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Let ¥ < End(C). In the sequel, ¥ might be the sequence {f”'},.n of
iterates f" of a fixed function f € End(C), a semigroup G < End(C), or an
(infinite) subset of End(C). The Futou set (%) is defined as the set of all points
z € C which have an open neighborhood U such that the family {f1,|f € ¥} is
normal. As usual, the complement #(.%) := C\ZF (%) is called the Julia set of &
For some set T < C we write #(T) := {f(z)|f e ¥.ze T} and ¥ (T) := {ze C|
f(z)eT for some f e #}. Note that if & is a semigroup, then for each f e %
we have {f™},.n © &, and therefore # (&) < F({f™},cn) and £({f 7"}, eN) ©
F(&). Throughout this paper, let wy(z) denote the w-limit set with respect to
the semigroup & for some point - e C.

Let Q := U/»e}/.SV(f), i.e. the closure of the postsingular set. It is of great
importance whether or not the singular points in the Julia set of f are recur-
rent. For example, an irrationally indifferent cycle of a single rational or entire
transcendental function f requires at least one singular point in the Julia set of f to
be recurrent, cf. 11, 10]. The following lemma concerning the critical values can
be readily proved.

Lemma 1. Let G < End(C) be a (not necessarily finitely gencrated) semi-
group and {f;}, 4 a set of generators of G. that is to say. G = {{f;|Ae A})>. Then
we have

U cv(f) = U V() UGHCV ()
feG =y

Remark. Note that the semigroup G does not have to contain the identity,
thus the set of critical values corresponding to some critical point ¢ of some
feG consists of f(c) and the G-orbit of f(¢). For convenience, we define
G*:= GU{id}. Then the equation in the above lemma reads as follows:

U avif) = U G (cvf}h.
Jeq ‘eA

Definition 2 (SHy). Let G < End(C) be an entire semigroup and N € N.
We define SHy to be the set of all points ) € C such that there exists a
neighborhood U of zj satisfying the following condition:

For every f € G and every component K of /~'(U) the mapping flxk : K—U
is a proper mapping with deg(f|x: K — U) < N.

Remarks. 1. It is all important, that the neighborhood U does nor depend
on the function f e G.

2. Note that the above definition implies that U does not contain any
asymptotic value of any element f € G, since otherwise ¢g|; : K — U would not be
a proper mapping.

Definition 3 (semihyperbolic semigroup). An entire semigroup G < End(C) is
called semihyperbolic if and only if #(G) < ), _\SH

neN ne

This definition assures that each point zy € #(G) belongs to some SH, with
some neN. In other words, the degrees of the local branches of the inverse
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functions are bounded. Note that in many examples one can prove #(G) = SHy
for some fixed integer N. If, for example G < End(C) is a semihyperbolic
semigroup generated by a finite number of polynomials, then #(G)<=C is a
compact set and, consequently, #(G) = SHy for some N e N. However, there
are many examples of semigroups which are not semihyperbolic. For example, if
a polynomial f of degree at least two has an irrationally indifferent fixed point,
then it has at least one recurrent critical point in its Julia set. Consequently, every
semigroup containing such a polynomial cannot be semihyperbolic.

The main result of this paper gives a sufficient condition for a semigroup of
entire functions to be semihyperbolic.

Theorem 2 (Main Theorem). Le¢t an entire semigroup G = End(C) be gen-
erated by {f,},c, with some (not necessarily finite) index set A and a point
z0 € Z(G) satisfy all of the following conditions:

Al There exists some neighborhood U\ of zy such that for each infinite sequence
S < G and each component W of F (&) there exists some point { € W such
that w4 ()N U, = &,

A2 there exists some neighborhood U, of z¢ and some positive real number & such
that the set T := {ce C(f;)| e A. G*(f;(c)) N U, # &} is finite and for each
ceJ we have that ¢ e C(f;) implies y(c. G*(fi(c)\{c}) = &> 0.

A3 AV(G) c #(G) and F(G) # &.

Then zy € SHy for some N € N.

Remark. In this theorem, 7 :={ce C(f))|1e A, G*(fi(c))NU; # I} is
regarded as a subset of the plane, and, consequently, #.7 is the number of critical
points—counted without multiplicity—whose G*-orbit intersect U,.

Furthermore, we shall prove the following statement.

Corollary 3. Let an entire semigroup G < End(C) and some point zy € #(G)
satisfy the assumption of the above theorem. Let {w,},cN be a sequence of words
w, of strictly increasing length. Then zy has a neighbourhood U with the follow-
ing property: For each n e N, let K, be a connected component of f- Y(U). Then
lim diam(K,) = 0.

n— L

Clearly, the theorem yields:

Corollary 4. If a semigroup G satisfies the conditions A1-A3 for each
0 € 4(G), then G is semihyperbolic.

With the Main Theorem at hand one readily proves the following corollary,
compare (14, Lemma 1.14] and [10, Chapter 3].

Corollary 5. An entire semigroup G < End(C) satisfying the conditions A.1-
A.3 has no indifferent cycles.

By the maximum principle, a semigroup G < End(C) cannot have Herman
rings. Thus, a semihyperbolic semigroup G < End(C) has no parabolic cycle,
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Cremer points, Siegel discs, and Herman rings. Note that this does not imply,
that # (G) is the union of attracting basins. In fact, # (G) might have wandering
domains. Recall that this can even happen to polynomial semigroups.

Finally. with the same method of proof as used in order to establish Theorem
1.34 and Theorem 1.35 in [14], we obtain:

Theorem 6. Let G be a semihyperbolic entire semigroup without any elliptic
Mobius  transformations and not containing the Identity. If SV(G)N.F(G) is
compact and non empty, and, in addition, if therc is no point z € F(G) satisfviny
% € G(z), then G(z0)  Z(G) for each zg € F(G). Moreover, if G is generated by
{f:}, e with some finite index set A, then

lim sup {x(f,, (o). SV(G)NF(G))|w, e A"} = 0.

Note that this statement means, that each attractor of the dynamical system
defined by G is contained in SV(G)N.#(G). This phenomenon is known in the
theory of iterating single rational functions.

Outline of the proof of Theorem 6: Suppose that there exists a point zy € .# (G)
and a sequence {y,},.n = G satisfying

UneN .‘/n(:()) n/(G) ?é @

We may and will assume that there exists a point y € #(G) such that lim,_., -
gn(z0) = y. From the distortion lemma for proper mappings, cf. Lemma 8. and
its generalization, Lemma [.10 in [I4]. and the backward invariance of #(G)
we derive a contradiction. Hence we have G(_:”) < . Z(Q) for every zy e 7 (G).
From this result we can conclude the second statement of the theorem. For the
details, the reader is referred to the paper [14].

3. Limits for inverse mappings

In this section we shall prove the main result, Theorem 2. Both, the result
and the proof are motivated by the work of Maiié, cf. [11], and Carleson. Jones
and Yoccoz, cf. [3, Theorem 2.1, (D) = (B)]. In their proofs they made use of the
fact that Julia sets of rational functions or polynomials are compact subsets of
the complex sphere or plane, respectively. But in our setting we have to ‘localize’
the arguments. We adopt Mané’s idea of ‘admissible squares’. cf. [11], but several
modifications are required by the new setting, that is to say. by the fact that we are
dealing with entire semigroups but not with the iteration of a single function.

Proof:

(a) Admissible square. Let G < End(C) be an entire semigroup, =y € #(G).
and a neighbourhood U of z; such that the assumptions A.1-A.3 as given in
the Main Theorem are satisfied. In addition, we assume diam (U) < & Without
loss of generality we may and will assume U < U, N U,;. Choose ¢ > 0 such that
U contains an open square Q' of side length 40 and center zy as an relatively
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compact subset. There is a closed square Q” = Q' of side length 20 and center z.
In the sequel we shall assume all squares to have sides parallel to the sides of
Q" and to be closed. Let &€ Q" and Q) (&) the unique square of side length o
and center &, By construction, Q) (&) « Q' <« U. We call Q1(&) an admissible
square at level 1 (centered at &).

Now we proceed by induction. Let Q be an admissible square at level m (for
some m € N and centered at some & € Q") of side length ¢ = ¢-2!=". Then Q is
covered by 16 closed squares of side length a/4. Furthermore, there are 20 closed
squares of side length «/4 adjacent to Q. We call all these 36 squares admissible
at level m + 1; they will be denoted by Q,, 41, where g =1,...,36. The union of
these squares form a new square Q which we call the square attached to Q.
Clearly. the diameter of admissible or attached squares tends to zero as the level
tends to infinity. Each admissible and each attached square is a closed subset of
U. Note that for each level m there is an admissible square Q at level m with { as
an interior point (in fact, there are uncountably many).

(b) Idea of the proof of Theorem 2. The next Main Lemma states that if
some f-preimage S; (for some f € G) of some attached square is ‘large’ in diameter
then the degree of f|g, is ‘large’. Then we shall prove that if deg(f[s,) is ‘large’
then some image of Sy is ‘large’, cf Lemma 9. By induction one can prove that
the attached square has to be ‘large’, too. In other words: All preimages of an
admissible square are ‘small’ if the level is sufficiently high, that is to say, if the
admissible square is sufficiently small. Again using Lemma 9 we finally prove that
the degree of f restricted to some preimage Sy is ‘small’.

By assumption A.3 and after choosing U small enough, we may assume that
G(AV(G))NU = . Then f|,: V — W is a covering for each simply connected
domain W < U, each f e G, and each connected component ¥ of f~'(W). In
general. this covering will be a branched covering. In particular. the degree of the
mapping f|;-: V — W is always well defined and finite.

(¢) Main Lemma

Lemma 7. For given ¢ >0 and N € N there is some my € N such that the
Sfollowing holds: If Q is an admissible square at some level m > my with some center
in Q". Q the corresponding attached square, Sy a connected component of f Q)
for some f € G, and deg(f|s, : Sy — 0) < N. then diam(K) < ¢ for each connected
component K of 710) nsy.

Proof: Fix £¢>0 and N eN. If the lemma is false then there exists a
sequence {nmy}, N converging to oo, admissible squares Q,, ,, and functions f, €
G such that diam(Ky) = ¢ > 0 and deg(fklslk) < N for some connected component
Sy, of fk_](Qm_.,,,A) and some component Kj of f,'\,_l(Q,,k.,,,A)ﬂS/-k. In particular,
diam(S;) > &> 0. Suppose S;; contains a disc Dy of some fixed positive spherical
radius r. After transition to a suitable subsequence, we may and will assume
Dy — D with some disk D. Recall that f,(D) < U for every but finitely many
k eN. hence the sequence {filp}ien Iis bounded. The latter yields D <
F({filien). Let W be the component of F({f;};.n) containing D. After
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transition to a subsequence, we may and will assume the admissible squares Q,, ,,
to converge to some point £ e U. Actually, ¢ is the limit of the centers of Q,,
as k tends to co. By the definition of the Fatou set this yields the sequence of
functions f,|, to converge to the constant limit function g = ¢ uniformly on
compact subsets of W. This is a contradiction to assumption A.l.

Hence, limy;_, ., diam(D;) = 0, where D; denotes the maximal disc contained
in S;. and the following distortion lemma for proper mappings yields fk_l —
constant on Q,, ,, as k tends to oo.

Lemma 8 (Lemma 2.2 of [3]). For cvery positive integer N and every real
number r €0, 1 there exists a constant C depending on N and r, such that for every
proper selfinapping [ of the unit disc D of degree N and every zy e D

H(f(20).C) = f(H(z0.1)) = H(f(20),7)
holds.
Here, H(z,r) denotes the hyperbolic ball of radius r centered at z.

(d) Proof. Now we are prepared for the crucial part of the proof. Let d be
the cardinality of 77, which by assumption A.2 is finite. Choose N = 24 and

e < %(j_N For these two numbers. Lemma 7 gives an integer s € N.

Lemma 9. Let feG. in particular, f has a representation of the form
f=fi,0oof, with A..... ‘n€A. Let Bc U open, B' some component of
77 (B). and deg(f|z : B'— B) > N. Then there exists some ve{l,....n—1}
with diam(B,) > & where B,:= f; o---of, (B'), and deg(f; o---of, ||g:
B’ — B) < N.

Proof: Recall that d is the number of critical points of the generators f;
whose orbits intersect U. If deg(f|z) > N then there exists some v such that
B, :=f, . o---of, (B') contains a critical point ¢ of a generator f; with A€ A and
an element of the orbit G*(f;(¢)). By the definition of & we obtain diam(B,)
> ¢ We choose v to be maximal. Recall that we have assumed diam(U) < é.
Hence v <n. Then deg(f; 0o---of, . /g :B — B)<N.

Now, let n be the smallest integer such that there is some admissible square
Q := O, at level m > my with diam(K) > ¢ for some connected component K of
£71(Q). some f, € G, and some n-word we A". We have n > 1. Let Q be the
square attached to Q. Then Lemma 7 gives deg(f,.|s) > N for some connected
component S of f‘f'(Q). By Lemma 9 there exists some v satisfying | <v<n
such that diam(f;(S)) > & for the v-word 1w := (Wy_yy1,...,w,) € A". We write
S:=f(S) and 1= (wi.....w,_,). We have deg(f;l¢) <N and Sc< (/'
(Qi.m+1). Here the union is taken over the 36 - N preimages (there are 36 ad-
missible squares Qy 41 at level m+ 1 = my forming Q, and due to the bound on
the degree we have to take into account at most N branches of £'). This yields
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& < diam(f.(S)) < 36Ne. By definition, 36 Ne < & a contradiction. This proves
n = 00.

(e) Summary. For ¢ < ¢ := ﬁ < & arbitrarily small, let mg be as in Lemma

7. For each f € G, each admissible square Q, ,, with m > my. and each connected
component K of f"(Q,,{,,,, with some f € G, we have proved

diam(K) < e.
Lemma 9 yields
deg(flx) < N.
In particular, this completes the proof of { « Q < SHy.

We now turn our attention to Corollary 3. Let {w,},.n be a sequence of
words 1w, of strictly increasing length. In particular, the length is converging
to o0. Let O be the admissible square at level my centered at {, Ds({) c< Q. and
K, be a connected component of ./;;'(D(S(C)). Then as in the proof of the Main
lemma one shows that the inner diameter of f"l._"' (Q) converge to zero as n tends to
0. The distortion lemma for proper mappings, cf 8, yields lim diam(K,) = 0.
This completes the proof of the corollary. "

4. Examples for a semihyperbolic semigroups
In this section we present some examples of semihyperbolic semigroups.

Example 1. The first example is a semihyperbolic entire transcendental
semigroup which is not subhyperbolic. Recall that a semigroup G is called
subhyperbolic provided that the closure € of the postsingular set of G satisfies
#(2N #(G)) < oo. We consider the functions

3

£(z) = 2a(e" — e"’j); a>0 and
g(z) =plem = 1);  wel0. 1.

We begin with studying the function g. Clearly. the origin is an attracting fixed
point of g. Furthermore, it is the only singular value of ¢. In fact, it is an
asymptotic value of g. Note that ¢ is strictly monotonically increasing on the real
axis. Furthermore, for each xe]—oc,0[ we obtain —u < g(x) < 0. This proves
]-00.0] = 4;(0). Here A4,(0) denotes the immediate basin of attraction of the
origin with respect to the iteration of g. By looking at ¢’ one can prove the
existence of some J, >0 such that U:=D;(0)U{z=x+iy[-0 <x<0,
|v] <d,} is forward invariant with respect to g and, consequently. a subset of
A:(0). We fix £e]0,1[. Then for some sufficiently large ¢, € R the monotonicity

[
of g gives

N>a, = g(x) =

X, (1

[SSAIROS]
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Note that g is of finite type, in particular, ¢ has neither Baker domains nor
wandering domains. Thus the last formula implies [a,. o[ = J(g).

We now turn our attention to f. Clearly, the origin is a fixed point of f.
After choosing a €10, oo[ sufficiently large, we obtain

11(0)=6a>- e < 1.

This proves that the origin is an attracting fixed point of f, too. Note that f
is strictly monotonically increasing on R. In particular, for each x € ]—00.0[ we
obtain —2a-e™*" < f(x) < 0. This proves |—0.0] = A7(0).  Again one can find
some 0 €]0,d,] such that U := Ds(0)U{z=x+iy|—-00 <x<0,|yl <3} is also
forward invariant with respect to f and, consequently, a subset of A;(0). Note
that —2a-e ' €]—00.0] is the only asymptotic value of f, and that @ is the
only critical point of f. Let v:= f(a). For a sufficiently large and v > a, the
monotonicity of f gives

x>v= f(x) =

X. (2)

N W

This proves ws(x) = {oo} for each xe[c.0[. Note that f is of finite type, in
particular, it has neither Baker domains nor wandering domains. Thus [a. 0] <

).
Let G:=<{f,g). Clearly, G is an entire transcendental semigroup. By
construction,

wg(AV(G)) € ]-00,0] « U = 4(0) = .Z(G).
Furthermore we have

[p.00[ = #(9)U A (f) = #(G).
Let we {f.g}" be an n-word. By the equations (1) and (2) we obtain

ful) = G)‘ ()

In particular, this proves wg(v) = {o0}.
We summarize. First of all, we have SV(G) = R. Consequently,

C\R c SH]

Furthermore, Og(4AV(G)) c= #(G), and Og(CV(G)) is a discrete subset of
[v.0] = #(G). Combining the latter statement with equation (3) proves RN
F(G) « SHy. Altogether we have proved #(G) < SH,, in particular, G is
semihyperbolic. But Og(V) is not finite, in fact. both, Oy(v) and O,(v) are
infinite. Thus G is not subhyperbolic.

Example 2. This is an example for a semihyperbolic entire transcendental
semigroup such that its Julia set has empty interior.
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Let #:={zeC|Re(z) >0} and ¥ := {ze C|Re(z) < 0} the right and left
half plane, respectively. For some number ¢ €0, 1| we define f|(z) = te* — 1 and
fo(z) =t — 1. Let G:={f,,f,>. One readily proves

]}(3)2{:€C||:+1|<t}=:9cc$
and

VAGIES R

for each j=1,2 and z € &. This proves 2 <« ¥ = #(G). Clearly, CV(G) =&
and AV(f;) ={-1} = 2. This proves

G(SV(G)) cc & = F(G),

thus #(G) < SH;, in particular, G is semihyperbolic. We now turn our attention
to

Cramm. Int(#(G)) = &.

The main ingredient in the proof is the so-called ‘open set condition’.

Definition 4. Let G = {f|...., f,,> be a finitely generated semigroup. It is
said to satisfy the open set condition (with respect to the generators f,....f,) if
there exists some open set U < C such that the sets f,_'(U) are mutually disjoint
and j;._'(U) <= U holds for each generator f,.

We prove that in this example one can choose U := #£. We have already
shown f,(&£) = &, this yields

[7(A) = A
Let z:=x+iyeA. Then
l(m — Im (£5'(2))) mod2n|<g.

But

Im(f7'(z)) mod2r e [o,g] U [37” 1].

Hence, G satisfies the open set condition with respect to the generators f; and
fo- Note that fj(¥) =« 2 c< ¥ < #(G). The continuity of the generators f
and f, gives the existence of some open neighborhood (with respect to the complex
plane) of £ contained in #(G). This in turn implies #\ #(G) # &. The claim
now follows from [14, Prop. 4.3].

Note that Sumi has proved the proposition for rational semigroups, only.
But the reader will immediately see that the proof carries over to entire tran-
scendental semigroups.

Example 3. For some semigroup G and some polynomial f, let P(G) or P(f)
denotes the postcritical set of G respectively f. Let ¢ e C be a point such that
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ce #(f.) and that ¢ is not recurrent (with respect to f,) but wy (c) is infinite. In
particular. f,(z) = z% + ¢ is semihyperbolic but not subhyperbolic. Then P(f,)
F(f). Letg(z)=(z— a)* + a where a € C is a point such that #(f.) is included
in A4 (g) which is the connected component of % (g) containing co. Let U be
an open disk such that #(f.)U #(g) = U. There exists a number n € N such that

Uy e U, g(U)cU, f"(U)Ng™U)=¢, and f "(U) < A,.(g). Let
fi=f" fy=¢" and G ={f|, f>. Then G satisfies the open set condition with
the open set U. Hence the interior of #(G) is empty. This shows that the
assumption A.3 in the Main Theorem holds. By construction and the choice of n
we have P(G)N #(G)= P(f) and

P(G)NZF(G) = {a} U(P\U) cc= F(G).

So the assumption A.2 holds, too. For any zo € #(G) we have wg(zg) = {a, ©0}.
This proves that the assumption A.l is satisfied. By the Main Theorem we
conclude that G is semihyperbolic. Since f, is not subhyperbolic, G is not
subhyperbolic.
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