G) := {z € C | 8(Ugeq 97 ({2})) < oo}. This is
called the exceptional set of G.

The following Lemma 3.1 and Theorem 3.2 will be used in the proofs of the main results.
Lemma 3.1 ([13, 12, 29, 27]). Let G be a rational semigroup.

1. For each h € G, we have h(F(G)) C F(G) and h™1(J(G)) C J(G). Note that we do not
have that the equality holds in general.

2. If G = (h1,...,hy), then J(G) = hi (J(G)) U --- U h;} (J(G)). More generally, if G is
generated by a compact subset I of Rat, then J(G) = Uper R (J(G)). (We call this property
of the Julia set of a compactly generated rational semigroup “backward self-similarity.” )

3. If4(J(Q)) > 3, then J(G) is a perfect set.

4. If 4(J(G)) = 3 , then §(E(G)) < 2.

5. If a point z is not in E(GQ), then J(G) C m. In particular if a point z belongs
to J(G)\ E(G), then Uyeq 9™t ({2}) = J(G).

6. If $(J(G)) > 3, then J(G) is the smallest closed backward invariant set containing at
least three points. Here we say that a set A is backward invariant under G if for each
geG, goHA) C A

Theorem 3.2 ([13, 12, 29]). Let G be a rational semigroup. If §(J(G)) > 3, then
J@)={zeC|Igeq, gz) =z |m(g,z)| > 1}, where m(g,z) denotes the multiplier of g at z

([3]). In particular, J(G) = U eq J(9)-

Remark 3.3. If a rational semigroup G contains an element g with deg(g) > 2, then §(J(g)) > 3,
which implies that #(.J(G)) > 3.

Lemma 3.4. Let G = (hy,ho) € G. Then, hi'(J(ho)) is connected.
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Proof. Since hy € G € G, Fuo(hz) is simply connected. Since G € G, there exists no finite critical
value of h; in Fy(hy). By the Riemann-Hurwitz formula, it follows that hy*(Fa(hz)) is connected
and simply connected. Thus d(h; ' (Fu(h2))) = hi*(J(h2)) is connected. O

Definition 3.5. Let G be a polynomial semigroup. Let p € C and € > 0. We set
Fape i ={a:D(p,e) — C | ais a well-defined branch of g=1, g € G}.

Lemma 3.6. Let I' be a non-empty compact subset of Polygeg>2 and let G be a polynomial semi-
group generated by I'. Let R > 0,e > 0, and

F:={aof:D(0,1) - C|8:D(0,1) = D(p,e), a: D(p,e) - C, a € Fgpe, p € D(0,R)}.
Then, F is normal in D(0,1).

Proof. Since I' is a non-empty compact subset of Polygcg>2, there exists a ball B around oo with
B c C\D(0, R+e¢) such that for each h € T', h(B) C B. Let p € D(0, R). Then, for each o € Fz .,
a(D(p,€)) € C\ B. Hence, F is normal in D(0,1). O

3.2 A lemma from general topology

Lemma 3.7 ([17]). Let X be a compact metric space and let f : X — X be a continuous open
map. Let A be a compact connected subset of X. Then for each connected component B of f~1(A),
we have f(B) = A.

4 Proofs of the main results

In this section, we demonstrate the main results.

4.1 Proofs of results in 2.1

In this section, we demonstrate the results in 2.1.

Proof of Theorem 2.1: First, we show the following:
Claim: For any A € A, hy'(A4) C A.

To show the claim, let A € A with J(hy) # 0 and let B be a connected component of iy ' (A).
Then by Lemma 3.7, hy(B) = A. Combining this with h}'(J(hy)) = J(hy), we obtain BNJ(hy) #
(. Hence B C A. This means that hy'(A) C A for each A € A with J(hy) # 0. Next, let A € A
with J(hy) = (0. Then h) is either identity or an elliptic M6bius transformation. By hypothesis
and Lemma 3.1-1, we obtain 2, ' (A) C A. Hence, we have shown the claim.

Combining the above claim with 4 > 3, by Lemma 3.1-6 we obtain J(G) C A. Hence J(G) = A
and J(G) is connected. O

Notation: We denote by d the spherical distance on C.Given Ac Cand z € @, we set d(z, A) ==
inf{d(z,w) | w € A}. Given A ¢ C and ¢ > 0, we set B(A,e) := {a € C | d(a,A) < €}.
Furthermore, given A C C, z € C, and € > 0, we set de(z,4) = inf{]z —w| | w € A} and
D(A,e) :={a e C|de(a,A) <€}

We need the following lemmas to prove the main results.

Lemma 4.1. Let G € G and let J be a connected component of J(G), zo € J a point, and {gn tnen

a sequence in G such that d(zo, J(gn)) — 0 as n — oco. Then sup d(z,J) — 0 asn — oco.
z€J(gn)

Proof. Suppose there exists a connected component J' of J(G) with J’ # J and a subsequence

{gn; }jen of {gn}nen such that I}l(in )d(z, J') — 0 as j — oo. Since J(gn,) is compact and
ze In;
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connected for each j, we may assume, passing to a subsequence, that there exists a non-empty
compact connected subset K of C such that J(g,,) — K as j — oo, with respect to the Hausdorff
metric. Then K NJ # § and K NJ' # (). Since K C J(G) and K is connected, it contradicts
J #£ . O

Lemma 4.2. Let G € G. Then given J € J and € > 0, there exists an element g € G such that
J(g) C B(J,e).

Proof. We take a point z € J. Then, by Theorem 3.2, there exists a sequence {g, }nen in G such
that d(z, J(gn)) — 0 as n — oo. By Lemma 4.1, we conclude that there exists an n € N such that
J(gn) C B(J,¢). O

Lemma 4.3. Let G be a polynomial semigroup. Suppose that J(G) is disconnected, and oo € J(Q).
Then, the connected component A of J(G) containing oo is equal to {oo}.

Proof. By Lemma 3.7, we obtain g~!(A) C A for each g € G. Hence, if §4 > 3, then J(G) C A,
by Lemma 3.1-6. Then J(G) = A and it causes a contradiction, since J(G) is disconnected. [

We now demonstrate Theorem 2.7.
Proof of Theorem 2.7: First, we show statement 1. Suppose the statement is false. Then, there
exist elements Jq, Jo € J such that Js is included in the unbounded component A; of C\ Jy, and
such that J; is included in the unbounded component Ay of C\ J5. Then we can find an € > 0

such that B(.J3,€) is included in the unbounded component of C\ B(J1,€), and such that B(Jy,€)
is included in the unbounded component of C\ B(J3,¢€). By Lemma 4.2, for each ¢ = 1,2, there
exists an element g; € G such that J(g;) C B(J;, €). This implies that J(g1) C A} and J(g2) C Af,
where A} denotes the unbounded component of C\ J(g;). Hence we obtain K(g2) C A}. Let v be
a critical value of g5 in C. Since P*(G) is bounded in C, we have v € K(g2). It implies v € Aj.
Hence g (v) — oo as [ — oo. However, this implies a contradiction since P*(G) is bounded in C.
Hence we have shown statement 1.

Next, we show statement 2. Let F; be a connected component of F(G). Suppose that there
exist three connected components Ji, Jo and J3 of J(G) such that they are mutually disjoint and
such that OF; N J; # 0 for each i = 1,2,3. Then, by statement 1, we may assume that we have
either (1): J; € J for each i =1,2,3 and J; < Jo < J3, or (2): Jy,Jo € J, J1 < Ja, and 0o € J3.
Each of these cases implies that Jp is included in a bounded component of C\ J; and J3 is included
in the unbounded component of ® \ Jo. However, it causes a contradiction, since dF; N J; # ) for
each i = 1,2, 3. Hence, we have shown that we have either
Case L: #{J : component of J(G) |0F1 N J # (0} =1 or
Case II: #{J : component of J(G) | 0Fy NJ # 0} = 2.

Suppose that we have Case I. Let J; be the connected component of J(G) such that 0F; C J;.
Let D; be the connected component of C\Jl containing F7. Since OF; C Jy, we have 0FyND; = ().
Hence, we have F; = D;. Therefore, F} is simply connected.

Suppose that we have Case II. Let J; and Jo be the two connected components of J(G) such
that J; # Jo and OF; C J; U Js. Let D be the connected component of C \ (J1 U J3) containing
Fy. Since OF; C J1 U Ja, we have OF; N D = (). Hence, we have F; = D. Therefore, F; is doubly
connected. Thus, we have shown statement 2.

We now show statement 3. Let g € G be an element and J a connected component of J(G).
Suppose that g=!(J) is disconnected. Then, by Lemma 3.7, there exist at most finitely many
connected components C1, ..., C, of g~1(J) with r > 2. Then there exists a positive number € such
that denoting by B; the connected component of g~!(B(J, €)) containing C; for each j = 1,...,r,
{B;} are mutually disjoint. By Lemma 3.7, we see that, for each connected component B of
g 1 (B(J,€)), g(B) = B(J,€) and BNC; # ) for some j. Hence we get that g~(B(J,¢)) = U;zl B;
(disjoint union) and ¢(B;) = B(J,€) for each j. By Lemma 4.2, there exists an element h € G
such that J(h) C B(J,€). Then it follows that g=*(J(h)) N B;j # 0 for each j = 1,...,r. Moreover,
we have g~ 1(J(h)) C g~ Y(B(J,¢)) = U;Zl B;. On the other hand, by Lemma 3.4, we have that
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g~ (J(h)) is connected. This is a contradiction. Hence, we have shown that, for each g € G and
each connected component J of J(G), g~1(J) is connected.

By Lemma 4.3, we get that if J € 7, then ¢*(J) € J. Let J; and Jy be two elements of
J such that J; < Jo. Let U; be the unbounded component of C\ J;, for each ¢ = 1,2. Then
Uy C U;. Let g € G be an element. Then g~ (Us) C g~ (Uy). Since g~1(U;) is the unbounded
connected component of C\ g~1(J;) for each i = 1,2, it follows that g=!(J;) < g~*(J2). Hence
g*(J1) < g*(J2), otherwise g*(Jo) < g*(J1), and it contradicts g~ (J;) < g~ 1(J2). O

4.2 Proofs of results in 2.2

In this section, we prove the results in Section 2.2, except Theorem 2.12-2 and Theorem 2.12-3,
which will be proved in Section 4.3.
To demonstrate Theorem 2.12, we need the following lemmas.

Lemma 4.4. Let G be a polynomial semigroup in Gg;s. Let Jyi,Jo € J be two elements with
J1 # Jo. Then, we have the following.

1. If 1, J2 € J and J; < Jo, then there exists a doubly connected component A of F(G) such
that J; < A < Js.

2. If oo € Ja, then there exists a doubly connected component A of F(G) such that J; < A.

Proof. First, we show statement 1. Suppose that Jy,J; € J and J; < Jo. Weset B = UJeJ,J1§J§J2 J.
Then, B is a closed disconnected set. Hence, there exists a multiply connected component A’ of
C \ B. Since A’ is multiply connected, we have that A’ is included in the unbounded component of
C\J1, and that A’ is included in a bounded component of C\.J,. This implies that A’N.J(G) = (). Let
A be the connected component of F(G) such that A’ C A. Since B C J(G), we have F(G) c C\ B.
Hence, A must be equal to A’. Since A’ is multiply connected, Theorem 2.7-2 implies that A = A’
is doubly connected. Let J be the connected component J(G) such that J < A and J N 9OA # 0.
Then, since A’ = A is included in the unbounded component of C \ Ji, we have that J does not
meet any bounded component of C\ J;. Hence, we obtain J; < J, which implies that J; < J < A.
Therefore, A is a doubly connected component of F(G) such that J; < A < Jo. Hence, we have
shown statement 1.

Next, we show statement 2. Suppose that oo € Jo. We set B = (Uc 7 j,<5 /) U J2. Then, B

is a disconnected closed set. Hence, there exists a multiply connected component A’ of ¢ \ B. By
the same method as that of proof of statement 1, we see that A’ is equal to a doubly connected
component A of F'(G) such that J; < A. Hence, we have shown statement 2. O

Lemma 4.5. Let Hy be a real affine semigroup generated by a compact set C' in RA. Suppose that
each element h € C is of the form h(z) = bi(h)x + ba(h), where bi(h),ba(h) € R, |bi(h)] > 1.
Then, for any subsemigroup H of Hy, we have M(H) = J(n(H)) C R.

Proof. From the assumption, there exists a number R > 0 such that for each h € C, n(h)(B(oo, R)) C
B(oo, R). Hence, we have B(oo, R) C F(n(H)), which implies that J(n(H)) is a bounded subset
of C. We consider the following cases:
Case 1: §(J(n(H))) > 3.
Case 2: §(J(n(H))) < 2.
Suppose that we have case 1. Then, from Theorem 3.2, it follows that M (H) = J(n(H)) C R.
Suppose that we have case 2. Let b(h) be the unique fixed point of h € H in R. From the
hypothesis, we have that for each h € H, b(h) € J(n(H)). Since we assume f(J(n(H))) < 2,
Lemma 3.1-1 implies that there exists a point b € R such that for each h € H, we have b(h) = b.
Then any element h € H is of the form h(z) = ¢;(h)(x—b)+c2(h), where ¢1(h), ca(h) € R,|ci(h)] >
1. Hence, M(H) = {b} C J(n(H)). Suppose that there exists a point ¢ in J(n(H)) \ {b}. Since
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J(n(H)) is a bounded set of C, and since we have h='(J(n(H))) C J(n(H)) for each h € H
(Lemma 3.1-1), we get that h=1(c) € J(n(H))\({b}U{c}), for each element h € H. This implies that
#(J(n(H))) > 3, which is a contradiction. Hence, we must have that J(n(H)) = {b} = M(H). O

We need the notion of Green’s functions, in order to demonstrate Theorem 2.12.

Definition 4.6. Let D be a domain in C with oo € D. We denote by (D, z) Green’s function on
D with pole at co. By definition, this is the unique function on D N C with the properties:

1. ¢(D, z) is harmonic and positive in D N C;
2. ¢(D, z) — log |z| is bounded in a neighborhood of oo; and

3. there exists a Borel subset A of dD such that the logarithmic capacity of (9D) \ A is zero
and such that for each ¢ € A, we have ¢(D,z) — 0as z — (.

Remark 4.7.

1. The limit lim (p(D, z) —log |z|) exists and this is called Robin’s constant of D.

Z—00

2. If D is a simply connected domain with oo € D and #(C \ D) > 1, then we have (D, z) =
—log|y(2)|, where ¢ : D — {z € C| |z| < 1} denotes a biholomorphic map with (co) = 0.

3. It is well-known that for any g € Polyqeg>2,

o(Fx(g), z) =log|z| + %)‘1 logla(g)| + o(1) as z — oo. (1)

deg(g

(See [25, pl47].) Note that the point
U(g) in R.

—mlog la(g)| € R is the unique fixed point of

Lemma 4.8. Let Ky and Ky be two non-empty connected compact sets in C such that Ky < Ko
and $K1 # 1. Let A; denote the unbounded component of C\ K;, for each i = 1,2. Then, we have
lim, o0 (log 2] — ¢(A1, 2)) < lim, .o (log |z| — @(As, 2)).

Proof. The function ¢(z) := p(Az2,2) — ¢(A1,2) = (log|z| — ¢(A1, 2)) — (log|z] — p(Az,2)) is
harmonic on A; NC. This ¢ is bounded around co. Hence ¢ extends to a harmonic function on As.

Moreover, since K1 < K3, we have limsup, 54, ¢(2) < 0. From the maximum principle, it follows
that ¢(o0) < 0. Therefore, the statement of our lemma holds. O

In order to demonstrate Theorem 2.12-1, we will prove the following lemma. (Theorem 2.12-2
and Theorem 2.12-3 will be proved in Section 4.3.)

Lemma 4.9. Let G be a polynomial semigroup in G. Then, there exists an injective map U : Jo —
My such that:

1. if Ji, Jy € Jg and Jy < Jo, then (J;) <, U(J3);
2. if J € Jg and 0o € J, then +oo € W(J); and
3. if J € Jg, then U(J) C R\ {400}

Proof. We first show the following claim.
Claim 1: In addition to the assumption of Lemma 4.9, if we have co € F(G), then M (V(G)) C
R\ {+o0}.

To show this claim, let R > 0 be a number such that J(G) C D(0, R). Then, for any g € G,
we have K(g) < 0D(0, R). By Lemma 4.8, we get that there exists a constant C' > 0 such that
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for each g € G, ﬁgl)q log |a(g)| < C. Hence, it follows that M (¥(G)) C [—o0, C]. Therefore, we
have shown Claim 1.

We now prove the statement of the lemma in the case G € Geopn. If 00 € F(G), then claim
1 implies that M(¥(G)) € R\ {+oc0} and the statement of the lemma holds. We now suppose
oo € J(G). We put Ly := max.c () |2| for each g € G. Moreover, for each non-empty compact
subset E of C, we denote by Cap (FE) the logarithmic capacity of E. We remark that Cap(E) =
exp(lim, _.o (log | 2| — ¢(Dg, 2))), where Dg denotes the connected component of C\ E containing
0o. We may assume that 0 € P*(G). Then, by [1], we have Cap(J(g)) > Cap ([0,L4]) > L,/4
for each ¢ € G. Combining this with co € J(G), Theorem 3.2, and Remark 4.7-3, we obtain
+00 € My(g) and defining U(J(@)) to be the connected component of My (g) containing +oo,
the statement of the lemma holds.

We now prove the statement of the lemma in the case G € Gg;s. Let {Jx}ren be the set jG of
all connected components of J(G). By Lemma 4.2, for each A € A and each n € N, there exists an

element gy, € G such that
1
J(grn) C B(Jx, ﬁ) (2)

We have that the fixed point of ¥(gx,,) in R is equal to m
that Wil)_llog|a(g,\7n)\ — a\ as n — oo, where ay is an element of R. For each A € A, let
By € My be the element with ay € By. Let \i/(J,\) = B, for each A € A. We will show the
following claim.
Claim 2: If A, & are two elements in A with A # £, then By # B¢. Moreover, if Jy, J¢ € Je and
Jx < Jg, then By <, Be. Furthermore, if J¢ € j@ with oo € J¢, then 400 € Be.

To show this claim, let A and £ be two elements in A with A # £. We have the following two
cases:
Case 1: Jy,Je € Jg and Jy < J¢.
Case 2: Jy € Jg and oo € J¢. (Note: in this case, by Lemma 4.3, we have J¢ = {o0}.)

Suppose that we have case 1. By Lemma 4.4, there exists a doubly connected component A of
F(G) such that

log |a(gx,n)|- We may assume

J)\<A<J§. (3)

Let ¢; and (2 be two Jordan curves in A such that they are not null-homotopic in A, and such
that (1 < (5. For each i = 1,2, let A; be the unbounded component of ® \ ¢;. Moreover, we
set B; := lim,_ o (log|z] — w(A;, 2)), for each ¢ = 1,2. By Lemma 4.8, we have §; < (2. Let
g € G be any element. By (2) and (3), there exists an m € N such that J(gx.m) < (1. Since
P*(G) C K(gam), it follows that P*(G) is included in the bounded component of C\ ¢;. Hence,
we see that

either J(g) < (1, or (2 < J(g). (4)

From Lemma 4.8, it follows that either qu)_llog|a(g)| < B, or B2 < qu)_llogkz(gﬂ. This
implies that R
M(¥(G)) CR\ (B, B2), (5)

where (81, 82) := {z € R| 81 < z < f2}. Moreover, combining (2), (3), and (4), we get that there
exists a number ny € N such that for each n > ng, J(grn) < (1 < (2 < J(ge,n). From Lemma 4.8,
it follows that

log |a(gan)| < B1 < P2 < log[a(ge,n)l, (6)

—_ -1
deg(grn) —1 deg(ge.n) — 1
for each n > ng. By (5) and (6), we obtain By <, Be.

We now suppose that we have case 2. Then, by Lemma 4.4, there exists a doubly connected
component A of F(G) such that Jy, < A. Continuing the same argument as that of case 1, we

obtain By # Be. In order to show +o0o € Be, let R be any number such that P*(G) C D(0, R).
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Since P*(G) C K(g) for each g € G, combining it with (2) and Lemma 4.3, we see that there
exists an ng = ng(R) such that for each n > ng, D(0, R) < J(g¢n). From Lemma 4.8, it follows
that W,ln)_l log |a(ge.n)| — +oo. Hence, +00 € Be. Therefore, we have shown Claim 2.
Combining Claims 1 and 2, the statement of the lemma follows.
Therefore, we have proved Lemma 4.9. O

We now demonstrate Theorem 2.12-1.
Proof of Theorem 2.12-1: From Lemma 4.9, Theorem 2.12-1 follows. [

We now demonstrate Corollary 2.13.
Proof of Corollary 2.13: By Theorem 3.2, we have J(6(G)) = Upcoq) J/(h) = U,eq /(0(9)).

where the closure is taken in C. Since J(O(g)) = {z € C | |2| = |a(g)\7deg(la>*1 }, we obtain

J6(G)) = [J{z € C| 2] = lalg)|”FwT}, (7)

geG

where the closure is taken in C. Hence, we see that jj(j@(g)) is equal to the cardinality of the
set of all connected components of J(O(G)) N [0, +oc]. Moreover, let 1 : [0,4+00] — R be the
homeomorphism defined by #(x) := log(x) for z € (0,+00), 9(0) := —o0, and ¥ (+00) = +o0.
Then, (7) implies that, the map ¢ : [0, 0o] — R, maps .J(6(G))N[0, +oc] onto M(¥(©(G))). For any
J € Joa), let ¥(J) € My ) = Mu(g) be the element such that ¢(J N[0, +oc]) = ¢(J). Then,
the map ¥ : j@(g) — Mye(a)) = Muy(q) is a bijection, and moreover, for any Ji, Jo € Jo(q), we
have that J; < J if and only ifqﬂ(Jl) < 1,5((]2). Furthermore, for any J € j@(g), oo € J if and only
if 400 € ¢p(J). Let © : Jo — j@(c) be the map defined by © = )~ o ¥, where ¥ : Ji — My
is the map in Lemma 4.9. Then, by Lemma 4.9, 0:Js — j@(c) is injective, and moreover, if
Ji,Jo € Jg and J; < Js, then é(Jl) € .7@((;), é(JQ) € j@(G), and é(Jl) < é(JQ)

Thus, we have proved Corollary 2.13. O

We now demonstrate Theorem 2.14.
Proof of Theorem 2.14: We have that for any j = 1,...,m, (¥(h;)) " (z) = m(aj -
log |a;|) = deg%hj)(x — deg@;)_l log |a;|) + Wﬁ)—l log |a;|, where z € R. Hence, it is easy to see

that U2, (¥ (h;)) " ([, 8]) C [, B]. From the assumption, it follows that

(P (hi) ™ ([ov, B]) = [, B (8)

-

U (@ (1)) (I ((¥(G)))) = J(n(¥(G))). (9)

Furthermore, by Lemma 4.5, J(n(¥(G))) is a compact subset of R. Applying [9, Theorem 2.6], it
follows that J(n(¥(G))) = [a, f]. Combined with Lemma 4.5, we obtain M (¥(G)) = [«, ]. Hence,
M(¥(G)) is connected. Therefore, from Theorem 2.12-1, it follows that J(G) is connected. O

We now demonstrate Theorem 2.15.
Proof of Theorem 2.15: Let C be a set of polynomials of degree two such that C' generates G.
Suppose that J(G) is disconnected. Then, by Theorem 2.1, there exist two elements hy,hy € C
such that the semigroup H = (h1, ho) satisfies that J(H) is disconnected. For each j = 1,2, let a;
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be the coeflicient of the highest degree term of polynomial h;. Let o := mil’ljzlyg{w;)il log |a;|}

and f§ := maxj:m{w})_llog\aj\}. Then we have that o = minj—y 2{—log|a;|} and 8 =

max;j—1 2{—log|a;|}. Since W(h;)~!(z) = 3(z —logla;|) = 3(x — (~logla;])) + (~log|a;|) for
each j = 1,2, we obtain [«, 8] = U?zl(ql(hj))*l([a,ﬁ]). Hence, by Theorem 2.14, it must be true
that J(H) is connected. However, this is a contradiction. Therefore, J(G) must be connected. [

We now demonstrate Theorem 2.16.
Proof of Theorem 2.16: For each A € A, let by be the fixed point of ¥(hy) in R. It is easy to
see that by = m log |ay], for each A € A. From the assumption, it follows that there exists
a point b € R such that for each A € A, by = b. This implies that for any element g € G, the fixed
point b(g) € R of ¥(g) in R is equal to b. Hence, we obtain M (¥ (G)) = {b}. Therefore, M (¥(G))

is connected. From Theorem 2.12-1, it follows that J(G) is connected. O

4.3 Proofs of results in 2.3

In this section, we prove the results in 2.3, Theorem 2.12-2 and Theorem 2.12-3.
In order to demonstrate Theorem 2.20, Theorem 2.12-2, and Theorem 2.12-3, we need the
following lemma.

Lemma 4.10. If G € G5, then 0o € F(G).

Proof. Suppose that G € Gg;s and 0o € J(G). We will deduce a contradiction. By Lemma 4.3,
the element J € Jg with co € J satisfies that J = {o0}. Hence, by Lemma 4.2, for each n € N,
there exists an element g, € G such that J(g,) C B(co,1). Let R > 0 be any number which is
sufficiently large so that P*(G) C B(0, R). Since we have that P*(G) C K(g) for each g € G, it
must hold that there exists a number ng = ng(R) € N such that for each n > ng, B(0, R) < J(gn).
From Lemma 4.8, it follows that lim,_, o (log|z| — ¢(Foc(gn), 2)) — +00 as n — oco. Hence, we see

that m log|a(gn)| — +00, as n — oo. This implies that

|a(gn )|~ @D — oo, as n — oo, (10)

Furthermore, by Theorem 2.12-1, we must have that M (¥ (G)) is disconnected.
We now consider the polynomial semigroup H = {z — |a(g)|z989) | g € G} € G. By Theo-
rem 3.2, we have J(H) = [, cpy J(h). Since the Julia set of polynomial la(g)|z98(9) is equal to

{zeC||z| = |a(g)|_deg<t>*1 }, it follows that

J(H) = | J{z € C| |2 = |a(g)| " =1}, (11)

geG

where the closure is taken in C. Moreover, J(O(G)) = J(H). Combining it with (10), (11), and
Corollary 2.13, we see that

oo € J(H), and J(H) is disconnected. (12)
Let ¢ : [0, +00] — R be the homeomorphism as in the proof of Corollary 2.13. By (11), we have
P(J(H) N[0, 400]) = M(¥(H)) = M(¥(G)). (13)
Moreover, by Lemma 3.1-1, we have

h(F(H)N[0,400]) C F(H)N0,+0o0], for each h € H. (14)
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Furthermore, we have that
oh=V(h)o on [0,+00], for each h € H. (15)
Combining (13), (14), and (15), we see that
U(h)(R\ M(¥(H))) c (R\ M(¥(H))), for each h € H. (16)

By Lemma 4.3 and (12), we get that the connected component J of J(H) containing oo satisfies
that

J = {oo}. (17)

Combined with Lemma 4.2, we see that for each n € N, there exists an element h,, € H such that
1

J(hy) C B(oo, ﬁ) (18)

Combining (11), (13), (17), and (18), we obtain the following claim.
Claim 1: 400 is a non-isolated point of M (W¥(H)) and the connected component of M (U (H))
containing +o0 is equal to {+oo}.

Let h € H be an element. Conjugating G' by some linear transformation, we may assume that
h is of the form h(z) = 2°,s € N,s > 1. Hence ¥(h)(z) = sx,s > 1. Since 0 is a fixed point of
U(h), we have that 0 € M(¥(H)). By Claim 1, there exists ¢1,c2 € [0,+00) with ¢; < ¢ such
that the open interval I = (¢1,¢2) is a connected component of R \ M(¥(H)). We now show the
following claim.

Claim 2: Let Q = (r1,75) C (0,+00) be any connected open interval in R\ M(¥(H)), where
0 <7y <7y < 4oco. Then, we have ry < s77.

To show this claim, suppose that sr; < ro. Then, it imAplies that U, enugoy ¥(R)"(Q) =
(r1,+00). However, by (16), we have U, cnyqop ¥(R)"(Q) € R\ M(¥(H)), which implies that
the connected component Q' of R\ M(¥(H)) containing Q satisfies that Q' D (r1,+00). This
contradicts Claim 1. Hence, we obtain Claim 2.

By Claim 2, we obtain ¢; > 0. Let ¢3 € (0,¢1) be a number so that c¢a — ¢35 > s(c1 — ¢3). Since
c1 € M(VU(H)), there exists an element ¢ € (c3,¢1] and an element hy € H such that U(hy)(c) = ¢
and (¥(h1)) (c) > 1. Since ¢2 — cg > s(c1 — ¢3), we obtain

ca — ¢ > s(eg — o). (19)

Let t := (¥ (hy)) (¢) > 1. Then, for each n € N, we have (¥(h1))*(I) = (t"(c1 —¢)+c¢, t"(ca—c)+c).
From Claim 2 and (16), it follows that t"(ca — ¢) + ¢ < s(t"(c1 — ¢) + ¢), for each n € N. Dividing
both sides by ¢ and then letting n — oo, we obtain ¢o — ¢ < s(c; — ¢). However, this contradicts
(19). Hence, we must have that oo € F(G). Thus, we have proved Lemma 4.10. O

We now demonstrate Proposition 2.19.
Proof of Proposition 2.19: Let U be a connected component of F(G) with U N K(G) # 0.
Let g € G be an element. Then we have K(G) N F(G) C int(K(g)). Since h(F(G)) € F(G) and
WK (G)NF(G)) c K(G)NF(G) for each h € G, it follows that h(U) C int(K(g)) for each h € G.
Hence U C int(K(G)). From this, it is easy to see K(G) N F(G) = int(K(G)). By the maximum
principle, we see that U is simply connected. O

We now demonstrate Theorem 2.20.
Proof of Theorem 2.20:

First, we show statement 1. By Lemma 4.10, we have that co € F(G). Let J € J be an element
such that OFs(G) N J # 0. Let D be the unbounded component of C\ .J. Then Fy(G) C D and
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D is simply connected. We show F(G) = D. Otherwise, there exists an element J; € J such
that J; # J and J; C D. By Theorem 2.7-1, we have either J; < J or J < Jy. Hence, it follows
that J < J; and we have that J is included in a bounded component Dy of C\ J;y. Since Foo (G)
is included in the unbounded component D; of C \ Jy, it contradicts dF(G) N .J # (. Hence,
Fo(G) = D and F5(G) is simply connected.

Next, let Jyax be the element of J with 0Fs(G) C Jmax, and suppose that there exists an
element J € J such that Jypnax < J. Then Jyax is included in a bounded component of C\ J. On
the other hand, Fs(G) is included in the unbounded component of C \ .J. Since 0Fx(G) C Jiax,
we have a contradiction. Hence, we have shown that J < J,. for each J € 7.

Therefore, we have shown statement 1.

Next, we show statement 2. Since () # P*(G) € K(G), we have K (G) # (). By Proposition 2.19,
we have K (G) C J(G). Let J; be a connected component of J(G) with J; N dK(G) # 0. By
Lemma 4.3, J; € J. Suppose that there exists an element J € J such that J < J;. Let zp € J
be a point. By Theorem 3.2, there exists a sequence {gn }nen in G such that d(zg, J(gn)) — 0 as
n — o0o. Then by Lemma 4.1, sup d(z,J) — 0 as n — oo. Since J; is included in the unbounded

z€J(gn)
component of C\ J, it follows that for a large n € N, J; is included in the unbounded component
of C\ J(gy). However, this causes a contradiction, since J; N K(G) # 0. Hence, by Theorem 2.7-1,
it must hold that J; < J for each J € J. This argument shows that if J; and Jy are two connected
components of J(G) such that J; N GK(G) # () for each i = 1,2, then J; = .J5. Hence, we conclude
that there exists a unique minimal element Jy,;, in (J, <) and 8K(G) C Jmin-

Next, let D be the unbounded component, of C\ Jyin. Suppose DNK (G) # 0. Let 2 € DNK(G)
be a point. By Theorem 3.2 and Lemma 4.1, there exists a sequence {g,}nen in G such that

sup d(2z, Jmin) — 0 as n — oo. Then, for a large n € N, z is in the unbounded component of
ZEJ(gn)

C\ J(gn). However, this is a contradiction, since g/, (z) — oo as | — oo, and = € K(G). Hence, we
have shown statement 2.

Next, we show statement 3. By Theorem 2.1, there exist A1, A2 € A and connected components
J1,JJ2 of J(G) such that J; # Jy and J(hy,) C J; for each ¢ = 1,2. By Lemma 4.3, we have
J; € J for each i = 1,2. Then J(hy,) N J(hy,) = 0. Since P*(G) is bounded in C, we may assume
J(hay) < J(hy,). Then we have K (hy,) C int(K(hy,)) and Jo < J;. By statement 2, Ji # Juin.
Hence J(hx,) N Jmin = 0. Since P*(G) is bounded in C, we have that K (hy,) is connected. Let U
be the connected component of int(K (hy,)) containing K (hy,). Since P*(G) C K (hy,), it follows
that there exists an attracting fixed point z; of hy, in K(hy,) and U is the immediate attracting
basin for z; with respect to the dynamics of hy,. Furthermore, by Lemma 3.4, h;ll(J(hxz)) is
connected. Therefore, h;ll(U) = U. Hence, int(K(hy,)) = U.

Suppose that there exists an n € N such that hy ™ (J(hy,)) N J(hy,) # 0. Then, by Lemma 3.4,
A= U,>0hy*(J(ha,)) is connected and its closure A contains .J(hy,). Hence J(hy,) and J(hy,)
are included in the same connected component of J(G). This is a contradiction. Therefore, for each
n € N, we have hy " (J(hy,))NJ (hy,) = (). Similarly, for each n € N, we have by (J(ha, )N (hy, ) =
(). Combining h;\ll(J(h)Q)) NJ(hy,) =0 with z; € K(hy,), we obtain z; € int(K(hy,)). Hence, we
have proved statement 3.

We now prove statement 4. Let g € G be an element with J(g) N Jpin = @. We show the
following:

Claim 2: Jpyin < J(9).

To show the claim, suppose that Jyiy, is included in the unbounded component U of C\ J(g).
Since ) # OK(G) C Juin, it follows that K(G) N U # (). However, this is a contradiction. Hence,
we have shown Claim 2.

Combining Claim 2, Theorem 3.2 and Lemma 4.1, we get that there exists an element h; € G
such that J(hy) < J(g). From an argument which we have used in the proof of statement 3, it
follows that ¢ has an attracting fixed point z, in C and int(XK(g)) consists of only one immediate
attracting basin for z,. Hence, we have shown statement 4.
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Next, we show statement 5. Suppose that int(K(G)) = (). We will deduce a contradiction. If
int(K(G)) = 0, then by Proposition 2.19, we obtain F(G) N K(G) = 0. By statement 3, there
exist two elements ¢g; and go of G and two elements J; and J of J such that J; # Js, such that
J(gi) C J; foreachi = 1,2, such that g; has an attracting fixed point zg in int (K (g2)), and such that
K(g2) C int(K(g1)). Since we assume F(G) N K(G) = 0, we have z, € P*(G) ¢ K(G) c J(G).
Let J be the connected component of J(G) containing zg. We now show J = {zp}. Suppose
#J > 2. Then J(g1) C U,>091 "(J). Moreover, by Theorem 2.7-3, g; "J is connected for each

n € N. Since g; "(J) N J # 0 for each n € N, we see that |J,,~,9; "(J) is connected. Combining
this with 29 € int(K(g2)), K(g2) C int(K(g1)), z0 € J and J(g1) C U,>¢91 "(J), we obtain

Unso91 "(J)NJ(g2) # 0. Then it follows that J(g1) and J(g2) are included in the same connected
component of J(G). This is a contradiction. Hence, we have shown J = {z}. By statement 2, we
obtain {20} = Jmin = P*(G). Let ¢(z) := = = and let G := {pge~t | g € G}. Then G € Gys.

zZ—2Z

Moreover, since zg € J(G), we have that oo € J(G). This contradicts Lemma 4.10. Therefore, we
must have that int(K(G)) # 0.

Since OK (G) C Jmin (statement 2) and K (G) is bounded, it follows that C\ Jyy, is disconnected
and fJyi, > 2. Hence, J > 2 foreach J € J = J. Now, let g € G be an element with J(g)NJmin =
0. we show Jiin 7# " (Jmin)- If Jmin = ¢* (Jmin), then g7 (Jimin) C Jmin. Since fJmin > 3, it follows
that J(g) C Jmin, which is a contradiction. Hence, Jmin 7# ¢*(Jmin), and so Jmin < ¢*(Jmin)-
Combined with Theorem 2.7-3, we obtain ¢~ *(J(G)) N Jmin = 0. Since ¢(K(G)) c K(G), we
have ¢(int(K(G))) C int(K(G)). Suppose g(dK(G)) NIK(G) # 0. Then, since IK(G) C Jmin
(statement 2), we obtain g(Jmin) N Jmin # 0. This implies ¢ 7 (Jimin) N Jmin # @, which contradicts
g Y J(G)) N Jmin = 0. Hence, it must hold g(dK (G)) C int(K(G)), and so g(K(G)) C int(K(G)).
Moreover, since g~ 1(J(G)) N Jpin = 0, we have that g(Jmin) is a connected subset of F(G).
Since K (G) C Jmin and g(dK (G)) C int(K(G)), Proposition 2.19 implies that g(Jiin) must be
contained in int(K(G)).

By statement 4, g has a unique attracting fixed point z, in C. Then, z, € P*(G) ¢ K(G).
Hence, z, = g(z,) € g(K(G)) C int(K(G)). Hence, we have shown statement 5.

We now show statement 6. Since I (G) is simply connected (statement 1), we have J,. 4 A C
C. Suppose that there exist two distinct elements A; and Ay in A such that Ay is included in the
unbounded component of C\ Ay, and such that A, is included in the unbounded component of
C\A;. Foreachi = 1,2, let J; € J be the element that intersects the bounded component of C\ A;.
Then, Ji # J2. Since (J, <) is totally ordered (Theorem 2.7-1), we may assume that J; < Jo.
Then, it implies that A; < Jo < Ay, which is a contradiction. Hence, (A, <) is totally ordered.
Therefore, we have proved statement 6.

Thus, we have proved Theorem 2.20. O

We now demonstrate Theorem 2.22.

Proof of Theorem 2.22: First, we show Theorem 2.22-1. If G € G0y, then J(G) is uniformly
perfect.

We now suppose that G € Gg;s. Let A be an annulus separating J(G). Then A separates Jmin
and Jyax- Let D be the unbounded component of C\ Jy,in and let U be the connected component
of C\ Jmax containing Jyi,. Then it follows that A € U N D. Since §Jmin > 1 and co € F(G)
(Theorem 2.20), we get that the doubly connected domain U N D satisfies mod (U N D) < oc.
Hence, we obtain mod A < mod (U N D) < oo. Therefore, J(G) is uniformly perfect.

If a point 29 € J(G) is a superattracting fixed point of an element g € G, then, combining
uniform perfectness of J(G) and [14, Theorem 4.1], it follows that zo € int(J(G)). Thus, we have
shown Theorem 2.22-1.

Next, we show Theorem 2.22-2. If G € G and oo € J(G), then by Lemma 4.10, we obtain
G € Geon- Moreover, Theorem 2.22-1 implies that oo € int(J(G)). Therefore, we have shown
Theorem 2.22-2.
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We now show Theorem 2.22-3. Suppose that G € Gg;5. Let g € G and let z; € J(G) N C with
g(z1) = z1 and ¢'(2z1) = 0. Then, 2z, € P*(G) C K(G) By Theorem 2.20-2, we obtain z1; € Jpin.
Moreover, Theorem 2.22-1 implies that z; € int(J(G)). Combining this and z; € Jyin, we obtain
z1 € int(Jmin). By Theorem 2.20- 5b, we obtain J(g) C Jmin-

Hence, we have shown Theorem 2.22. O]

We now demonstrate Theorem 2.12-2.
Proof of Theorem 2.12-2: Suppose G € Gg;s. Then, by Lemma 4.10, we obtain co € F(G).
Hence, there exists a number R > 0 such that for each g € G, J(g) < 9B(0, R) From Lemma 4.8,

it follows that there exists a constant C; > 0 such that for each g € G, W log la(g)| < Ch.
This implies that there exists a constant Cy € R such that
M(¥(G)) C [—oo, Cy. (20)

Moreover, by Theorem 2.20-5, we have that int(K(G)) # 0. Let B be a closed disc in int(K(G)).
Then it must hold that for each g € G, B < J(g). Hence, by Lemma 4.8, there exists a constant
C3 € R such that for each g € G, C5 < W log |a(g)|. Therefore, we obtain

M(¥(G)) C [Cs, +x). (21)

Combining (20) and (21), we obtain M (¥(G)) C R. Let Cy4 be a large number so that M (¥(G)) C
D(0,Cy). Since for each g € G, the repelling fixed point fm log |a(g)| of n(¥ ( )) belongs to

D(0, C4) NR, we see that for each z € C\ D(0,Cy), [n(¥(g9))(2)| = | deg(g)(z W log |a(g)])+
W log |a(g)|| > deg(g)C4 — (deg(g) —1)Cy = Cy. It follows that co € F(n(¥(G))). Combining
this and Theorem 3.2, we obtain M (¥(G)) = J(n(¥(G))), if #(J(n(¥(Q)))) > 3.

Suppose that §(J(n(¥(G)))) = 2. Let g € G be an element and let b € R be the unique fixed
point of ¥(g) in R. Then, since co € F(n(¥(G))), there exists a point ¢ € (J(n(¥(G))) NC) \ {b}.
By Lemma 3.1-1, (n(¥(g))) " (c) € ( (T(G)))\{b, c}. This contradicts #(J(n(¥(G)))) = 2. Hence
it must hold that 8(J(n(¥(G)))) #

Supposs that £ — 1.
follows that M (¥ (G)) = J(n(¥(Q))).

Therefore, we always have that M (¥(G)) = J(n(¥(G))). Thus, we have proved Theorem 2.12-
2. O

Since M(¥(G)) € R and M(¥(Q)) NR C J(n(¥(G))), it

We now demonstrate Theorem 2.12-3.
Proof of Theorem 2.12-3: By Theorem 2.12-1 and Theorem 2.12-2; the statement holds. O

We now demonstrate Proposition 2.23.
Proof of Proposition 2.23: First, we show statement 1. Let g € @J1. We show the following:
Claim 1: For any element J3 € J with J; < Js, we have J; < ¢g*(J3).
To show this claim, let J € J be an element with J(g) C J. We consider the following two cases;
Case 1: J < J3, and
Case 2: J1 < J3 < J.

Suppose that we have Case 1. Then, J; < J = ¢g*(J) < ¢g*(J3). Hence, the statement of Claim
1 is true.

Suppose that we have Case 2. If we have g*(J3) < Js, then, we have (¢™)*(J3) < g*(J3) <
J3 < J for each n € N. Hence, inf{d(z,J) | z € g~"(J3),n € N} > 0. However, since J(g) C J and
gJ3 > 3, we obtain a contradiction. Hence, we must have J3 < ¢*(J3), which implies J; < J3 <
g*(J3). Hence, we conclude that Claim 1 holds.

Now, let K1 := J(G)N(J1UA;). Then, by Claim 1, we obtain ¢g~!(K;) C K7, for each g € Q.
From Lemma 3.1-6, it follows that J(H;) C K;. Hence, we have shown statement 1.
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Next, we show statement 2. Let g € Q2. Then, by the same method as that of the proof of
Claim 1, we obtain the following.
Claim 2: For any element Jy € J with Jy < J3, we have g*(Js) < Jo.

Now, let K5 := J(G) N (C\ Az). Then, by Claim 2, we obtain g~*(K3) C Ka, for each g € Q.
From Lemma 3.1-6, it follows that J(Hz) C K». Hence, we have shown statement 2.

Next, we show statement 3. By statements 1 and 2, we obtain J(H) C J(H;) N J(Hz2) C
KinNnKsC (C\Ag)ﬁ((]lLJAl) C J1U(A1\A2).

Hence, we have proved Proposition 2.23. O

We now demonstrate Proposition 2.24.
Proof of Proposition 2.24: Suppose that for any h € T, J(h) N Jpax = 0. Then, since §Jpax >
3 (Theorem 2.20-5a), we get that for any h € T, h™!(Jmax) N Jmax = 0. Combining it with
Theorem 2.7-3, it follows that for any h € T', A= (J(G)) N Jmax = 0. However, since J(G) =
Uner 271 (J(G)) (Lemma 3.1-2), it causes a contradiction. Hence, there must be an element
hi € T such that J(h1) C Jmax.

By the same method as above, we can show that there exists an element hy € I' such that
J(hg) C Jmin- O

4.4 Proofs of results in 2.4

In this section, we prove the results in 2.4.

We now prove Theorem 2.25.
Proof of Theorem 2.25: Combining the assumption and Theorem 2.7-3, we get that for each
h €T and each j € {1,...,n}, there exists a k € {1,...,n} with h='(J;) C J;. Hence,

(U ) c | Jj, foreach h €T (22)

Jj=1 Jj=1

Moreover, by Theorem 2.20-5a, we obtain
n
(U 75 =3 (23)
j=1

Combining (22), (23), and Lemma 3.1-6, it follows that J(G) C U;_, J;. Hence, J(G) = U;_, J;.
Therefore, we have proved Theorem 2.25.

We now prove Proposition 2.26.
Proof of Proposition 2.26: Let n € N with n > 1 and let € be a number with 0 < € < % For
each j =1,...,n, let oj(z) = %2’2 and let 3;(z) = %(z —e) +e

For any large [ € N, there exists an open neighborhood U of {0, e} with U C {z | |z] < 1} and a
open neighborhood V of (o}, ... ,al, 3 ... 3') in (Poly)2" such that for each (hi,...,ha,) €V,
we have U?L h;(U) € U and J;Z, C(h;)NC C U, where C(h;) denotes the set of all critical points
of h;. Then, by Remark 1.3, for each (h1,...,ha,) €V, (h1,..., ho,) € G. If | is large enough and
V is so small, then, for each (h1,...,hs,) € V, the set I; := J(h;)UJ(h;1,) is connected, for each
j=1,...,n, and we have:

(hi) ML) N L # 0, (hiwn) " (L) N I # 0, (24)

for each (i, j). Furthermore, for a closed annulus A = {z | § < |z| < n+1}, if | € N is large enough
and V is so small, then for each (hq,...,h2,) € V, U?Zl(hj)_l(A) C int(A) and {(h;)"'(4) U
(hj4n) " (A)})—, are mutually disjoint. Combining it with Lemma 3.1-6 and Lemma 3.1-2, we get
that for each (hi,...,h2,) €V, J((h1,...,h2n)) C A and {J;}7_; are mutually disjoint, where J;
denotes the connected component of J((h1,...,hay)) containing I; = J(h;)UJ(hjty). Combining
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it with (24) and Theorem 2.25, it follows that for each (h1, ..., h2,) € V, the polynomial semigroup
G = (h1,..., hay) satisfies that §(Jg) = n. =

To prove Theorem 2.27, we need the following notation.
Definition 4.11.

1. Let X be a metric space. Let h; : X — X (j =1,...,m) be a continuous map. Let G =
(h1, ..., hm) be the semigroup generated by {h;}. A non-empty compact subset L of X is said
to be a backward self-similar set with respect to {h1,...,h,} if (a) L =], h;l(L)
and (b) g=1(2) # 0 for each z € L and g € G. For example, if G = (hy,...,hy,) is a finitely
generated rational semigroup, then the Julia set J(G) is a backward self-similar set with
respect to {h1,...,hm}. (See Lemma 3.1-2.)

2. Weset B, := {1,...,m}". Foreach z = (z1,22,...,) € By, weset Ly = (]2, hy'---hi (L) (#
0).

3. For a finite word w = (wyq,...,wg) € {1...,m}*, we set hy 1= hyy 0+ 0 Ry, .

4. Under the notation of [18, page 110-page 115], for any k € N, let Qp = Qp(L, {h1,..., hm})
be the graph (one-dimensional simplicial complex) whose vertex set is {1,...,m}* and
that satisfies that mutually different w',w? € {1,...,m}* makes a 1-simplex if and only
if ﬂ?zl h;}(L) # (. Let g : Qi1 — Qi be the simplicial map defined by: (w1, ..., wgy1) —
(wy,...,wg) for each (wy,...,wrp1) € {1,...,m}*TL Then {¢} : Qi1 — Qi tren makes
an inverse system of simplicial maps. Let |2;| be the realization ([18]) of Q. As in [18], we
embed the vertex set {1,...,m}™ into |Q].

5. Let C(|2)]) be the set of all connected components of the realization || of . Let {(¢k)« :
C(|%+1]) — C(JQ%|) ren be the inverse system induced by {p k.

Notation: We fix an m € N. We set W* := (J;=,{1,...,m}* (disjoint union) and W := W* U%,,

(disjoint union). For an element z € W, we set |z| = k if x € {1,...,m}*, and |2| = oo if
# € B,p,. (This is called the word length of z.) For any 2 € W and any j € N with j < |z|, we set
zlj = (z1,...,2;) € {1,...,m}’. For any 2 = (a1,...,2}) € W* and any 22 = (2%,23,...) e W,
we set #'a? = (xf,...,2),27,23,...) € W.

To prove Theorem 2.27, we need the following lemmas.

Lemma 4.12. Let L be a backward self-similar set with respect to {hi,...,hm}. Then, for each
k € N, the map k| : |Qs1] — |Q| induced from @r : Qri1 — Q is surjective. In particular,
(0r)s : C(|Q%11]) — C(|Q%]) is surjective.

Proof. Let 2%, 2% € {1,...,m}* and suppose that {z!, 22} makes a I-simplex in . Then h;ll (L)
hia (L) # 0. Since L = h; ' (L), there exist #} ; and 27, in {1,...,m} such that h_'h_' (L)N
k+1

2

h;lh;; (L) # 0. Hence, {2z}, ,,2%x7 | } makes a 1-simplex in Q1. Hence the lemma holds. [
k41

Lemma 4.13. Let m > 2 and let L be a backward self-similar set with respect to {hy,...,hm}.
Suppose that for each j with j # 1, hy (L) N hj_l(L) = 0. For each k, let Cy, € C(|Q%]) be the
element containing (1,...,1) € {1,...,m}*. Then, we have the following.

1. For each k €N, C, ={(1,...,1)}.
2. For each k € N, $(C(|1Q%])) < #(C(|Qu+1]))-

8. L has infinitely many connected components.
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4. Let x :=(1,1,1,...) € 3, and let 2’ € ¥, be an element with x # x’. Then, for anyy € L,
and y' € L, there exists no connected component A of L such that y € A and 3y’ € A.

Proof. We show statement 1 by induction on k. We have C; = {1}. Suppose Cy, = {(1,...,1)}. Let
w e {1,...,m¥** 1 NCiyq be any element. Since (¢ )«(Cri1) = Ck, we have pp(w) = (1,...,1) €
{1,...,m}*. Hence, wlk = (1,...,1) € {1,...,m}*. Since h; (L) N hj_l(L) = () for each j # 1,
we obtain w = (1,...,1) € {1,...,m}**!. Hence, the induction is completed. Therefore, we have
shown statement 1.

Since both (1,...1,1) € {1,...,m}**land (1,...,1,2) € {1,...,m}**! are mapped to (1,...,1) €
{1,...,m}* under ¢y, by statement 1 and Lemma 4.12, we obtain statement 2. For each k € N,

we have
L= ][ U hi'(L). (25)

CeC(|%]) we{l,....m}nC

Hence, by statement 2, we conclude that L has infinitely many connected components.

We now show statement 4. Let ko := min{l € N | 2] # 1}. Then, by (25) and statement 1, we
get that there exist compact sets By and By in L such that By N By = (), BiUBy, = L, L, C
(R¥)~Y(L) € By, and L, C h;,ll e h;;j (L) C Bs. Hence, statement 4 holds. O

0

We now demonstrate Theorem 2.27.
Proof of Theorem 2.27: By Theorem 2.20-1 or Remark 2.5, we have J =J. Let J; € J be the
element containing J(h,,). By Theorem 2.1, we must have Jy # J;. Then, by Theorem 2.7-1, we
have the following two possibilities.
Case 1. Jy < Ji.
Case 2. J; < Jp.

Suppose we have case 1. Then, by Proposition 2.24, we have that Jy = Juin and J; = Jpax.
Combining it with the assumption and Theorem 2.7-3, we obtain

m—1

U 75" (Jmax) € Junin- (26)
j=1

By (26) and Theorem 2.7-3, we get
m—1
U hg_l(‘](G» - Jmin~ (27)
j=1

Moreover, since J(hp,) N Jmin = @, Theorem 2.20-5b implies that

h;Ll(J(G)) N Jmin = @ (28)
Then, by (27) and (28), we get
hoL(J(G)) N mL_J hHJ(@)) | = 0. (29)

We now consider the backward self-similar set J(G) with respect to {hy, ..., hn}. By Lemma 3.1-2,

we have
J@&) = | (J(@)w (30)

WE

By Theorem 2.20-4 and Theorem 2.20-5b, we obtain (J(G))mee = J(hy,), where m> = (m,m,...) €
Yn. Combining this with (29), Lemma 4.13, and (30), we obtain

Jmax = (J(G))m“ = J(hm) (31)
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Furthermore, by (29) and Lemma 4.13, we get

1(JT) > No. (32)

Let x = (x1,22,...) € 3, be any element with z # m> and let [ := min{s € N | 5 # m}. Then,
by (27), we have

(J(G))e =

D3
>
0

B HI(G) € (Bl ) (Tanin)- (33)

J
Combining (30) with (31) and (33), we obtain

J(G) =JnaxU | ho(Jmin)- (34)
neNU{0}

By (32) and (34), we get #(J) = Ro. Moreover, combining (31), (34), Theorem 2.20-4 and The-
orem 2.20-5b, we get that for each J € J with J # Jmax, there exists no sequence {C}};en of
mutually distinct elements of J such that min.ec, d(z,J) — 0 as j — oo. Hence, all statements
of Theorem 2.27 are true, provided that we have case 1.

We now assume case 2: J; < Jy. Then, by Proposition 2.24, we have that Jy = Jyax and
J1 = Jmin. Since J(h;) C Jy for each j = 1,...,m — 1, and since Jy # Jmin, Theorem 2.20-5b
implies that for each j = 1,...,m — 1, h;j(J(hw)) C int(K(h.,)). Hence, for each j = 1,...,m,
hi(K(hm)) C K(hm). Therefore, int(K(hy,)) C F(G). Thus, we obtain (J(G))mee = J(hm).
Combining this with the same method as that of case 1, we obtain

Jmin - (J(G))m‘x’ - J(hm)a (35)
J(G) == Jmin U U h;ln(t]max)7 (36)
neNU{0}
and .
8(J) = Ro. (37)

Moreover, by (35) and (36), we get that for each J € J with J # Juin, there exists no sequence
{Cj}jen of mutually distinct elements of J such that min.cc, d(z,.J) — 0 as j — oo. Hence, we
have shown Theorem 2.27. O

We now demonstrate Proposition 2.28.
Proof of Proposition 2.28: Let 0 < € < 3 and let a;(2) := 2%, as(2) = (2 — €)? + ¢, and
as(z) == %22. If we take a large [ € N, then there exists an open neighborhood U of {0, e} with
U C {|z| < 1} and a neighborhood V of (o, ab, ak) in (Poly)? such that for each (hy, ha, hs) €V,
we have U?Zl h;j(U) Cc U and U?:1 C(hj) N C C U, where C(h;) denotes the set of all critical
points of h;. Then, by Remark 1.3, for each (hi, ha, h3) € V', (h1, he, hs) € G. Moreover, if we take

an [ large enough and V so small, then for each (hy, ho, h3) € V, we have that:
1. J(h1) < J(h3);
2. J(h1) U J(hga) is connected,;
3. hy ' (J(h3)) N (J(hy) U J(hg)) # 0, for each i = 1,2;

K2

4. S, h7l(A) C A, where A= {z € C| 1 <|z| <3} and

J=1""

5. h3t(A) N (U, bt (4) = 0.

i=1"%
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Combining statements 4 and 5 above, Lemma 3.1-6, and Lemma 3.1-2, we get that for each
(h1,ha,hs) € V, J({h1,ha, h3)) C Aand J({hy, he, h3)) is disconnected. Hence, for each (hy, ha, h3) €
V', we have (hy, ha, hg) € Gg;s. Combining it with statements 2 and 3 above and Theorem 2.27, it
follows that J(hy)UJ(ha) C Jo for some Jy € j<h1,h27h3>, h;l(J(hg))ﬂJo # () for each j = 1,2, and
ﬁ(j<h17h2’h3>) = N, for each (hq, he,hs) € V. Since J(h1) < J(hs), Theorem 2.27 implies that the
connected component Jy should be equal to Juin ((h1, ha, h3)), and that Jpax((h1, he, hs)) = J(hs).
Thus, we have proved Proposition 2.28. L]

We now show Proposition 2.29.
Proof of Proposition 2.29: In fact, we show the following claim:
Claim: There exists a polynomial semigroup G = (hq, he, hs) in G such that all of the following
hold.

1. #(J) = No.

2. Jmin D J(h1) U J(ha) and there exists a superattracting fixed point zy of hy with zg €
int(Jmin).

3. Jmax = J(h3).

4. There exists a sequence {n;};en of positive integers such that J = {Jumin} U{J; | j € N},
where J; denotes the element of J with hy "™ (Jmin) C Jj.

5. For any J € J with J # Jmax, there exists no sequence {C} } ;e of mutually distinct elements
of J such that min.ec, d(z,J) — 0 as j — oc.

6. G is sub-hyperbolic: i.e., #(P(G) N J(G)) < oo and P(G) N F(G) is compact.

To show the claim, let g1(z) be the second iterate of z — 22 — 1. Let go be a polynomial such that
J(g2) = {z | |z| = 1} and g2(—1) = —1. Then, we have g;(v/—1) =3 € C\ K(g1). Take a large,
positive integer my, and let a := ¢g7"* (v/—1). Then,

J((91" 1 92)) C {2 | |2 < a}. (38)

Furthermore, since a > 3 + ?, we have

(0i") {2 | |2l <a}) c{z] 2] < a}. (39)
Let g3 be a polynomial such that J(g3) = {z | |z2|] = a}. Since —1 is a superattracting fixed point
of g1 and it belongs to J(gz2), by [14, Theorem 4.1], we see that for any m € N,
1 e int(J((g7™, g7')))- (10)
Since J(g2) Nint(K(g7™)) # 0 and J(g2) N Fso (g7) # 0, we can take an my € N such that
(95) " ({2 ||zl = a}) N T ({g7™, 9572)) # 0 (41)
and
(92) ({2 | |2] < a}) c{z] 2] < a}. (42)
Take a small r > 0 such that
for each j =1,2,3, g;({z | |[2| <7}) C {z] |2| < r}. (43)
Take an mg such that
2
(g5 {= 1 el = (U 6) (= [zl < a}) = 0 (44)

J=1
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and
95°(=1) € {z | || <r}. (45)

Let K :={z|r <|z| < a}. Then, by (39), (42), (43) and (44), we have

2
(9;") " (K) C K, for j =1,2,3,and (¢5) "' (K) N (| J (") " (K)) = 0. (46)
j=1

Let hj := g; 7, for each j = 1,2,3, and let G' = (hy, ha, h3). Then, by (46) and Lemma 3.1-6, we
obtain:

J(G) C K and h3'(J(G))N (U hTH(J(G))) = 0. (47)

Combining it with Lemma 3.1-2, it follows that J(G) is disconnected. Furthermore, combining
(43) and (45), we see G € G, P(G) N J(G) = {-1}, and that P(G) N F(G) is compact. By
Proposition 2.24, there exists a j € {1,2,3} with J(h;) C Jmin. Since J(G) C K C {z | |2| < a}
and J(hg) = {z | |z| = a}, we have

J(h3) C Jmax- (48)

Hence, either J(h1) C Jmin or J(ha) C Jmin. Since J(h1) U J(he) is connected, it follows that

J(h1) U J(h2) C Jmin- (49)
Combining this with Theorem 2.7-3, we have h;l(Jmin) C Jumin, for each j = 1,2. Hence,

J((h1, h2)) C Jmin- (50)

Since /—1 € J(h2) and hy(v/—1) = a € J(h3), we obtain

B (I (hs)) O i # 0. (51)

Similarly, by (41) and (50), we obtain
h3H(J(hs)) N Jmin # 0. (52)

Combining (48), (51), (52), and Theorem 2.27, we obtain #(J) = No, Jmax = J(h3), J(G) =
Jmax U UneNu{o} h3™(Jmin), and that for any J € J with J # Jmax, there exists no sequence

{C;},en of mutually distinct elements of J such that min.cc, d(z,J) — 0 as j — oc.

Moreover, by (40) and (50) (or by Theorem 2.22-3), the superattracting fixed point —1 of hy
belongs to int(Jmin)-

Hence, we have shown the claim.

Therefore, we have proved Proposition 2.29. O]

4.5 Proofs of results in 2.5

In this section, we prove the results in section 2.5.

We now demonstrate Proposition 2.33.
Proof of Proposition 2.33: Since I' \ 'y, is not compact, there exists a sequence {h;};en
in I'\ T'min and an element hoy € I'min such that h; — ho as j — oo. By Theorem 2.20-5b,

for each j € N, h;j(K(hoo)) is included in a connected component U; of int(K(G)). Let 2z €

int(K(G)) (C int(K(hoo))) be a point. Then, heo(z1) € int(K(G)) and h;(z1) — heo(z1) as

~

j — oo. Hence, we may assume that there exists a connected component U of int(K(G)) such that
for each j € N, h;(K(hoo)) C U. Therefore, K(ho) = hoo(K(hs)) C U. Since U C K(h), we
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obtain K (he) = U. Since U C int(K (heo)) C U and U is connected, it follows that int(K (heo)) is
connected. Moreover, we have U C int(K (heo)) C int(U) C int(K(G)). Thus,

int(K(heo)) =U. (53)
Furthermore, since
J(hoo) < J(h;) for each j € N, (54)
and h; — he as j — oo, we obtain
J(hj) = J(hso) as j — o0, (55)

with respect to the Hausdorft metric. Combining that h; € I' \ I'yin for each j € N with Theo-

rem 2.20-4, (53), (54), and (55), we see that for each h € T'yyin, K(h) = K (hoo). Combining it with

(53), (54) and (55), it follows that statement 1 in Proposition 2.33 holds. To prove statement 2,

let h € T pin. Aplying the Riemann-Hurwitz formula to h : int(K(h)) — int(K (h)), we obtain that

each finite critical point of h belongs to int(K (h)). If h is hyperbolic, then by using quasiconformal

surgery ([3]), we can see that statement 2a holds. If & is not hyperbolic, then statement 2b holds.
Thus we have proved Proposition 2.33. O
To demonstrate Theorem 2.36, we need the following.

Lemma 4.14. Let G be a polynomial semigroup generated by a mon-empty compact set I' in
Polydeg>2. Suppose that G € Gais. Then, we have K(Gmm r)= K(G).

Proof. Since Gyin,r C G, we have K(G) - K(Gmin,p). Moreover, it is easy to see IA((Gm1 )=
mgeGmmr K(g). Let g € Gminr and h € T'\ Ippin. For each a € T'yyin, we have o™ (Jnin(G)) C
Jmin(G). Since #(Jmin(G)) > 3 (Theorem 2.20-5a), Lemma 3.1-6 implies that J(g) C Jmin(G).
Hence, from Theorem 2.20-5b, it follows that

h(J(9)) C int(K(G)) C int(K(g)). (56)

Since J(g) is connected and each connected component of int(K(g)) is simply connected, the
above (56) implies that h(K(g)) C K(g). Hence, we obtain A(K(Gmin,r)) = h(mgeGmm,r K(g)) C
mgeGm;n,r K(g) = K(Gmin,r). Combined with that a(K (Gmin,r)) C K(Gmin,r) for each a € Tyin,
i‘E follows that for each 3 € g, 6(K(Gmini[‘)) C K(Gmin,r)- Therefore, we obtain K(Gumin,r) C
K (G). Thus, it follows that K(Gmin,r) = K(G). O
Definition 4.15. LetAG be a rational semigroup and N a positive integer. We denote by SHy (G)
the set of points z € C satisfying that there exists a positive number § such that for each g € G,
deg(g : V — B(z,8)) < N, for each connected component V of g=!(B(z,6)). Moreover, we set
UH(G) := C\ Uyen SHN(G).

Lemma 4.16. Let G be a polynomial semigroup generated by a compact subset I' of Polygeg>2.
Suppose that G € Ggis and that T'\ Tin is not compact. Moreover, suppose that (a) in Proposi-
tion 2.33-2 holds. Then, there exists an open neighborhood U of T'nin in T' and an open set U in
int(K(G)) with U C int(K(Q)) such that:

1. Upey P(U) C U;
2. Upeu CV*(h) C U, and

3. denoting by H the polynomial semigroup generated by U, we have that P*(H) C int(K (G)) C
F(H) and that H is hyperbolic.
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Proof. Let hg € T'in be an element. Let € := {¢(2) = az+b| a,b € C,|a| = 1,%(J(ho)) = J(ho)}.
Then, by [2], £ is compact in Poly. Moreover, by [2], we have the following two claims:
Claim 1: If J(hg) is a round circle with the center by and radius r, then & = {1(z) = a(z—bo) +bo |
la] = r}.
Claim 2: If J(hg) is not a round circle, then € < co.

Let zp be the unique attracting fixed point of hy in C. Let g € Guinr. By [2], for each
n € N, there exists an 1, € & such that hllg = ,gh{. Hence, for each n € N, hilg(zy) =
Ynghy(20) = ¥ng(20). Combining it with Claim 1 and Claim 2, it follows that there exists an
n € N such that h(g(z0)) = 20. For this n, g(z0) = ¥, (h#(g(20))) = ¥, (20) € Uyee ¥(20).

Combining it with Claim 1 and Claim 2 again, we see that the set C' := U g . {9(20)} is

a compact subset of int(K(G)). Let dy be the hyperbolic distance on int(K(G)). Let R > 0
be a large number such that setting U := {z € int(K(G)) | mingec dg(z,a) < R}, we have
Uner,,,, CV*(h) C U. Then, for each h € I'min, h(U) C U. Therefore, there exists an open
neighborhood U of Tyin in T such that (J,c,, h(U) C U, and such that (J,,, CV*(h) C U. Let
H be the polynomial semigroup generated by . From the above argument, we obtain P*(H)
Uyert CV9) € Uyerogrns 9 Uner OV (1) € Uperopa 90) € T € int(K(G)) © F(H
Hence, H is hyperbolic. Thus, we have proved Lemma 4.16.

~—

O

We now demonstrate Theorem 2.36.
Proof of Theorem 2.36: Suppose that Gpin r is semi-hyperbolic. We will consider the following
two cases:
Case 1: T'\ Ty is compact.
Case 2: T'\ Ty is not compact.

Suppose that we have Case 1. Since UH (Gmin,r) C P(Gmin,r), Gmin,r € G, and Gumin r is semi-
hyperbolic, we obtain U H (G yin,r)NC C F(Gmimp)ﬂf((Gmin,r) :int(f((Gmin,p)). By Lemma 4.14,
we have K (Guinr) = K(G). Hence, we obtain

UH(Guyinr) NC C int(K(G)) C C\ Junin(G). (57)

Therefore, there exists a positive integer N and a positive number  such that for each z € Jyin(G)

and each h € Gin,r, we have
deg(h:V — D(z,6)) <N, (58)

for each connected component V of h=(D(z,d)). Moreover, combining Theorem 2.20-5b and The-
orem 2.20-2, we obtain U,erp,,, @' (Jmin(G)) N P*(G) = 0. Hence, there exists a number d; such
that for each 2 € U,epr,, a Y (Jmin(G)) and each g € G U {Id},

deg(ﬂ W= D(Z751)) =1, (59)

for each connected component W of 371(D(z,61)). For this 1, there exists a number d, > 0 such
that for each z € Jyin(G) and each o € T'\ T'yin,

diam B < 1, deg(a: B — D(z,02)) < max{deg(a) | « € '\ I'yin } (60)

for each connected component B of a~1(D(z,d3)). Furthermore, by [27, Lemma 1.10] (or [28]), we
have that there exists a constant 0 < ¢ < 1 such that for each z € Jyin(G), each b € Guinr U{Id},
and each connected component V of h=(D(z, ¢6)),

diam V' < ds. (61)

Let g € G be any element.
Suppose that g € Guin,r- Then, by (58), for each z € Jyin(G), we have deg(g : V — D(z,¢d)) <
N, for each connected component V of g=1(D(z, cd)).
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Suppose that g is of the form g = h o a o go, where h € Guin,r U {Id}, a € T'\ T'yin, and
go € GU{Id}. Then, combining (59), (60), and (61), we get that for each z € Jyin(G), deg(g : W —
D(z,¢6)) < N - max{deg(c) | @ € T'\ T'in }, for each connected component W of g=1(D(z, cd)).

From the above argument, we see that Jiyin(G) C SHy/(G), where N’ := N -max{deg(a) | a €
I'\T'1in }- Moreover, by Theorem 2.20-2, we see that for any point z € J(G)\ Jmin(G), z € SH1(G).
Hence, we have shown that J(G) C ¢ \ UH(Q). Therefore, G is semi-hyperbolic, provided that we
have Case 1.

We now suppose that we have Case 2. Then, by Proposition 2.33, we have that for each
h € Tmim, K(h) = K(G) and int(K (h)) is non-empty and connected. Moreover, for each h €
[pin, int(K(h)) is an immediate basin of an attracting fixed point z, € C. Let U be the open
neighborhood of Iy, in T' as in Lemma 4.16. Denoting by H the polynomial semigroup generated

by U, we have P*(H) C int(K(G)). Therefore, there exists a number ¢ > 0 such that
D(J(G),6) cC\ P(H). (62)

Moreover, combining Theorem 2.20-5b and that T'\ U is compact, we see that there exists a number
€ > 0 such that

U o' (DUmin(G),€)) C Ao, (63)
ael\U

where Ay denotes the unbounded component of C\ Jyin(G). Combining it with Theorem 2.20-2,
it follows that there exists a number d; > 0 such that

D| |J o' (D(Juin(G).€), & | CC\ PG). (64)
ael\U

For this 1, there exists a number 3 > 0 such that for each a € T'\ U and each x € D(Jyin(G), €),
diam B < ¢y, deg(a: B — D(x,d3)) < max{deg(p) | 6 € T\ U} (65)

for each connected component B of a~!(D(z,d2)). By Lemma 3.6 and (62), there exists a constant
¢ > 0 such that for each h € H and each z € Jyin(G),

diam V < min{ds, €}, (66)

for each connected component V of h=1(D(z,¢d)). Let z € Juyin(G) and g € G. We will show that
z€ C\UH(G).

Suppose that g € H. Then, (62) implies that for each connected component V of g=1(D(z, ¢d)),
deg(g: V — D(z,¢0)) = 1.

Suppose that g is of the form g = hoao gy, where h € HU {Id},a € T\ U, g0 € G U {Id}.
Let W be a connected component of g~!(D(z,¢d)) and let Wy := go(W) and V := a(W7). Let
21 be the point such that {z1} = VN h 7 ({z}). If 21 € C\ D(Jmin(G),€), then, by (66) and
Theorem 2.20-2, V' C D(z1,¢) C C\ P(G). Hence, deg(awo go : W — V) = 1, which implies that
deg(g: W — D(z,¢d)) = 1. If 21 € D(Jmin(G), €), then by (66), V C D(z1,02). Combining it with
(64) and (65), we obtain deg(awo gy : W — V) = deg(a : Wi — V) < max{deg() | 8 € T\ U}.
Therefore, deg(g : W — D(z,cd)) < max{deg(8) | 5 € I'\U}. Thus, Jnin(G) C C\UH(G).

Moreover, Theorem 2.20-2 implies that J(G) \ Jnin(G) C C\ P(G) € C\ UH(G). Therefore,
J(G) c C\ UH(G), which implies that G is semi-hyperbolic.

Thus, we have proved Theorem 2.36. O

We now demonstrate Theorem 2.37.
Proof of Theorem 2.37: We use the same argument as that in the proof of Theorem 2.36, but
we modify it as follows:
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1. In (57), we replace UH (Gin,r) N C by P*(Guinr)-
2. In (58), we replace N by 1.
3. We replace (60) by the following (60)’ diam B < §1, deg(a: B — D(z,62)) = 1.

4. We replace (65) by the following (65)’ diam B < §;, deg(a : B — D(z,d3)) = 1. (We take
the number € > 0 so small.)

With these modifications, it is easy to see that G is hyperbolic.
Thus, we have proved Theorem 2.37. O
We now prove Proposition 2.39.
Proof of Proposition 2.39: Combining Lemma 4.16 and Theorems 2.36, 2.37, it is easy to
see that Proposition 2.39 holds.

4.6 Proofs of results in 2.6

In this section, we prove the results in 2.6.
We now demonstrate Proposition 2.40.
Proof of Proposition 2.40: Conjugating G by z — z + b, we may assume that b = 0. For each
h €T, we set a, := a(h) and dj, := deg(h). Let r > 0 be a number such that D(0,r) C int(K(G)).
Let h € T and let @ > 0 be a number. Since d > 2 and (d,dy) # (2,2), it is easy to see that
(Z)F >2 (L(A)fh) ™ if and only if

lap| N

d(d — 1)dp, 1 lan| 1
1 ———(log2 — —1 — =1 . 67
oga < d—l—dh—dhd(Og a 08 pi ogr) (67)
€ st d(d—1)d 1 lan| 1
N - h _ ap 2
¢ := minexp (d+ - dhd(log2 o log = ~ g log 7’)> € (0,00). (68)

Let 0 < ¢ < ¢ be a small number and let @ € C be a number with 0 < |a| < ¢. Let g,(2) = az?.
Then, we obtain K(g,) = {z € C | |2]| < (ﬁ)dlj} and g;!({z € C | |2| = r}) = {# € C |

|z| = (ﬁ)%} Let D, := D(O,Z(i)d%l). Since h(z) = apz (1 + o(1)) (z — o) uniformly on

lal

T, it follows that if ¢ is small enough, then for any a € C with 0 < |a| < ¢ and for any h € T,
1
h=Y(D,) C {z eCllz|<2 (L(L)dlﬁ) n } . This implies that for each h € T,

lan] \al
h™'(Da) C g2 '({z € C [ [z <r}). (69)
Moreover, if ¢ is small enough, then for any a € C with 0 < |a| < ¢ and any h € T,
K(G) Cg;'({z€C| 2] <r}), M(C\ Dy) € C\ D (70)

Let a € C with 0 < |a| < ¢. By (69) and (70), there exists a compact neighborhood V of g, in
Polygeg>2, such that

K(G)U U r~Y(D,) C int ﬂ g '{zeC||zl<r}) |, and (71)
her gev
J m(C\D.)cC\D,, (72)

hel'uv
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which implies that X R
int(K(G)) U(C\ Do) C F(Hry), (73)

where Hr y denotes the polynomial semigroup generated by the family I' U V.
By (71), we obtain that for any non-empty subset V' of V,

K(G) = K(Hp,v), (74)

where Hp s denotes the polynomial semigroup generated by the family I' U V'. If the compact
neighborhood V of g, is so small, then

U CV*(g) C int(K(G)). (75)

gev

Since P*(G) C K’(GA), combining it with (74) and (75), we get that for any non-empty subset V'
of V, P*(Hr,v/) C K(Hr,y+). Therefore, for any non-empty subset V' of V, Hp v/ € G.

We now show that for any non-empty subset V' of V, J(Hp,y-) is disconnected and (TUV’)min C
I'. Let

U := | int( ﬂ gt {zeC ||zl <)) |\ U ht
gev hel
Then, for any h € T, .
h(U) Cc C\ D,. (76)

Moreover, for any g € V, g(U) C int(K(G)). Combining it with (73), (76), and Lemma 3.1-2, it
follows that U C F(Hyp,v). If the neighborhood V of g, is so small, then there exists an annulus
A in U such that for any g € V, A separates J(g) and U, cr h™*(J(g)). Hence, it follows that for
any non-empty subset V' of V, the polynomial semigroup Hrp - generated by the family ' U V'
satisfies that J(Hp ) is disconnected and (I' U V') pin C T

We now suppose that in addition to the assumption, G is semi-hyperbolic. Let V' be any
non-empty subset of V. Since (I' U W)min C I', Theorem 2.36 implies that the above Hrp y- is
semi-hyperbolic.

We now suppose that in addition to the assumption, G is hyperbolic. Let V’ be any non-empty
subset of V. By (74) and (75), we have

U ¢vi(y) cint(K(Hp ). (77)

geTuv7

Since (TUV”)min C T, combining it with (77) and Theorem 2.37, we obtain that Hr v is hyperbolic.
Thus, we have proved Proposition 2.40. L]

We now demonstrate Theorem 2.43.
Proof of Theorem 2.43: First, we show 1. Let » > 0 be a number such that D(b;,2r) C
int(K(hy)) for each j = 1,...,m. If we take ¢ > 0 so small, then for each (as,...,a,) € C™!
such that 0 < |aj| < ¢ for each j = 2,...,m, setting h;(z) = a;(z — b))% +b; (j =2,...,m), we
have
hj(K(h1)) C D(bj,r) Cint(K(h1)) (j =2,...,m). (78)

Hence, K(hi) = K(G), where G = (hy,...,hm). Moreover, by (78), we have P*(G) C K(hy).
Hence, G € G.

If (h;) is semi-hyperbolic, then using the same method as that of Case 1 in the proof of
Theorem 2.36, we obtain that G is semi-hyperbolic.

We now suppose that (h1) is hyperbolic. By (78), we have |Jj_, CV*(h;) C int(K(G)). Com-
bining it with the same method as that in the proof of Theorem 2.37, we obtain that G is hyperbolic.
Hence, we have proved statement 1.
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We now show statement 2. Suppose we have case (i). We may assume d,, > 3. Then, by
statement 1, there exists an element a > 0 such that setting h;(z) = a(z — b))% +b; (j =
2,...,m—1), Gy = (hy,...,hm_1) satisfies that Gy € G and K(Go) = K (hy) and if (hy) is semi-
hyperbolic (resp. hyperbolic), then Gg is semi-hyperbolic (resp. hyperbolic). Combining it with
Proposition 2.40, it follows that there exists an a,, > 0 such that setting h,,(2) = @y, (2—bym )™ +bpm,
G = (hy,. .., hy) satisfies that G € Ggis and K (G) = K(Go) = K (hy) and if Gy is semi-hyperbolic
(resp. hyperbolic), then G is semi-hyperbolic (resp. hyperbolic).

Suppose now we have case (ii). Then by Proposition 2.40, there exists an as > 0 such that
setting hj(z) = az(z —bj)*+b; (j =2,...,m), G = (h1,..., hm) = (h1, ho) satisfies that G € Gg;s
and K(G) = K(hy) and if (h;) is semi-hyperbolic (resp. hyperbolic), then G is semi-hyperbolic
(resp. hyperbolic).

Thus, we have proved Theorem 2.43. O

We now demonstrate Theorem 2.45.

Proof of Theorem 2.45: Statements 2 and 3 follow from Theorem 2.43.

We now show statement 1. By [31, Theorem 2.4.1], H,, and H,, N D,, are open.

We now show that H,, N B,, is open. In order to do that, let (hy,..., M) € Hp N By Let
€ > 0 such that D(P*({h1,...,hm)), 3€¢) C F({h1,...,hm)). By [27, Theorem 1.35], there exists
an n € N such that for each (iq,...,i,) € {1,...,m}"

)

h “hiy (D(P*({h1, ..., hm)), 2€)) C D(P*((h1,...,hm)), €/2).

Hence, there exists a neighborhood U of (hq, ..., Ay ) in (Polygeg>2)™ such that for each (g1, ..., gm)
U and each (i1,...,i,) € {1,...,m}",

Gin -+ Gir (D(P*((h1s - hm)), 2€)) C D(P*((ha, o, him)), €).

If U is small, then for each (g1,...,9m) € U, Uj=, CV*(g;) C D(P*({h1, ..., hm)), €). Hence, if U
is small enough, then for each (¢1,...,9m) € U, P*({g1,---,9m)) C D(P*({h1,...,hm)),€). Hence,
for each (g1,...,9m) €U, (g1,-..,9m) € G. Therefore, H,, N B, is open.

Thus, statement 1 holds.

Thus, we have proved Theorem 2.45. ]

References

[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series
in Higher Mathematics. McGraw-Hill Book Co., New York-Dusseldorf-Johannesburg, 1973.

[2] A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc. 22 (1990), 576-582.

[3] A.F. Beardon, Iteration of Rational Functions, Graduate Text of Mathematics 132, Springer-
Verlag, 1991.

[4] R. Briick, Geometric properties of Julia sets of the composition of polynomials of the form
22 + ¢, Pacific J. Math., 198 (2001), no. 2, 347-372.

[5] R. Briick, M. Biiger and S. Reitz, Random iterations of polynomials of the form 22 + cy:
Connectedness of Julia sets, Ergodic Theory Dynam. Systems, 19, (1999), No.5, 1221-1231.

[6] M. Biiger, Self-similarity of Julia sets of the composition of polynomials, Ergodic Theory
Dynam. Systems, 17 (1997), 1289-1297.

[7] M. Biiger, On the composition of polynomials of the form 2%+ c,, Math. Ann. 310 (1998), no.
4, 661-683.

[8] R. Devaney, An Introduction to Chaotic Dynamical Systems, Perseus Books, 1989.



Postcritically Bounded Polynomial Semigroups I 37

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, 1997.

J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam.
Systems, 11(1991), 687-708.

Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical
system, Ergodic Theory Dynam. Systems, (2003), 23, 1807-1815.

Z. Gong and F. Ren, A random dynamical system formed by infinitely many functions, Journal
of Fudan University, 35, 1996, 387-392.

A. Hinkkanen and G. J. Martin, The Dynamics of Semigroups of Rational Functions I, Proc.
London Math. Soc. (3)73(1996), 358-384.

A. Hinkkanen, G. J. Martin, Julia Sets of Rational Semigroups, Math. Z. 222, 1996, no.2,
161-169.

O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the plane, Springer-Verlag, 1973.

J. Milnor, Dynamics in One Complex Variable (Third Edition), Annals of Mathematical Stud-
ies, Number 160, Princeton University Press, 2006.

S. B. Nadler, Continuum Theory: An introduction, Marcel Dekker, 1992.
E. H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981.

R. Stankewitz, Completely invariant Julia sets of polynomial semigroups, Proc. Amer. Math.
Soc., 127, (1999), No. 10, 2889-2898.

R. Stankewitz, Completely invariant sets of normality for rational semigroups, Complex Vari-
ables Theory Appl., Vol. 40.(2000), 199-210.

R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS’s , Proc.
Amer. Math. Soc. 128, (2000), No. 9, 2569-2575.

R. Stankewitz, T. Sugawa, and H. Sumi, Some counterexamples in dynamics of rational semi-
groups, Annales Academiae Scientiarum Fennicae Mathematica Vol. 29, 2004, 357-366.

R. Stankewitz and H. Sumi, Structure of Julia sets of polynomial semigroups with bounded
finite posteritical set, Appl. Math. Comput. 187 (2007), no. 1, 479-488. (Proceedings paper of
a conference. This is not a full paper.)

R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of
posteritically bounded polynomial semigroups, to appear in Trans. Amer. Math. Soc.,
http://arxiv.org/abs/0708.3187.

N. Steinmetz, Rational Iteration, de Gruyter Studies in Mathematics 16, Walter de Gruyter,
1993.

D. Steinsaltz, Random logistic maps and Lyapunov exponents, Indag. Mathem., N. S.; 12 (4),
557-584, 2001.

H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew prod-
ucts, Ergodic Theory Dynam. Systems, (2001), 21, 563-603.

H. Sumi, A correction to the proof of a lemma in ‘Dynamics of sub-hyperbolic and semi-
hyperbolic rational semigroups and skew products’, Ergodic Theory Dynam. Systems, (2001),
21, 1275-1276.



Postcritically Bounded Polynomial Semigroups I 38

[29]

[30]

[31]

[32]

[33]

[34]

H. Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity,
13, (2000), 995-1019.

H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dy-
nam. Systems, (2006), 26, 893-922.

H. Sumi, On Dynamics of Hyperbolic Rational Semigroups, Journal of Mathematics of Kyoto
University, Vol. 37, No. 4, 1997, 717-733.

H. Sumi, Dimensions of Julia sets of expanding rational semigroups, Kodai Mathematical
Journal, Vol. 28, No. 2, 2005, pp390-422. (See also http://arxiv.org/abs/math.DS/0405522.)

H. Sumi, Random dynamics of polynomials and devil’s-staircase-like functions in the complex
plane, Applied Mathematics and Computation 187 (2007) pp489-500. (Proceedings paper of
a conference. This is not a full paper.)

H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyper-
bolicity, RIMS Kokyuroku 1494, 62-86, 2006. (Proceedings paper of a conference. This is not
a full paper.)

H. Sumi, Interaction cohomology of forward or backward self-similar systems, Adv. Math., 222
(2009) no.3, 729-781.

H. Sumi, Dynamics of postcritically bounded polynomial semigroups II: fiberwise dynamics and
the Julia sets, preprint, http://arxiv.org/abs/1007.0613.

H. Sumi, Dynamics of postcritically bounded polynomial semigroups I11: classification of semi-
hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, to
appear in Ergodic Theory Dynam. Systems, http://arxiv.org/abs/0811.4536.

H. Sumi, Random complex dynamics and semigroups of holomorphic maps, to appear in Proc.
London Math. Soc., http://arxiv.org/abs/0812.4483.

H. Sumi, Rational semigroups, random complex dynamics and singular functions on the com-
plex plane, survey article, to appear in Sugaku Expositions.

H. Sumi, Cooperation principle in random complex dynamics and singular functions on the
complex plane, to appear in RIMS Kokyuroku. (proceedings paper.)

H. Sumi, Cooperation principle, stability and bifurcation in random complexr dynamics,
preprint 2010, http://arxiv.org/abs/1008.3995.

H. Sumi, in preparation.

H. Sumi and M. Urbanski, The equilibrium states for semigroups of rational maps, Monatsh.
Math., 156 (2009), No. 4, 371-390.

H. Sumi and M. Urbariski, Real analyticity of Hausdorff dimension for expanding rational
semigroups, Ergodic Theory Dynam. Systems, (2010), Vol. 30, No. 2, 601-633.

H. Sumi and M. Urbanski, Measures and dimensions of Julia sets of semi-hyperbolic ra-
tional semigroups, to appear in Discrete and Continuous Dynamical Systems Ser. A,
http://arxiv.org/abs/0811.1809.

H. Sumi and M. Urbanski, Bowen parameter and Hausdorff dimension for expanding rational
semigroups, preprint 2009, http://arxiv.org/abs/0911.3727.

Y. Sun and C-C. Yang. On the connectivity of the Julia set of a finitely generated rational
semigroup, Proc. Amer. Math. Soc., Vol. 130, No. 1, 49-52, 2001.



Postcritically Bounded Polynomial Semigroups I 39

[48] W. Zhou, F. Ren, The Julia sets of the random iteration of rational functions, Chinese Sci.
Bull.,, 37(12), 1992, 969-971.

The author’s E-mail address: sumi@math.sci.osaka-u.ac.jp



