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L e t .9' OE E nd(C ). In  th e  sequel, .9 ' m igh t be  th e  sequence t r u fn e N  o f
iterates f ' "  o f  a  fixed function f  E End(C), a  semigroup G  End(C). or an
(infinite) subset of E nd(C ). The Fatou set g7 (91 is defined as the set of all points
z E C which have an open neighborhood U such that the  family {f i u l f c  Y } is
n o rm a l. As usual, the complement /(9 ') :=  C\37 (.9') is called the Julia set of .9'.
For some set T OE C we write ( T ) :=  {f (z )If E TI and ( T ) :=  {: E

f (z ) c T  for some f  c Y I .  Note that if .92 i s  a  semigroup, then for each f  c
we have {f ° "}„E N OE .9) , and therefore 37-' (.91 c #'({f"}„ E N ) and f ( { f " } „ E N )
/(5°). T h ro u g h o u t th is  paper, let (9,v(:) denote the w-limit set w ith respect to
the  semigroup  .9' for some p o in t  z e C.

Let Q : = U J E
 S V ( f ) ,  i.e. the closure of the postsingular set. It is of great

importance whether o r  n o t th e  singular po in ts  in  the  Ju lia  se t of f  a re  recur-
rent. For example, a n  irrationally indifferent cycle of a single rational o r entire
transcendental function f  requires at least one singular point in the Julia set o ff to
be recurrent, cf. [ 1 1, 101. The following lemma concerning the critical values can
be readily proved.

Lemma 1 .  L et G  c  End(C) be a  (not necessarily finitely generated) semi-
group and { f i l A E A  a se t of generators of  G. that is to say , G =  < I f »  c A I > .  Then
lie have

U  C V =  U  (CV ( fA ) U  G ({C V (L )})).
/cG ;:c4

R em ark . Note that the semigroup G does not have to contain the identity,
thus th e  se t o f  critical values corresponding to som e critical po in t c  o f  some
.f  G  consists of [ ( e )  a n d  t h e  G-orbit o f  f ( c ) .  F o r  convenience, we define
G* s  G U  {id }. Then the  equation in  th e  above lem m a reads a s  follows:

U  C V ( f )=  H  G*(1CV(f,)1).
e G ). EA

Definition 2 (SHN ). L et G OE End(C) b e  a n  entire semigroup a n d  N c N.
W e define SHN  t o  b e  th e  s e t  o f  a l l  points :0 E C such  tha t the re  ex ists  a
neighborhood U  o f :0  satisfying the  following condition:

For every f  E G and every component K of J . - 1 ( U ) the mapping fI K  : K U
is  a  proper mapping with deg (f I K  : K —> U) < N.

R em arks. I. I t  i s  a l l  important, tha t the neighborhood U does not depend
on  the  function f  c G.

2. Note th a t  th e  above definition im plies that U  does not contain any
asymptotic value of any element f  E G, since otherwise gl A , : K  —> U  would not be
a  proper mapping.

Definition 3 (semihyperbolic semigroup). A n entire semigroup G c  End(C) is
called semihyperholic if  and  only if  f (G )  OE UneN

This definition assures that each point zo c ( G )  belongs to some SH„ with
some n E N .  In  o ther w ords, the  degrees of the  loca l branches of the inverse
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functions are b o u n d ed . Note that in many examples one can prove f ( G )  S H N

f o r  som e fixed integer N .  If, fo r exam ple  G  E n d (C )  is  a semihyperbolic
semigroup generated by a  f in ite  num ber o f  polynom ials, then f(G) OE C  i s  a
com pact set and, consequently, /(G) OE SH N  f o r  some N  E N .  However, there
are many examples of semigroups which are not semihyperbolic. For example, if
a polynomial f  o f degree at least two has a n  irrationally indifferent fixed point,
then it has at least one recurrent critical point in its Julia set. Consequently, every
semigroup containing such a polynomial cannot be semihyperbolic.

The main result of this paper gives a  sufficient condition for a semigroup of
entire functions to be semihyperbolic.

Theorem 2 (Main Theorem). L e t an  entire sem igroup G OE End(C) he gen-
erated by  { f ) } , E A  w ith  som e (not necessarily  f inite) index  se t A  an d  a point
z0 E f (G ) satisf y  all o f  the following conditions:
A . 1  There exists some neighborhood U1 of  zo such that f o r each infinite sequence

OE G and each component W  of  317 (.9') there ex ists som e point c W  such
that co,v () n u1 = 0,

A .2  there exists some neighborhood U 2 of z 0  and some positive real num ber such
that the set 3-  := f e  E  C (L ) 2  c A ,G*(f ,l (c)) n U2 0 is f inite and for each

,?-7  w e hav e that e E C (f )'p implies z(c, G* (c )) \{ c } )  > > 0.
A .3  A V  (G ) . 97;(G ) and . f  0  Ø .
Then zo c SHN f o r som e N  E N.

Rem ark. I n  this theorem, := {c E C (L )  À  c A , G*(f (c)) n U 2  0  }  is
regarded as a subset of the plane, and, consequently. # ,T  is the number of critical
points counted without multiplicity—whose G*-orbit intersect U2.

Furthermore, we shall prove the following statement.

Corollary 3. L et an entire semigroup G OE End(C) and some point 1. 0  E / ( G )
satisfy  the assum ption of  the above theorem . L et { w „ } f l E N  b e  a sequence of words
w„ of strictly increasing length. T hen z o has a neighbourhood U  w ith the follow-
ing property: For each n c N , let K,„ be a  connected component of  fZ i ( U). T h e n
lim diam(K„) = 0.

Clearly, the  theorem yields:

C orollary 4. If  a sem igroup  G  satisf ies th e  conditions A.1-A.3 f or each
zo( G ) ,  t h e n  G  is semihyperbolic.

With the Main Theorem at hand one readily proves the following corollary,
compare [14, Lemma 1.141 an d  [1 0 , Chapter 3].

Corollary 5. A n entire semigroup G  End(C) satisfying the conditions A .l -
A.3 has no  indifferent cycles.

B y  th e  maximum princip le , a  semigroup G  End(C) c a n n o t have Herm an
rings. T h u s , a  semihyperbolic semigroup G OE End(C) h a s  n o  p a r a b o lic  cycle,
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Cremer points, Siegel discs, a n d  Herman rings. N o t e  that this does not imply,
that . (G) is the union of attracting b a s in s . In fact, .*7 (G) might have wandering
dom ains. R ecall that this can even happen to  polynomial semigroups.

Finally, with the same method of proof as used in order to establish Theorem
1.34 and  Theorem 1.35 in [14], we obtain:

Theorem 6. Let G  be  a semihyperbolic entire semigroup w ithout any  elliptic
transf o rm atio n s an d  no t co n tain in g  th e  Iden tity . If   SV(G) f1,97  (G )  is

com pact and non em pty , and, in addition, if  there  is no point z c . (G ) satisfying
coE G(z), then G(z o ) OE :97  (G) f or each  z  E ,F ( G ) .  M oreover, if G  is generated by
f a . e i i  w ith  som e .f inite index  set A , then

lim  sup lx (f ,,(z o ), S V (G )nF(G ))1ii ,„ E A "}  = 0.

N o te  that th is sta tem ent m eans, tha t each  a ttrac tor of th e  dynamical system
defined by G is contained in  SV (G)n ,9- 7 (G ) .  This phenomenon is known in the
theory o f  iterating single rational functions.

Outline of  the proof  of  Theorem  6: Suppose that there exists a point ,70 c
a n d  a  sequence {g„}„E N G  satisfying

U,, E N (1,(:())n f ( G) O.

W e m ay and will assume that there exists a  p o in t y c  (G ) such that lim „_,•
g„(zo) = y. From  the distortion lemma for proper mappings, cf. Lemma 8, and
its generalization, Lemma 1.10 in  [14]. and  the  backward invariance of  J( G )
we derive a  con trad ic tion . Hence we have G( - o) OE .Y- 7 (G ) fo r every 2 0 c
From this result we can conclude the second statement of the th e o re m . For the
details, the  reader is referred to the  paper [14].

3. Limits for inverse mappings

In  this section we shall prove the m ain result, Theorem  2. Both, the result
and the proof are motivated by the work of Marié, cf. [11], and Carleson. Jones
and Yoccoz, cf. [3, Theorem 2.1, (D) ( B ) ] .  In their proofs they made use of the
fact that Julia  sets of rational functions o r  polynomials a re  compact subsets of
the complex sphere or plane, respectively. But in our setting we have to 'localize'
the argum ents. We adopt Marié's idea of 'admissible squares', cf. [11], but several
modifications are required by the new setting, that is to say, by the fact that we are
dealing with entire semigroups bu t not w ith the  iteration of a  single function.

Proof
(a) Admissible square. L et G  End(C) be  a n  entire semigroup, E  f ( G ) ,

a n d  a  neighbourhood U  of z o su c h  th a t  the  assumptions A.1—A.3 a s  given in
the Main Theorem are satisfied. I n  addition, we assume diam ( U )  < k . Without
loss of generality we may and will assume U  U lf ) U ) .  Choose a > 0  such that
U  contains an open square Q ' of side length 4a and  center z o a s  a n  relatively



210 Hartje Kriete and Hiroki Sumi

compact subset. There is a  closed square Q "  Q '  of side length 2u and center : 0 .
In  the  sequel we shall assume a ll squares to have sides parallel to th e  sides of
Q " and to  be  c losed . L e t  c  Q " and Q 1,1() the unique square of side length a
and center c . B y construction, Q1,1() Q' OE U. We call Q 1,1( ) an admissible
square at lev el 1 (centered at

Now we proceed by induction. L et Q be an admissible square at level ni (for
some ni E N  and centered at som e E  Q ") of side length a  a  2 1- 1??. T h e n  Q is
covered by 16 closed squares of side length a/4. Furthermore, there are 20 closed
squares of side length a/4 adjacent to  Q .  We call all these 36 squares admissible
at level m +1; they will be denoted by Q,,,„, + 1, where it 1, ,  3 6 .  The union of
these squares form  a  new  square  -0 , w h ich  w e  ca ll th e  square attached to Q.
Clearly, the diameter of admissible or attached squares tends to  zero as the level
tends to infinity. E a c h  admissible and each attached square is a  closed subset of
U .  Note that for each level ni there is an admissible square Q at level in with (",  as
a n  interior point (in fact, there are uncountably many).

(b) Idea of the proof of Theorem 2. T he next M ain  Lem m a states that if
some f-preimage S t (for some f  c  G) of some attached square is 'large' in diameter
then the degree of f I st is 'large'. T hen  w e shall p rove that if deg(f 51 ) is 'large'
then some image of Sf is 'large', cf L em m a 9 . B y  induction one can prove that
the attached square has to  be 'large ', too. In  other words: All preimages of an
admissible square are 'sm all' if the level is sufficiently high, tha t is  to  say, if the
admissible square is sufficiently small. Again using Lemma 9 we finally prove that
the degree of f  restricted to some preimage S i .  is 'small'.

By assumption A.3 and after choosing U small enough, we may assume that
G(AV(G))r1U =  Ø .  T h e n  p i, : V —> W is a covering for each simply connected
d o m a in  W  U, each f E  G , and each connected component V of (  W ) .  I n
general, this covering will be a branched covering. In particular, the degree of the
mapping fl r , : V —> W is always well defined and  finite.

(c) Main Lemma

Lemma 7. For giv en e > 0  and N  E N  there is som e mo c  N  such that the
following holds: I f  Q is an admissible square at some level ni > mo w ith sonie center
in  Q", Q  the corresponding attached square, Sf a  connected component of  I - 1 (0)
for som e f E  G, and deg(fi s ,  : sj . N, then d ia m ( K )  c Ibr each connected
component K  (y. ( Q )  n Sf.

P ro o f  F ix  e > 0  a n d  N E N .  I f  th e  lem m a is fa lse  then there  exists a
sequence { ink }k E N  converging to oo, admissible squares and functions f k.

G such that diam(Kk) >  e >  0  and deg(.4. <  N  for some connected component
Sfk o f  f k a n d  some component K k  O f  fk - 1 ( Q it h , m h ) n St . In particular,-1  -

diam(SA) > e > 0. Suppose SI., contains a disc Dk of some fixed positive spherical
radius r. A fter transition to a  suitable subsequence, we may and  w ill assume
D .  - >  D  with some disk D .  Recall that J ( D )  U  for every bu t finitely many
k E N , h en ce  th e  seq u en ce  If ;J„} k E N  i s  b o u n d e d .  T h e  la t te r  y ie ld s  D

({.10 k EN). L e t  W  b e  th e  component of . ( { t i  e  N ) contain ing D .  After
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transition to a  subsequence, we may and will assume the admissible squares Q„k . „,k

to  converge to some p o in t  E  U .  Actually, ç is the lim it of the centers of Q„,.„,k

as k  tends to  c o . B y  the definition of the Fatou set this yields the sequence of
functions Al w  t o  converge t o  the constant lim it function g ==_ uniformly on
compact subsets o f  W . T h is  is  a  contradiction to assumption A.I.

Hence, limk„ diam(D k ) = 0, where D k  denotes the maximal disc contained
in  SA ,  a n d  th e  following distortion lemma fo r  proper m appings yields f1: 1 -+
constant on a s  k  tends to co.

Lemma 8 (Lemma 2.2 o f  [3 ]) . For ev ery  positiv e integer N  and every  real
num ber r e 10, 1[ there ex ists a constant C depending on N  and r, such that f or every
proper self inapping f  of  the unit disc D of  degree N  and every  ..70 E D

I-1(f (fo), C) OE f(H(zo, r)) OE 11 (f (=o),

holds.

Here, H (:, r)  denotes the  hyperbolic ball of radius r  centered at :o.

(d) P roof. Now we are prepared for the crucial part of the p r o o f .  Let d be
the cardinality  of g", which by assumption A.2 is finite. C h o o s e  N  = 2 "  and

c  < 
3 6 N

. F o r  these two numbers, Lemma 7 gives a n  integer mo c N.

Lemma 9. L e t f  E G . in  p art ic u lar,  f  h as  a  representation o f  th e  form
f  =  L 1 0 • • •o f

, ,  
w ith il l . . . . e A .  L e t B OE U open, B ' som e com ponent of

f - I (B ) , an d  deg(P B , : B' B ) > N .  T hen  there  ex ists  som e  r c {1, . . . . n  -
w ith  diam(B,,) > L w h e re  B ,:=  f  0  •  •  •  0  f ( B ' ) ,  an d  deg(f)' o • • • o . f
B ' B )  <  N.

P r o o f  Recall that d  is  the  number o f critical po in ts of the  generators L
whose orbits intersect U .  If deg(f1 8 ,) >  N  then there exists som e y such that

:= o • • • o ‘f ) , (B ') contains a critical point c of a generator f ;‘, with 2 e A  and
a n  element o f  th e  o rb it G *(f),(e)). B y the  definition of we obtain diam(B,.)
>  L  W e choose v to be m ax im a l. Recall that we have assumed diam(U) < L
Hence v < n. Then deg(f,] , o • • • o f : B, B) N.

Now, let n  be the smallest integer such that there is some admissible square
Q  := Qum ,  at level ni > m o  with diam(K) > c for some connected component K  of
47 1(Q), some f, E G, and some n-word w e  A " .  W e have n  > 1. L e t  -0  be the
square attached to Q .  Then Lemma 7 gives deg(f,,,I s ) >  N  fo r some connected
component S  of f ,7 1(0 ) .  By Lemma 9 there exists some v satisfying 1 < v < n
such that diam (f i,(S)) >  for the v-word : =  w n )  e  . We write

f ] ( S )  and =  (Iv ] , w „ „ ) .  W e  h a v e  d e g ( 1 )  <  N  a n d  S  U  •
(2 , , 1 +1 ). H e r e  the union is taken over the 36 • N  preimages (there are  36 ad-
missible squares Q +1 a t level in  +1 > m o  form ing 0 ,  and duc to  the bound on
the degree we have to take into account at most N  branches of .f117 1). T h i s  yields
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diam(f,T,(S ))  <  3 6 N e . By definition, 36Ne e ,  a  contradiction. This proves
n = c i .

(e) Sum m ary . For E  <  E o  := < ë  arbitrarily small, let m o be  as in Lemma
36N

7. For each f  e G, each admissible square Q1,.„, with ni > m o , and each connected
component K  of f -  I ( Qp ,„, ) w ith  som e f  E G , w e have proved

d ia m ( K )  e.

Lemma 9 yields

d e g ( f )  <  N.

In  particular, this completes the proof of COEQOE SHN .

W e now  turn our attention to  C o ro lla ry  3 . Let {w„}„ E N  b e  a  sequence of
w ords w „ o f  strictly increasing length. In  particu lar, the  length is converging
to  o o .  Let Q be the admissible square at level mo centered at D6(4') c c  Q . and
K „ be a  connected component of J,T,

I ( / ) ( C ) ) .  Then as in  the proof of the Main
lemma one shows that the inner diameter of f , - i (Q) converge to zero as n tends to
oo. The distortion lemma for proper mappings, c f  8 , yields lim diam(K„) 0 .

n—>
This completes the  proof of the  corollary.

4. Examples for a semihyperbolic semigroups

In  th is section we present some examples of semihyperbolic semigroups.

E x a m p le  1 . T h e  first exam ple  is  a sem ihyperbolic entire transcendental
sem igroup w hich is not subhyperbolic . R ecall that a  sem igroup G  is called
subhyperbolic provided that the closure Q  of the postsingular set of G  satisfies
# (52 n f  (G ))  < o o . We consider the  functions

f ( : )  := 2a(e ( ' " ) 1  -  e - "3 ); a  > 0 and

:= p(e. - 1); p c 10, 1 [.

We begin with studying the function g. Clearly, the origin is an  attracting fixed
poin t o f g. Furtherm ore, it is th e  only singular value of g. In  fac t, i t  is  an
asymptotic value of g. Note that g is strictly monotonically increasing on the real
axis. Furthermore, for each x e ]- oo,0[ we obtain -p  < g (x ) < 0. This proves
]-- co. 0] A *(0). H e r e  A' (0) denotes the  immediate basin of attraction of the
origin with respect to  the  iteration o f  g. B y looking at g '  one can prove the
ex is ten ce  o f  s o m e  6 „  >  0  s u c h  th a t  U := (0) U =  x  +  i y  -  < .v G  0,
11'1 < g }

/1,-; (0). We fix p e 10, 1 [. Then for some sufficiently large a„ c R the monotonicity
o f g  gives

3
>  u„ g(x) 5 .v.

is forward invariant w ith respect to g  and , consequently. a  subset of

(1 )
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N ote th a t g  is  o f  finite type, in particular, g  has neither Baker domains nor
wandering dom ains. Thus the  last formula implies [ao . oo[ J ( g ) .

W e now  turn  our attention to f  Clearly, the  origin is a  fixed point o f  f
After choosing a E ]0, co [ sufficiently large, we obtain

f '(0) = 6a 3 • e- 1̀3 <  I.

This proves that the  origin is a n  attracting fixed p o in t  o f  f  too. N ote that f
is strictly monotonically increasing on  R .  In particular, for each x e ]- po. 0[ we
obtain -2a • e- " 3 <  f (x ) 0. This proves ] - 0 ]  O E  A ; (0 ) .  Again one can find
some (5 e ]0, (5g ]  su c h  th a t U := D6(0) U {z = x y  -  co <  <  0 , < (5} is also
forward invariant w ith respect to f  and, consequently, a  subset o f A ; (0 ) .  Note
th a t  - 2 a  e - "3 ] -  o o ,  0 ]  is  th e  only asymptotic value of f ,  a n d  th a t a  is  the
only critical point of f. Let y := f (a). F or a  sufficiently large and  y > ai l th e
monotonicity of f  gives

3x > y f (X ) > - x .
-  2

This proves (of  (x) = {cc} f o r  each x e [c, co[. N ote that f  is  o f  finite type, in
particular, it has neither Baker domains nor wandering domains. Thus [a. x,[
f ( f ) .

L e t  G < f, g > . C learly, G  i s  a n  entire transcendental sem igroup. By
construction,

coG(A V (G)) 1- oo 0] OE U OE AG(0) OE (G).

Furthermore we have

[y, op [ f (g )  U  f  ( f )  f  ( G ) .

Let w e f f ,g 1 "  be  a n  n -w o rd . By the  equations (1) and (2) we obtain

f ( v )  >  ( -3 ) n

-  2 (3 )

In particular, this proves coG (v) =  {  } .
W e sum m arize. F irst o f a ll, we have SV (G) OE R. Consequently,

C\R

Furthermore, OG (A V(G)) OEŒ ,*--,. (G ),  a n d  OG (C V (G ))  i s  a  discrete subset of
[t]. co [ OE / (G ).  C o m b in in g  th e  latter statem ent w ith equation (3) proves Rn
/ ( G )  S H 2 .  A ltogether w e h a v e  p roved  / (G )  S H 2 ,  in  p a r tic u la r . G  is
semihyperbolic. B u t OG( V )  is  no t f in ite , in  fa c t , b o th , 01 (u ) a n d  0 9 (v ) are
infinite. T h u s  G  is not subhyperbolic.

Example 2 .  T h is is  a n  example for a semihyperbolic entire transcendental
semigroup such that its Julia  set has empty interior.

(2)
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Let 4 := { z  e CIR e (z) > Of and  Y  :=  { z  CIRe (z) <O } th e  right and  left
half plane, respectively. For some number t c JO, I[ we define f ] (z) te : -  1 and
f 2 (z) =  tez+'i -  1. L et G := f 2 > .  O ne readily proves

ff (Y) = {z c + 1  < t} =: g  cOE

and

Ifii(z)1 ' <

for each j  = 1,2 and  z E 2 .  This proves 9 c z -.F ( G ) .  Clearly, CV (G) =
and A V (4) = {-1 } c  . 9 .  This proves

G(SV(G)) OEOE

thus /(G) OE SH1, in particular, G is semihyperbolic. W e now turn our attention
to

CLAIM. Int(/ (G)) = Ø .
The m ain ingredient in  the  proof is the  so-called 'open set condition'.

Definition 4. L et G = f „> b e  a  finitely generated semigroup. It is
said to satisfy the open set condition (with respect to  the generators f ]  f n) if
there exists some open set U  C such that the sets 4 -1 ( U ) are mutually disjoint
and f - 1 (U) U  holds fo r each generator 4.

W e prove that in  this example one can choose U := 4 .  W e have already
shown f ( y ) ,  this yields

.15-1 ( : ),---9 )  O E  4 .

L et z  := x + i y  M .  Then

1(n — Ina i I (z)))
 mod 27r1 < -

2  ]

But

Im  ( f  ( z ) )  mod 27-c c [0 7 ] u  H3n  1' 2 2

Hence, G  satisfies the open set condition w ith respect to  the  generators f ,  and
f 2 . N ote tha t f f (Y )  g  c  c  ,F ( G ) .  The continuity o f the  generators f ]

and f 2 gives the existence of some open neighborhood (with respect to the complex
plane) of Y  contained in . (G ) .  This in turn implies .4 \ / (G) 0 .  The claim
now follows from [14, Prop. 4.3].

N ote th a t Sumi has proved the proposition for rational semigroups, only.
B ut the  reader will immediately see that the  proof carries over to entire tran-
scendental semigroups.

Example 3. For some semigroup G and some polynomial f  let P(G) or P(f )
denotes the  postcritical se t o f G  respectively f  L et c E C  be  a  po in t such that
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c e / ( J . ))  and th a t e is not recurrent (w ith respect to  f . )  but con (c ) is infinite. In
particular, f (z ) =  z 2 +  c  is  semihyperbolic but n o t subhyperbo lic . Then P (f . )

/ (J , ). L e t  g(z) = (z — a) 2 +  a where a E C  is a point such that / ( J . )  is included
in  A c, (g )  w hich is the connected com ponent of Y ;(g ) containing cc. L e t  U  be
an open disk such that / ( f . ) U /(g) c  U .  There exists a number n c N  such that
j ( U ) OE U , g - n(U ) OE U ,  f 7 5 ( n g - n (u ) =  0 , an d  4 ' (U )  c  A , ( g ) .  Let

_  fn , f 2 g n ,  and G = f 2 > -  T hen G satisfies the open set condition with
the open set U .  H ence  the in te rio r of / (G )  i s  e m p t y .  This shows th a t  the
assumption A .3 in the Main Theorem  holds. B y construction and the choice of n
w e have P(G ) f l  / (G ) =  P (f )  and

P (G ) f l  (G )  OE {a} U (P 1\ U )  c c  (G ) .

So the assumption A .2 h o ld s , to o . For any zo 97 (G ) we have coG(zo) OE {a. °o}.
This p ro v e s  th a t the assum ption A .1  is satisfied. B y  the M ain  Theorem we
c o n c lu d e  th a t G  i s  sem ihyperbo lic . Since f  i s  n o t  subhyperbolic, G  is  n o t
subhyperbolic.
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