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Semihyperbolic transcendental semigroups

By

Hartje KRIETE and H iroki Sum

Abstract

This paper deals with semihyperbolic semigroups which are generated by entire (possibly transcendental)
func tions. In  pa rticu la r, a  criterion is given assuring that a  given entire semigroup is semihyperbolic.
N ote that a semihyperbolic semigroup G admits holomorphic scaling, that is to say, the branches of local
inverses of functions f  a  G  a re  of bounded degree  and  that the preim ages shrink  to  zero  in  diameter.

1. Introduction

For long years the notion 'complex dynamics' has been associated with the
dynamics of groups of Möbius transformations or with the iteration of rational or
transcendental functions. Few years ago, H inkkanen and M artin have initiated
the study of rational semigroups, that is to say, semigroups generated by rational
functions or polynom ials. In  particular, each rational semigroup G is a  subset of
End(13

1), the set of holomorphic endomor'phisms of the complex sphere P 1 . T o
each rational semigroup G  one can attach its Julia set, / ( G ) .  a n d  its Fatou set.
37 7 (G ) .  We refer the reader to the second chapter for the precise definitions. The
purpose of the present paper is to give a  sufficient condition which assures a given
entire semigroup, that is to say, a semigroup G OE End(C), to have the  property
known as holomorphic scaling'. Roughly speaking, this m eans that the branches
of local inverses of functions f  c  G are of bounded degree, and that the preimages
sh rin k  to  z e ro  in  d iam ete r. W e re fe r th e  re a d e r  to  th e  M a in  Theorem, cf.
Theorem 2 in  §2, for the precise statement. This paper is organized a s  follows.
In  the  next chapter we recall some basic notions and  no ta tions. There we will
also state  the  M ain  T h eo rem . In  th e  third chapter w e give th e  proof o f  this
main result. F in a lly ,  in the last chapter we give examples of entire transcendental
semigroup which are semihyperbolic. This paper is based on earlier work of the
authors: [10, 14].

2. Notations and basic facts

First, we set up some notations. For basic facts on iteration of rational (and,
more generally, meromorphic) functions and the definitions of Julia sets and Fatou
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sets we refer the  reader to  the monographs [1, 2, 13] a n d  to  the lecture notes
[12]. S em igroups o f rational functions o r  polynomials have been first studied by
A im o H inkkanen and G aven M artin , for further details we refer to their fun-
d a m e n ta l w o rk  [8 , 7 , 6 , 9 , 5 ] . T he  dynamics of semigroups of meromorphic
functions have been studied in [4].

Let x(- , •) denote the chordal m etric on the Riemann sphere P I . and le t T
P i . W e  w rite

z (z ,T ) = x (T , f) := inf{z(z, w) u' ETI,

where z  P I ,  and  define

diam( T ):= sup {z(z, w)lz, w E T} .

F o r  som e num ber > 0  let Di/ (z) := E P1 I x(:,) < Ill a n d  U,I (T ) :=

U z e T p q ( 2 .) =  { :  6  P 1
 lx ( :,T )< /7}. The terms 'closure o f  T ',  'boundary  o f  T '.

and 'interior of T ' refer to the closure, boundary, and interior of T  with respect to
the  topology induced by x. W e w rite  T  o r  c l(T ) fo r the  closure o f  T. OT for
the  boundary o f  T , and int (T )  for the  interior o f  T.

Throughout this paper, f  denotes a n  entire function, in  other words, f  is  a
holomorphic m apping from  th e  com plex  p lane  C  in to  itse lf. C learly , f  i s  a
polynomial or an entire transcendental mapping: f  E E n d (C ) . For a m om ent we
fix an entire function f :  C —> C .  Throughout this paper, CV (f  )  denotes the set
of critical values o f f  and A V (f ) the set of asymptotic values of f: All important
for dynamics of f  is the set S V (f )  of the so-called singular values of f , th a t is  the
set of values where at least one branch of the inverse o f f  is not well defined as a
holomorphic func tion . Note that a  singular value o f a  transcendental function is
either an asymptotic value or a critical value, in short: S V (f ) = C V (f )U  A V (f ).
Clearly, each critical value is  the im age of some critical point, th a t  is  to  say,
f o r  each  critica l va lue  v  E  C V ( f )  there  ex ists som e pre im age e  E  C ( f ) :=

C (c) = O f. T hroughout th is paper 0  denotes a  c e r ta in  branch of the
inverse off and w e w rite  f -

 I ( T ) : =  E  f ( : )  E  T } , where T  c  C .  Recall that
polynomials do  no t have asymptotic v a lu e s . In this paper we deal with subsets
of and semigroups in End(C).

D efinition  1 . A  sem igroup G  End(C ) is ca lled  en tire  sem igroup. It is
called f initely  generated if and only if it has a  representation G = <f , L> for a
finite nonempty subset ff, , , End(C).

T he se t { f l , ,f ;,}  is called set of generators o f this group G .  We define
A V (G ):= U i  E G  A  V (f )  and  S V (G ):= UJEGSV(1).

R em ark. Throughout this paper w e assum e each se t o f  generators to be
minimal.

Let G be an entire semigroup generated by {L I' }A E A  with some finite or infinite
in d e x  s e t  A .  F or som e w ord  w„ = {w„, , , w„,„} E  A " ,  w e d e fin e  f.  : =
J11.,,. °  •  • •  ° „ •
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L e t .9' OE E nd(C ). In  th e  sequel, .9 ' m igh t be  th e  sequence t r u fn e N  o f
iterates f ' "  o f  a  fixed function f  E End(C), a  semigroup G  End(C). or an
(infinite) subset of E nd(C ). The Fatou set g7 (91 is defined as the set of all points
z E C which have an open neighborhood U such that the  family {f i u l f c  Y } is
n o rm a l. As usual, the complement /(9 ') :=  C\37 (.9') is called the Julia set of .9'.
For some set T OE C we write ( T ) :=  {f (z )If E TI and ( T ) :=  {: E

f (z ) c T  for some f  c Y I .  Note that if .92 i s  a  semigroup, then for each f  c
we have {f ° "}„E N OE .9) , and therefore 37-' (.91 c #'({f"}„ E N ) and f ( { f " } „ E N )
/(5°). T h ro u g h o u t th is  paper, let (9,v(:) denote the w-limit set w ith respect to
the  semigroup  .9' for some p o in t  z e C.

Let Q : = U J E
 S V ( f ) ,  i.e. the closure of the postsingular set. It is of great

importance whether o r  n o t th e  singular po in ts  in  the  Ju lia  se t of f  a re  recur-
rent. For example, a n  irrationally indifferent cycle of a single rational o r entire
transcendental function f  requires at least one singular point in the Julia set o ff to
be recurrent, cf. [ 1 1, 101. The following lemma concerning the critical values can
be readily proved.

Lemma 1 .  L et G  c  End(C) be a  (not necessarily finitely generated) semi-
group and { f i l A E A  a se t of generators of  G. that is to say , G =  < I f »  c A I > .  Then
lie have

U  C V =  U  (CV ( fA ) U  G ({C V (L )})).
/cG ;:c4

R em ark . Note that the semigroup G does not have to contain the identity,
thus th e  se t o f  critical values corresponding to som e critical po in t c  o f  some
.f  G  consists of [ ( e )  a n d  t h e  G-orbit o f  f ( c ) .  F o r  convenience, we define
G* s  G U  {id }. Then the  equation in  th e  above lem m a reads a s  follows:

U  C V ( f )=  H  G*(1CV(f,)1).
e G ). EA

Definition 2 (SHN ). L et G OE End(C) b e  a n  entire semigroup a n d  N c N.
W e define SHN  t o  b e  th e  s e t  o f  a l l  points :0 E C such  tha t the re  ex ists  a
neighborhood U  o f :0  satisfying the  following condition:

For every f  E G and every component K of J . - 1 ( U ) the mapping fI K  : K U
is  a  proper mapping with deg (f I K  : K —> U) < N.

R em arks. I. I t  i s  a l l  important, tha t the neighborhood U does not depend
on  the  function f  c G.

2. Note th a t  th e  above definition im plies that U  does not contain any
asymptotic value of any element f  E G, since otherwise gl A , : K  —> U  would not be
a  proper mapping.

Definition 3 (semihyperbolic semigroup). A n entire semigroup G c  End(C) is
called semihyperholic if  and  only if  f (G )  OE UneN

This definition assures that each point zo c ( G )  belongs to some SH„ with
some n E N .  In  o ther w ords, the  degrees of the  loca l branches of the inverse
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functions are b o u n d ed . Note that in many examples one can prove f ( G )  S H N

f o r  som e fixed integer N .  If, fo r exam ple  G  E n d (C )  is  a semihyperbolic
semigroup generated by a  f in ite  num ber o f  polynom ials, then f(G) OE C  i s  a
com pact set and, consequently, /(G) OE SH N  f o r  some N  E N .  However, there
are many examples of semigroups which are not semihyperbolic. For example, if
a polynomial f  o f degree at least two has a n  irrationally indifferent fixed point,
then it has at least one recurrent critical point in its Julia set. Consequently, every
semigroup containing such a polynomial cannot be semihyperbolic.

The main result of this paper gives a  sufficient condition for a semigroup of
entire functions to be semihyperbolic.

Theorem 2 (Main Theorem). L e t an  entire sem igroup G OE End(C) he gen-
erated by  { f ) } , E A  w ith  som e (not necessarily  f inite) index  se t A  an d  a point
z0 E f (G ) satisf y  all o f  the following conditions:
A . 1  There exists some neighborhood U1 of  zo such that f o r each infinite sequence

OE G and each component W  of  317 (.9') there ex ists som e point c W  such
that co,v () n u1 = 0,

A .2  there exists some neighborhood U 2 of z 0  and some positive real num ber such
that the set 3-  := f e  E  C (L ) 2  c A ,G*(f ,l (c)) n U2 0 is f inite and for each

,?-7  w e hav e that e E C (f )'p implies z(c, G* (c )) \{ c } )  > > 0.
A .3  A V  (G ) . 97;(G ) and . f  0  Ø .
Then zo c SHN f o r som e N  E N.

Rem ark. I n  this theorem, := {c E C (L )  À  c A , G*(f (c)) n U 2  0  }  is
regarded as a subset of the plane, and, consequently. # ,T  is the number of critical
points counted without multiplicity—whose G*-orbit intersect U2.

Furthermore, we shall prove the following statement.

Corollary 3. L et an entire semigroup G OE End(C) and some point 1. 0  E / ( G )
satisfy  the assum ption of  the above theorem . L et { w „ } f l E N  b e  a sequence of words
w„ of strictly increasing length. T hen z o has a neighbourhood U  w ith the follow-
ing property: For each n c N , let K,„ be a  connected component of  fZ i ( U). T h e n
lim diam(K„) = 0.

Clearly, the  theorem yields:

C orollary 4. If  a sem igroup  G  satisf ies th e  conditions A.1-A.3 f or each
zo( G ) ,  t h e n  G  is semihyperbolic.

With the Main Theorem at hand one readily proves the following corollary,
compare [14, Lemma 1.141 an d  [1 0 , Chapter 3].

Corollary 5. A n entire semigroup G  End(C) satisfying the conditions A .l -
A.3 has no  indifferent cycles.

B y  th e  maximum princip le , a  semigroup G  End(C) c a n n o t have Herm an
rings. T h u s , a  semihyperbolic semigroup G OE End(C) h a s  n o  p a r a b o lic  cycle,
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Cremer points, Siegel discs, a n d  Herman rings. N o t e  that this does not imply,
that . (G) is the union of attracting b a s in s . In fact, .*7 (G) might have wandering
dom ains. R ecall that this can even happen to  polynomial semigroups.

Finally, with the same method of proof as used in order to establish Theorem
1.34 and  Theorem 1.35 in [14], we obtain:

Theorem 6. Let G  be  a semihyperbolic entire semigroup w ithout any  elliptic
transf o rm atio n s an d  no t co n tain in g  th e  Iden tity . If   SV(G) f1,97  (G )  is

com pact and non em pty , and, in addition, if  there  is no point z c . (G ) satisfying
coE G(z), then G(z o ) OE :97  (G) f or each  z  E ,F ( G ) .  M oreover, if G  is generated by
f a . e i i  w ith  som e .f inite index  set A , then

lim  sup lx (f ,,(z o ), S V (G )nF(G ))1ii ,„ E A "}  = 0.

N o te  that th is sta tem ent m eans, tha t each  a ttrac tor of th e  dynamical system
defined by G is contained in  SV (G)n ,9- 7 (G ) .  This phenomenon is known in the
theory o f  iterating single rational functions.

Outline of  the proof  of  Theorem  6: Suppose that there exists a point ,70 c
a n d  a  sequence {g„}„E N G  satisfying

U,, E N (1,(:())n f ( G) O.

W e m ay and will assume that there exists a  p o in t y c  (G ) such that lim „_,•
g„(zo) = y. From  the distortion lemma for proper mappings, cf. Lemma 8, and
its generalization, Lemma 1.10 in  [14]. and  the  backward invariance of  J( G )
we derive a  con trad ic tion . Hence we have G( - o) OE .Y- 7 (G ) fo r every 2 0 c
From this result we can conclude the second statement of the th e o re m . For the
details, the  reader is referred to the  paper [14].

3. Limits for inverse mappings

In  this section we shall prove the m ain result, Theorem  2. Both, the result
and the proof are motivated by the work of Marié, cf. [11], and Carleson. Jones
and Yoccoz, cf. [3, Theorem 2.1, (D) ( B ) ] .  In their proofs they made use of the
fact that Julia  sets of rational functions o r  polynomials a re  compact subsets of
the complex sphere or plane, respectively. But in our setting we have to 'localize'
the argum ents. We adopt Marié's idea of 'admissible squares', cf. [11], but several
modifications are required by the new setting, that is to say, by the fact that we are
dealing with entire semigroups bu t not w ith the  iteration of a  single function.

Proof
(a) Admissible square. L et G  End(C) be  a n  entire semigroup, E  f ( G ) ,

a n d  a  neighbourhood U  of z o su c h  th a t  the  assumptions A.1—A.3 a s  given in
the Main Theorem are satisfied. I n  addition, we assume diam ( U )  < k . Without
loss of generality we may and will assume U  U lf ) U ) .  Choose a > 0  such that
U  contains an open square Q ' of side length 4a and  center z o a s  a n  relatively
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compact subset. There is a  closed square Q "  Q '  of side length 2u and center : 0 .
In  the  sequel we shall assume a ll squares to have sides parallel to th e  sides of
Q " and to  be  c losed . L e t  c  Q " and Q 1,1() the unique square of side length a
and center c . B y construction, Q1,1() Q' OE U. We call Q 1,1( ) an admissible
square at lev el 1 (centered at

Now we proceed by induction. L et Q be an admissible square at level ni (for
some ni E N  and centered at som e E  Q ") of side length a  a  2 1- 1??. T h e n  Q is
covered by 16 closed squares of side length a/4. Furthermore, there are 20 closed
squares of side length a/4 adjacent to  Q .  We call all these 36 squares admissible
at level m +1; they will be denoted by Q,,,„, + 1, where it 1, ,  3 6 .  The union of
these squares form  a  new  square  -0 , w h ich  w e  ca ll th e  square attached to Q.
Clearly, the diameter of admissible or attached squares tends to  zero as the level
tends to infinity. E a c h  admissible and each attached square is a  closed subset of
U .  Note that for each level ni there is an admissible square Q at level in with (",  as
a n  interior point (in fact, there are uncountably many).

(b) Idea of the proof of Theorem 2. T he next M ain  Lem m a states that if
some f-preimage S t (for some f  c  G) of some attached square is 'large' in diameter
then the degree of f I st is 'large'. T hen  w e shall p rove that if deg(f 51 ) is 'large'
then some image of Sf is 'large', cf L em m a 9 . B y  induction one can prove that
the attached square has to  be 'large ', too. In  other words: All preimages of an
admissible square are 'sm all' if the level is sufficiently high, tha t is  to  say, if the
admissible square is sufficiently small. Again using Lemma 9 we finally prove that
the degree of f  restricted to some preimage S i .  is 'small'.

By assumption A.3 and after choosing U small enough, we may assume that
G(AV(G))r1U =  Ø .  T h e n  p i, : V —> W is a covering for each simply connected
d o m a in  W  U, each f E  G , and each connected component V of (  W ) .  I n
general, this covering will be a branched covering. In particular, the degree of the
mapping fl r , : V —> W is always well defined and  finite.

(c) Main Lemma

Lemma 7. For giv en e > 0  and N  E N  there is som e mo c  N  such that the
following holds: I f  Q is an admissible square at some level ni > mo w ith sonie center
in  Q", Q  the corresponding attached square, Sf a  connected component of  I - 1 (0)
for som e f E  G, and deg(fi s ,  : sj . N, then d ia m ( K )  c Ibr each connected
component K  (y. ( Q )  n Sf.

P ro o f  F ix  e > 0  a n d  N E N .  I f  th e  lem m a is fa lse  then there  exists a
sequence { ink }k E N  converging to oo, admissible squares and functions f k.

G such that diam(Kk) >  e >  0  and deg(.4. <  N  for some connected component
Sfk o f  f k a n d  some component K k  O f  fk - 1 ( Q it h , m h ) n St . In particular,-1  -

diam(SA) > e > 0. Suppose SI., contains a disc Dk of some fixed positive spherical
radius r. A fter transition to a  suitable subsequence, we may and  w ill assume
D .  - >  D  with some disk D .  Recall that J ( D )  U  for every bu t finitely many
k E N , h en ce  th e  seq u en ce  If ;J„} k E N  i s  b o u n d e d .  T h e  la t te r  y ie ld s  D

({.10 k EN). L e t  W  b e  th e  component of . ( { t i  e  N ) contain ing D .  After
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transition to a  subsequence, we may and will assume the admissible squares Q„k . „,k

to  converge to some p o in t  E  U .  Actually, ç is the lim it of the centers of Q„,.„,k

as k  tends to  c o . B y  the definition of the Fatou set this yields the sequence of
functions Al w  t o  converge t o  the constant lim it function g ==_ uniformly on
compact subsets o f  W . T h is  is  a  contradiction to assumption A.I.

Hence, limk„ diam(D k ) = 0, where D k  denotes the maximal disc contained
in  SA ,  a n d  th e  following distortion lemma fo r  proper m appings yields f1: 1 -+
constant on a s  k  tends to co.

Lemma 8 (Lemma 2.2 o f  [3 ]) . For ev ery  positiv e integer N  and every  real
num ber r e 10, 1[ there ex ists a constant C depending on N  and r, such that f or every
proper self inapping f  of  the unit disc D of  degree N  and every  ..70 E D

I-1(f (fo), C) OE f(H(zo, r)) OE 11 (f (=o),

holds.

Here, H (:, r)  denotes the  hyperbolic ball of radius r  centered at :o.

(d) P roof. Now we are prepared for the crucial part of the p r o o f .  Let d be
the cardinality  of g", which by assumption A.2 is finite. C h o o s e  N  = 2 "  and

c  < 
3 6 N

. F o r  these two numbers, Lemma 7 gives a n  integer mo c N.

Lemma 9. L e t f  E G . in  p art ic u lar,  f  h as  a  representation o f  th e  form
f  =  L 1 0 • • •o f

, ,  
w ith il l . . . . e A .  L e t B OE U open, B ' som e com ponent of

f - I (B ) , an d  deg(P B , : B' B ) > N .  T hen  there  ex ists  som e  r c {1, . . . . n  -
w ith  diam(B,,) > L w h e re  B ,:=  f  0  •  •  •  0  f ( B ' ) ,  an d  deg(f)' o • • • o . f
B ' B )  <  N.

P r o o f  Recall that d  is  the  number o f critical po in ts of the  generators L
whose orbits intersect U .  If deg(f1 8 ,) >  N  then there exists som e y such that

:= o • • • o ‘f ) , (B ') contains a critical point c of a generator f ;‘, with 2 e A  and
a n  element o f  th e  o rb it G *(f),(e)). B y the  definition of we obtain diam(B,.)
>  L  W e choose v to be m ax im a l. Recall that we have assumed diam(U) < L
Hence v < n. Then deg(f,] , o • • • o f : B, B) N.

Now, let n  be the smallest integer such that there is some admissible square
Q  := Qum ,  at level ni > m o  with diam(K) > c for some connected component K  of
47 1(Q), some f, E G, and some n-word w e  A " .  W e have n  > 1. L e t  -0  be the
square attached to Q .  Then Lemma 7 gives deg(f,,,I s ) >  N  fo r some connected
component S  of f ,7 1(0 ) .  By Lemma 9 there exists some v satisfying 1 < v < n
such that diam (f i,(S)) >  for the v-word : =  w n )  e  . We write

f ] ( S )  and =  (Iv ] , w „ „ ) .  W e  h a v e  d e g ( 1 )  <  N  a n d  S  U  •
(2 , , 1 +1 ). H e r e  the union is taken over the 36 • N  preimages (there are  36 ad-
missible squares Q +1 a t level in  +1 > m o  form ing 0 ,  and duc to  the bound on
the degree we have to take into account at most N  branches of .f117 1). T h i s  yields
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diam(f,T,(S ))  <  3 6 N e . By definition, 36Ne e ,  a  contradiction. This proves
n = c i .

(e) Sum m ary . For E  <  E o  := < ë  arbitrarily small, let m o be  as in Lemma
36N

7. For each f  e G, each admissible square Q1,.„, with ni > m o , and each connected
component K  of f -  I ( Qp ,„, ) w ith  som e f  E G , w e have proved

d ia m ( K )  e.

Lemma 9 yields

d e g ( f )  <  N.

In  particular, this completes the proof of COEQOE SHN .

W e now  turn our attention to  C o ro lla ry  3 . Let {w„}„ E N  b e  a  sequence of
w ords w „ o f  strictly increasing length. In  particu lar, the  length is converging
to  o o .  Let Q be the admissible square at level mo centered at D6(4') c c  Q . and
K „ be a  connected component of J,T,

I ( / ) ( C ) ) .  Then as in  the proof of the Main
lemma one shows that the inner diameter of f , - i (Q) converge to zero as n tends to
oo. The distortion lemma for proper mappings, c f  8 , yields lim diam(K„) 0 .

n—>
This completes the  proof of the  corollary.

4. Examples for a semihyperbolic semigroups

In  th is section we present some examples of semihyperbolic semigroups.

E x a m p le  1 . T h e  first exam ple  is  a sem ihyperbolic entire transcendental
sem igroup w hich is not subhyperbolic . R ecall that a  sem igroup G  is called
subhyperbolic provided that the closure Q  of the postsingular set of G  satisfies
# (52 n f  (G ))  < o o . We consider the  functions

f ( : )  := 2a(e ( ' " ) 1  -  e - "3 ); a  > 0 and

:= p(e. - 1); p c 10, 1 [.

We begin with studying the function g. Clearly, the origin is an  attracting fixed
poin t o f g. Furtherm ore, it is th e  only singular value of g. In  fac t, i t  is  an
asymptotic value of g. Note that g is strictly monotonically increasing on the real
axis. Furthermore, for each x e ]- oo,0[ we obtain -p  < g (x ) < 0. This proves
]-- co. 0] A *(0). H e r e  A' (0) denotes the  immediate basin of attraction of the
origin with respect to  the  iteration o f  g. B y looking at g '  one can prove the
ex is ten ce  o f  s o m e  6 „  >  0  s u c h  th a t  U := (0) U =  x  +  i y  -  < .v G  0,
11'1 < g }

/1,-; (0). We fix p e 10, 1 [. Then for some sufficiently large a„ c R the monotonicity
o f g  gives

3
>  u„ g(x) 5 .v.

is forward invariant w ith respect to g  and , consequently. a  subset of

(1 )
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N ote th a t g  is  o f  finite type, in particular, g  has neither Baker domains nor
wandering dom ains. Thus the  last formula implies [ao . oo[ J ( g ) .

W e now  turn  our attention to f  Clearly, the  origin is a  fixed point o f  f
After choosing a E ]0, co [ sufficiently large, we obtain

f '(0) = 6a 3 • e- 1̀3 <  I.

This proves that the  origin is a n  attracting fixed p o in t  o f  f  too. N ote that f
is strictly monotonically increasing on  R .  In particular, for each x e ]- po. 0[ we
obtain -2a • e- " 3 <  f (x ) 0. This proves ] - 0 ]  O E  A ; (0 ) .  Again one can find
some (5 e ]0, (5g ]  su c h  th a t U := D6(0) U {z = x y  -  co <  <  0 , < (5} is also
forward invariant w ith respect to f  and, consequently, a  subset o f A ; (0 ) .  Note
th a t  - 2 a  e - "3 ] -  o o ,  0 ]  is  th e  only asymptotic value of f ,  a n d  th a t a  is  the
only critical point of f. Let y := f (a). F or a  sufficiently large and  y > ai l th e
monotonicity of f  gives

3x > y f (X ) > - x .
-  2

This proves (of  (x) = {cc} f o r  each x e [c, co[. N ote that f  is  o f  finite type, in
particular, it has neither Baker domains nor wandering domains. Thus [a. x,[
f ( f ) .

L e t  G < f, g > . C learly, G  i s  a n  entire transcendental sem igroup. By
construction,

coG(A V (G)) 1- oo 0] OE U OE AG(0) OE (G).

Furthermore we have

[y, op [ f (g )  U  f  ( f )  f  ( G ) .

Let w e f f ,g 1 "  be  a n  n -w o rd . By the  equations (1) and (2) we obtain

f ( v )  >  ( -3 ) n

-  2 (3 )

In particular, this proves coG (v) =  {  } .
W e sum m arize. F irst o f a ll, we have SV (G) OE R. Consequently,

C\R

Furthermore, OG (A V(G)) OEŒ ,*--,. (G ),  a n d  OG (C V (G ))  i s  a  discrete subset of
[t]. co [ OE / (G ).  C o m b in in g  th e  latter statem ent w ith equation (3) proves Rn
/ ( G )  S H 2 .  A ltogether w e h a v e  p roved  / (G )  S H 2 ,  in  p a r tic u la r . G  is
semihyperbolic. B u t OG( V )  is  no t f in ite , in  fa c t , b o th , 01 (u ) a n d  0 9 (v ) are
infinite. T h u s  G  is not subhyperbolic.

Example 2 .  T h is is  a n  example for a semihyperbolic entire transcendental
semigroup such that its Julia  set has empty interior.

(2)
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Let 4 := { z  e CIR e (z) > Of and  Y  :=  { z  CIRe (z) <O } th e  right and  left
half plane, respectively. For some number t c JO, I[ we define f ] (z) te : -  1 and
f 2 (z) =  tez+'i -  1. L et G := f 2 > .  O ne readily proves

ff (Y) = {z c + 1  < t} =: g  cOE

and

Ifii(z)1 ' <

for each j  = 1,2 and  z E 2 .  This proves 9 c z -.F ( G ) .  Clearly, CV (G) =
and A V (4) = {-1 } c  . 9 .  This proves

G(SV(G)) OEOE

thus /(G) OE SH1, in particular, G is semihyperbolic. W e now turn our attention
to

CLAIM. Int(/ (G)) = Ø .
The m ain ingredient in  the  proof is the  so-called 'open set condition'.

Definition 4. L et G = f „> b e  a  finitely generated semigroup. It is
said to satisfy the open set condition (with respect to  the generators f ]  f n) if
there exists some open set U  C such that the sets 4 -1 ( U ) are mutually disjoint
and f - 1 (U) U  holds fo r each generator 4.

W e prove that in  this example one can choose U := 4 .  W e have already
shown f ( y ) ,  this yields

.15-1 ( : ),---9 )  O E  4 .

L et z  := x + i y  M .  Then

1(n — Ina i I (z)))
 mod 27r1 < -

2  ]

But

Im  ( f  ( z ) )  mod 27-c c [0 7 ] u  H3n  1' 2 2

Hence, G  satisfies the open set condition w ith respect to  the  generators f ,  and
f 2 . N ote tha t f f (Y )  g  c  c  ,F ( G ) .  The continuity o f the  generators f ]

and f 2 gives the existence of some open neighborhood (with respect to the complex
plane) of Y  contained in . (G ) .  This in turn implies .4 \ / (G) 0 .  The claim
now follows from [14, Prop. 4.3].

N ote th a t Sumi has proved the proposition for rational semigroups, only.
B ut the  reader will immediately see that the  proof carries over to entire tran-
scendental semigroups.

Example 3. For some semigroup G and some polynomial f  let P(G) or P(f )
denotes the  postcritical se t o f G  respectively f  L et c E C  be  a  po in t such that
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c e / ( J . ))  and th a t e is not recurrent (w ith respect to  f . )  but con (c ) is infinite. In
particular, f (z ) =  z 2 +  c  is  semihyperbolic but n o t subhyperbo lic . Then P (f . )

/ (J , ). L e t  g(z) = (z — a) 2 +  a where a E C  is a point such that / ( J . )  is included
in  A c, (g )  w hich is the connected com ponent of Y ;(g ) containing cc. L e t  U  be
an open disk such that / ( f . ) U /(g) c  U .  There exists a number n c N  such that
j ( U ) OE U , g - n(U ) OE U ,  f 7 5 ( n g - n (u ) =  0 , an d  4 ' (U )  c  A , ( g ) .  Let

_  fn , f 2 g n ,  and G = f 2 > -  T hen G satisfies the open set condition with
the open set U .  H ence  the in te rio r of / (G )  i s  e m p t y .  This shows th a t  the
assumption A .3 in the Main Theorem  holds. B y construction and the choice of n
w e have P(G ) f l  / (G ) =  P (f )  and

P (G ) f l  (G )  OE {a} U (P 1\ U )  c c  (G ) .

So the assumption A .2 h o ld s , to o . For any zo 97 (G ) we have coG(zo) OE {a. °o}.
This p ro v e s  th a t the assum ption A .1  is satisfied. B y  the M ain  Theorem we
c o n c lu d e  th a t G  i s  sem ihyperbo lic . Since f  i s  n o t  subhyperbolic, G  is  n o t
subhyperbolic.
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