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ABSTRACT. We investigate the dynamics of semigroups of rational maps on the Riemann sphere. To establish

a fractal theory of the Julia sets of infinitely generated semigroups of rational maps, we introduce a new class

of semigroups which we call nicely expanding rational semigroups. More precisely, we prove Bowen’s formula

for the Hausdorff dimension of the pre-Julia sets, which we also introduce in this paper. We apply our results to

the study of the Julia sets of non-hyperbolic rational semigroups. For these results, we do not assume the cone

condition, which has been assumed in the study of infinite contracting iterated function systems. Similarly, we

show that Bowen’s formula holds for the limit set of a contracting conformal iterated function system without

the cone condition.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Rat be the set of all non-constant rational maps on the Riemann sphere Ĉ. A subsemigroup of Rat
with semigroup operation being the functional composition is called a rational semigroup. A semigroup
of non-constant polynomial maps is called a polynomial semigroup. The work on the dynamics of rational
semigroups was initiated by A. Hinkkanen and G. J. Martin ([HM96]), who were interested in the role of the
dynamics of polynomial semigroups while studying various one-complex-dimensional moduli spaces for
discrete groups of Möbius transformations, and by F. Ren’s group ([ZR92]), who studied such semigroups
from the perspective of random dynamical systems. The theory of the dynamics of rational semigroups
on Ĉ has developed in many directions since the 1990s ([HM96, ZR92, Stan12, SS11, SU11a, SU11b],
[Sum97] – [Sum13]). We recommend [Stan12] as an introductory article.

Throughout, let I be a topological space. We consider a family { fi : i ∈ I} of Rat such that fi ∈ Rat depends
continuously on i ∈ I. We will use G = 〈 fi : i ∈ I〉 to denote the rational semigroup generated by { fi : i ∈ I},
i.e., G = { fi1 ◦ · · · ◦ fin : n ∈ N, i1, . . . , in ∈ I}. The Fatou set F (G) and the Julia set J (G) of G are given by

F (G) :=
{

z ∈ Ĉ : G is normal in a neighborhood of z
}

and J (G) := Ĉ\F (G) .

Since the Julia set J(G) of a rational semigroup G= 〈 f1, . . . , fm〉 := 〈 fi : i∈ {1, . . . ,m}〉 generated by finitely
many elements f1, . . . , fm has backward self-similarity, i.e.,

(1.1) J(G) = f−1
1 (J(G))∪·· ·∪ f−1

m (J(G)),

(see [Sum97, Sum00]), rational semigroups can be viewed as a significant generalization and extension of
both the theory of iteration of rational maps (see [Be91, Mil06]) and conformal iterated function systems
(see [MU96]). Indeed, because of (1.1), for the analysis of the Julia sets of rational semigroups, we have to
consider “backward iterated functions systems”, however since each map f j is not injective and may have
critical points in general, we have to deal with critical orbits and some qualitatively different extra effort
in the case of semigroups is needed. Also, since one semigroup has many kinds of maps, we have another

Date: 21th February 2017. To appear in Trans. Amer. Math. Soc. 2010 Mathematics Subject Classification. 30D05, 37F15.
Key words and phrases. Complex dynamical systems, rational semigroups, expanding semigroups, Julia set, Hausdorff dimension,
Bowen’s formula, random complex dynamics, random iteration, iterated function systems, self-similar sets.

1



2 JOHANNES JAERISCH AND HIROKI SUMI

difficulty. The theory of the dynamics of rational semigroups borrows and develops tools from both of these
theories. It has also developed its own unique methods, notably the skew product approach (see [Sum00]–
[Sum06], [Sum10a, Sum11a, Sum13, SU11b]). It is a very exciting problem to estimate the Hausdorff
dimension of Julia sets of rational semigroups. Some studies of the Hausdorff dimension of Julia sets of
semi-hyperbolic finitely generated rational semigroups were given in [Sum01]–[Sum06], [SU11a, SU11b].

However, there have been no studies on the Hausdorff dimension of Julia sets of infinitely generated ex-
panding rational semigroups G = 〈 fi : i ∈ I〉 (see the definition below), or non-semi-hyperbolic rational
semigroups. In this paper, we investigate the dynamics of infinitely generated expanding rational semig-
roups and non-hyperbolic rational semigroups. If I is countable (in this paper, a countable set is a set which
is bijective to a subset of N), then I is endowed with the discrete topology. We endow Rat with distance
distRat given by distRat (h1,h2) := supz∈Ĉ d (h1 (z) ,h2 (z)), where d denotes the spherical distance on Ĉ. We
denote by C(I,Rat) the set of continuous maps from I to Rat.

Let ( fi)i∈I ∈ C(I,Rat). The skew product associated to the generator system { fi : i ∈ I} of the rational
semigroup G = 〈 fi : i ∈ I〉 is given by

f̃ : IN× Ĉ→ IN× Ĉ, f̃ (ω,z) := (σ (ω) , fω1 (z)) ,

where σ : IN→ IN denotes the left shift defined by σ (ω)i = ωi+1, for each ω ∈ IN and i∈N. For γ = (γi)∈
GN we set

Fγ :=
{

z ∈ Ĉ : (γn ◦ γn−1 ◦ · · · ◦ γ1)n∈N is normal in a neighborhood of z
}

and Jγ := Ĉ\Fγ .

Also, for ω ∈ IN, we set γ (ω) := ( fωi)i∈N, Fω := Fγ(ω) and Jω := Jγ(ω). We use Jω to denote the set
{ω}× Jω ⊂ IN× Ĉ and we set

J
(

f̃
)

:=
⋃

ω∈IN
Jω , F

(
f̃
)

:=
(

IN× Ĉ
)
\ J
(

f̃
)
,

where the closure is taken with respect to the product topology on IN×Ĉ. For a holomorphic map h : Ĉ→ Ĉ
and z∈ Ĉ, the norm of the derivative of h at z∈ Ĉ with respect to the spherical metric is denoted by ‖h′ (z)‖.

For n ∈ N and (τ1, . . . ,τn) ∈ In, we set f(τ1,...,τn) := fτn ◦ fτn−1 ◦ · · · ◦ fτ1 . For ω ∈ IN and n ∈ N, we write
ω = (ω1,ω2, . . .) and we set ω|n := (ω1, . . . ,ωn). For each n ∈ N and (ω,z) ∈ J

(
f̃
)
, we set

(
f̃ n
)′
(ω,z) :=

( fω|n)
′(z). We say that f̃ is expanding along fibers if J

(
f̃
)
6=∅ and if there exist constants C > 0 and λ > 1

such that for all n ∈ N,
inf

(ω,z)∈J( f̃)
‖
(

f̃ n)′ (ω,z)‖ ≥Cλ
n,

where ‖
(

f̃ n
)′
(ω,z)‖ denotes the norm of the derivative of fωn ◦ fωn−1 ◦ · · · ◦ fω1 at z with respect to the

spherical metric. G is called expanding with respect to { fi : i ∈ I} if f̃ is expanding along fibers.

For a rational semigroup G, we say that a subset A of Ĉ is G-forward invariant if g(A)⊂ A for each g ∈ G.

Our first main definition is the following.

Definition 1.1. We say that G = 〈 fi : i∈ I〉 is nicely expanding, if G is expanding with respect to { fi : i ∈ I}
and if there exists a non-empty, compact, G-forward invariant set P0 (G) ⊂ F (G) such that P(G) ⊂ P0(G),

where P(G) denotes the postcritical set of G given by P(G) :=
⋃

g∈G{all critical values of g : Ĉ→ Ĉ}.
Here, the closure is taken in Ĉ.

Remark. It will follow from Proposition 4.2 below, that the property of a rational semigroup to be nicely
expanding is in fact independent of the choice of the generator system. For this reason, we do not refer to
the generator system, and we simply say that G is nicely expanding.



DYNAMICS OF INFINITELY GENERATED NICELY EXPANDING RATIONAL SEMIGROUPS AND THE INDUCING METHOD 3

We say that a rational semigroup G = 〈 fi : i ∈ I〉 (or the system { fi : i ∈ I}) is hyperbolic if P(G)⊂ F (G).

Remark. We have P(G) =
⋃

g∈G∪{id} g(
⋃

i∈I CV( fi)), where CV denotes the set of critical values. Thus
P(G) is G-forward invariant.

We give some criteria for G to be nicely expanding in Proposition 4.2 and Lemma 4.8. If G is nicely ex-
panding then we are able to control the distortion of inverse branches of maps in G. Note that an expanding
rational semigroup is not nicely expanding in general (see Examples 2.1, 2.2).

Regarding the dynamics of infinitely generated nicely expanding rational semigroups, it turns out that we
shall work on pre-Julia sets, which is the second main definition of this paper.

Definition 1.2 (Pre-Fatou and pre-Julia set). For a rational semigroup G, the pre-Fatou set Fpre (G) and the
pre-Julia set Jpre (G) of G are defined by

Fpre (G) :=
⋂

γ∈GN

Fγ and Jpre (G) := Ĉ\Fpre (G) .

Note that if G = 〈 fi : i ∈ I〉, then Jpre(G) =
⋃

ω∈IN Jω and Jpre(G) =
⋃

i∈I f−1
i (Jpre(G)). The pre-Julia sets

of infinitely generated nicely expanding rational semigroups of this paper correspond to the limit sets of
infinite contracting conformal iterated function systems in [MU96] (see Remark 1.6). Roughly speaking,
those are the reasons why the pre-Julia sets are the right objects to study and many results (e.g. Bowen’s
formula) hold for them.

We remark that the pre-Julia set is not necessarily closed in Ĉ. In fact, by the density of the repelling
fixed points ([HM96], [Sum00, Lemma 2.3 (g)]), we have that, if card(J (G)) ≥ 3, then Jpre (G) = J (G).
However, there are many examples of rational semigroups G, for which dimH(Jpre(G)) < dimH(J(G)) or
Jpre(G) 6= J(G) (see Example 2.3), even if we assume that G is nicely expanding.

In order to state the main result of this paper, we define the following critical exponents associated to
rational semigroups. If I is countable and G = 〈 fi : i ∈ I〉, then the critical exponent s(G) of the Poincaré
series of G and the critical exponent t(I) are for each x ∈ Ĉ given by

s(G,x) := inf

v≥ 0 : ∑
g∈G

∑
y∈g−1(x)

∥∥g′ (y)
∥∥−v

< ∞

 , s(G) := inf
{

s(G,x) : x ∈ Ĉ
}
,

t (I,x) := inf

v≥ 0 : ∑
n∈N

∑
ω∈In

∑
y∈ f−1

ω (x)

‖ f ′ω(y)‖−ν < ∞

 , t (I) := inf
{

t (I,x) : x ∈ Ĉ
}
.

Here, the sums ∑y∈g−1(x) and ∑y∈ f−1
ω (x) count the multiplicities, and we set inf{∅} := ∞ and 0−v := ∞, for

all v≥ 0.

Let I ⊂ N be the finite set {1, . . . ,n}, for some n ∈ N, or let I = N, endowed with the discrete topology.
Let ( fi)i∈I ∈ RatI and let f̃ : J

(
f̃
)
→ J

(
f̃
)

be the associated skew product. Suppose that ‖ f ′ω1
(z)‖ 6= 0,

for each (ω,z) ∈ J
(

f̃
)
. We introduce the Gurevič pressure of the geometric potential ϕ̃ : J

(
f̃
)
→ R,

ϕ̃ (ω,z) := − log‖ f ′ω1
(z)‖, with respect to the skew product f̃ : J

(
f̃
)
→ J

(
f̃
)
. This notion of topological

pressure was introduced in the context of countable Markov shifts by Sarig ([Sar99]) extending the notion
of topological entropy due to Gurevič ([Gur69]).

The pressure function of the system { fi : i ∈ I} is for each t ∈ R given by

P (t) := P
(
tϕ̃, f̃

)
:= sup

K⊂J( f̃),K compact, f̃ (K)=K
P
(
tϕ̃|K , f̃|K

)
.
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Here, for a continuous function ψ : X → R on a compact metric space X , and for a continuous dynamical
system T : X → X , we use P (ψ,T ) := sup{hµ(T )+

∫
ψdµ} to denote the classical notion of topological

pressure introduced by Walters ([Wal75]) following the work of Ruelle ([Rue73]), where the supremum
is taken over all T -invariant Borel probability measures on X , and hµ(T ) refers to the measure-theoretic
entropy of the dynamical system (T,µ). Note that the classical pressure is independent of the choice of the
metric on X ([Wal82]).

Definition. We say that the rational semigroup G = 〈 fi : i ∈ I〉 (or the system { fi : i ∈ I}) satisfies the open

set condition if there exists a non-empty open set U ⊂ Ĉ such that
(

f−1
i (U)

)
i∈I consists of mutually disjoint

subsets of U .

We refer to [Bow79] (see also [Rue82]) for the by now classical results on the relation between the pressure
and the Hausdorff dimension of associated limit sets, which is known as Bowen’s formula. We now present
the main result of this paper, which establishes Bowen’s formula for pre-Julia sets.

Theorem 1.3 (Bowen’s formula for pre-Julia sets: see Theorem 6.5, Proposition 6.3). Let I be a countable

set. Let G = 〈 fi : i ∈ I〉 be a nicely expanding rational semigroup. Then we have

(1.2) dimH
(
Jpre (G)

)
≤ s(G)≤ t (I) = inf{β ∈ R : P(β )< 0}.

If { fi : i ∈ I} additionally satisfies the open set condition, then all inequalities in (1.2) become equalities.

We apply the above result to the dynamics of non-hyperbolic rational semigroups by using the method of
inducing. We deal with critical orbits which do not appear in contracting iterated function systems.

Theorem 1.4 (Inducing method: see Theorem 7.14). Let I be a countable set and let G = 〈 fi : i ∈ I〉 be a

rational semigroup. Suppose that there exists a decomposition I = I1∪ I2 with I2 6=∅, such that each of the

following (1)–(4) holds for the rational semigroups G j :=
〈

fi : i ∈ I j
〉
, j ∈ {1,2}, and H := 〈H0〉 given by

H0 := { fi : i ∈ I2}∪
{

fi f j1 . . . f jr : i ∈ I2,r ∈ N,( j1, . . . , jr) ∈ Ir
1
}
, 〈H0〉 := 〈g : g ∈ H0〉.

(1) There exists an H-forward invariant non-empty compact set L ⊂ F (H) such that P(G2) ⊂ L and

fi (P(G1))⊂ L, for each i ∈ I2.

(2) deg(g)≥ 2 for all g ∈ G.

(3) There exists a G-forward invariant non-empty compact set L0 ⊂ F(G).

(4) { fi : i ∈ I} satisfies the open set condition.

Then we have that H is nicely expanding (we endow H0 with the discrete topology), H0 satisfies the open

set condition, s(H) = s(G) and

dimH
(
Jpre (G)

)
= max

{
s(G) ,dimH

(
Jpre (G1)

)}
.

If in addition to the assumptions, we have card(I)< ∞, fi is a polynomial for each i ∈ I1, and if there exists

a compact G1-forward invariant subset K ⊂ F(G1) such that f j(P( fi))⊂ K for all i, j ∈ I1 with i 6= j, then

dimH (J (G)) = max
{

s(G) ,max
i∈I1
{dimH (J( fi))}

}
.

We point out that, even if the semigroup G is finitely generated (e.g. G has two generators), then the
inducing method leads to an infinitely generated semigroup H, which is shown to be nicely expanding.
This fact is one of the main motivations to develop Bowen’s formula for infinitely generated semigroups.

There are many applications of Theorem 1.4 (see Example 2.4, Theorem 1.5, Corollary 7.17, Lemmas 2.6,
2.7). We are interested in the space A of couples ( f1, f2) of polynomials with deg( fi) ≥ 2 for each i, for
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which the planar postcritical set P(〈 f1, f2〉) \ {∞} is bounded but the Julia set J(〈 f1, f2〉) is disconnected.
It is well-known that for a polynomial f with deg( f ) ≥ 2, the Julia set J( f ) of f is connected if and
only if P( f ) \ {∞} is bounded (see [Mil06]). However, the space A is not empty, and this is a special
phenomenon in the dynamics of polynomial semigroups. There have been some studies on the dynamics
of the semigroups 〈 f1, f2〉 for elements ( f1, f2) ∈ A employing potential theory (see [Sum11b, Sum10a,
Sum09, Sum10b, Sum14, SS11]). In this paper, we focus on elements ( f1, f2) ∈ A and some elements
( f1, f2) ∈ ∂A . Applying Theorem 1.4, we obtain the following.

Theorem 1.5 (see Corollary 7.17). Let f1 and f2 be polynomials of degree at least two. Let G = 〈 f1, f2〉.
Suppose that all of the following hold.

(1) P(G)\{∞} is a bounded subset of C.

(2) K ( f1)⊂ IntK ( f2), where K( fi) denotes the filled-in Julia set of fi.

(3) { f1, f2} satisfies the open set condition with the open set (IntK ( f2))\K ( f1).

(4) CV( f2)\{∞} ⊂ IntK ( f1), where CV denotes the set of critical values.

Then we have dimH (J (G)) = max{s(G) ,dimH(J( f1))}.

Remark. A sufficient condition for dimH(J( f1)) ≤ s(G) is that f1 is a non-recurrent critical point map
([Urb94]) or a Collet-Eckmann map ([Pr98]).

Note that all elements ( f1, f2) ∈ A and some elements ( f1, f2) ∈ ∂A satisfy the assumptions of The-
orem 1.5 ([Sum10b, Sum11c, Sum14]). There are many examples of ( f1, f2) satisfying the assumption of
Theorem 1.5 (see Sections 2, 7). For example, for each polynomial f1 such that J( f1) is connected and
IntK( f1) 6= ∅, there exists a polynomial f2 such that ( f1, f2) ∈ A ([Sum11b]). Therefore even if f1 with
connected Julia set has a Siegel disk, there exists f2 such that ( f1, f2) ∈ A and Theorem 1.5 applies to
( f1, f2). For the Julia sets of the semigroups generated by elements { f1, f2} with ( f1, f2) ∈A , see Figures
2.2 – 2.4.

Remark 1.6. Let G = 〈 fi : i∈ I〉 be a rational semigroup with G⊂Aut(Ĉ), where Aut(Ĉ) denotes the group
of Möbius transformations on Ĉ. Suppose that G satisfies the open set condition with a bounded connected
open set U in C. Suppose also that there exist two bounded open connected subsets V1,V2 with U ⊂ Vj,
j ∈ {1,2}, such that f−1

i (V1)⊂V2, for each i∈ I. Suppose further that there exists a constant 0 < s < 1 such
that |( f−1

i )′(z)| ≤ s, for each z ∈U and for each i ∈ I. Then, G is a nicely expanding rational semigroup
and the system Φ = { f−1

i : U → U}i∈I is a contracting conformal iterated function system in the sense
of [MU96], which does not necessarily satisfy the cone condition. Here, the cone condition refers to the
property that there exist γ, l > 0 such that, for every z ∈U , there exists an open cone C with vertex z, central
angle γ and altitude l such that C ⊂U ([MU96, (2.7) on page 110]). Moreover, we have that the pre-Julia
set of G is equal to the limit set of the system Φ.

Remark 1.7 (see Section 8). For the results of this paper, the cone condition for the open set in the open
set condition is not needed. We will see in Section 7 that there are many examples of semigroups which do
not satisfy the cone condition, and for which our results can be applied. For such examples, see Section 7
and Figures 2.3, 2.4. In [MU96, Theorem 3.15] it is proved that, for the Hausdorff dimension of the limit
set J (Φ) of an infinitely generated contracting conformal iterated function system Φ satisfying the cone
condition, we have

(1.3) dimH J (Φ) = inf{δ : P(δ )< 0}= sup
ΦF

{J (ΦF)} .
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Here, P refers to the associated pressure function, and ΦF runs over all finitely generated subsystems of Φ.
By the methods employed in the proof of Theorem 6.5 of this paper, one can show that (1.3) holds, even if
the cone condition is not satisfied. Instead of the cone condition (2.7) in [MU96], we need to assume that
|φ ′i (x)| ≤ s, for each x ∈ X in the notation of [MU96]. For the details, see Section 8.

By using Bowen’s formula for pre-Julia sets for nicely expanding rational semigroups which is established
in this paper, we will investigate the parameter dependence of dimH(Jpre(G)) for nicely expanding rational
semigroups G and dimH(J(S)) for non-hyperbolic finitely generated rational semigroups S, which is a
further interesting task.

Let us briefly comment on the history of the method of inducing. This method was used to investigate
invariant measures of non-hyperbolic dynamical systems using ideas of Schweiger ([Sch75]). In [ADU93]
the method of inducing is used to develop the ergodic theory of Markov-fibred systems with applications to
parabolic rational maps. Using results on the thermodynamic formalism for symbolic dynamical systems
with a countable alphabet ([MU96, Sar99]), the method of inducing was used to prove Bowen’s formula for
parabolic iterated function systems ([MU00], see also [MU03]).

The theory of the dynamics of rational semigroups is intimately related to that of the random dynamics of
rational maps. The first study of random complex dynamics was given in [FS91]. For a recent study, see
[BBR99, MSU11, Sum11a, Sum10a, Sum10b, Sum11c, Sum13]. The deep relation between these fields
(rational semigroups, random complex dynamics, and backward iterated function systems) is explained in
detail in the papers ([Sum01]–[Sum14]) of the second author and in [SU11b]. For a random dynamical
system generated by a family of polynomial maps on Ĉ, let the function T∞ : Ĉ→ [0,1] be given by the
probability of tending to ∞ ∈ Ĉ. In [Sum11a, Sum11c] it was shown that under certain conditions, T∞ is
continuous on Ĉ and varies only on the Julia set of the associated rational semigroup (further results were
announced in [Sum10b]). For example, there exists a random dynamical system, for which T∞ is continuous
on Ĉ and the set of varying points of T∞ is equal to the Julia set of Figure 2.2, Figure 2.3 or Figure 2.4,
which is a thin fractal set. This function T∞ is a complex analogue of the devil’s staircase (Cantor function)
or Lebesgue’s singular functions and this is called a “devil’s coliseum” (see [Sum11a, Sum11c, Sum13,
Sum10b, Sum14]). From this point of view also, it is very interesting and important to investigate the
figure, the properties and the dimension of the Julia sets of rational semigroups.

The outline of this paper is as follows. In Section 2, we give various interesting examples which motivate
the study in this paper. In Section 3, we give some basic definitions and results on rational semigroups
and their associated skew products. In Section 4 we investigate (nicely) expanding rational semigroups.
Proposition 4.2 is the key to investigating infinitely generated nicely expanding rational semigroups. In
Section 5, we consider the associated skew products systems whose phase spaces are not compact, and
we derive basic properties of two notions of topological pressure. We use results on equidistributional
measures from [Sum00]. Also, we use some idea similar to the finitely primitive condition ([MU03]) for
topological Markov chains with an infinite alphabet. In Section 6, we establish Bowen’s formula for pre-
Julia sets of (possibly infinitely generated) nicely expanding rational semigroups and we prove the main
theorem (Theorem 1.3, Theorem 6.5) of this paper. To verify the lower bound of the Hausdorff dimension
in Bowen’s formula, we use a reduction to the finitely generated case and we apply [Sum05, Theorem B].
In Section 7, by applying the main theorem to the dynamics of non-hyperbolic rational semigroups and by
using the method of inducing, we prove Theorems 1.4, 7.14, and 1.5. In Section 8, we give some remarks
on the cone condition which has been assumed in the study of infinite contracting iterated function systems.
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Proposition 4.2 is not a simple generalization of finitely generated case. We use a completely new idea
based on careful observations on the hyperbolic metric in the proof. Proposition 4.2 is used to prove results
in Section 7. In Section 7, we also use some observations on the family {Jω}ω∈IN of fiberwise Julia sets.
The ideas in the proof of Proposition 4.2 and Section 7 are new and have not been used in the study of
iteration dynamics of holomorphic maps and conformal IFSs so far.

2. EXAMPLES

In this section we give various interesting examples of (nicely) expanding rational semigroups and non-
hyperbolic rational semigroups which motivate the study of this paper.

First we give an example of an infinitely generated expanding Möbius semigroup satisfying the open set
condition, which is not nicely expanding. Note that this does not happen for finitely generated rational
semigroups. We say that g ∈ Aut(Ĉ)\{id} is loxodromic if g has two fixed points for which the modulus
of the multiplier is not equal to one.

Example 2.1. Let (ai)∈DN and (bi)∈ (C\D)N be two sequences of pairwise distinct points, which have a
common accumulation point a∞ ∈ S := ∂ (D). For each i ∈ N we choose a loxodromic Möbius transforma-
tion fi with repelling fixed point ai and attracting fixed point bi. Then there exists a sequence (ni)∈NN such
that { f ni

i : i∈N} satisfies the open set condition with respect to D, and such that supx∈D ‖
(

f−ni
i

)′
(x)‖≤ 1/2,

for each i ∈N. Set G :=
〈

f ni
i : i ∈ N

〉
. Clearly, we have that J(G)⊂D and that G is expanding with respect

to
{

f ni
i : i ∈ N

}
. However, G is not nicely expanding. To prove this, let P0 denote a non-empty compact

G-forward invariant subset of F(G). Then we have {bn : n ∈ N} ⊂ P0, which implies a∞ ∈ P0. Moreover,
since a∞ is an accumulation point of the repelling fixed points (an), we have a∞ ∈ J (G). Hence, G is not
nicely expanding.

The following example shows that an infinitely generated expanding rational semigroup, satisfying the open
set condition, is not necessarily hyperbolic. In particular, such a rational semigroup is not nicely expanding.
Note that this can not happen for finitely generated rational semigroup (cf. [Sum05, Remark 5]).

Example 2.2. Let (ai)i∈N ∈ DN be a sequence of pairwise distinct points in the open unit disc D, such
that (ai)i∈N has an accumulation point a∞ ∈ S. Let (ri) ∈ RN be a sequence such that the sets B(ai,ri),
i ∈ N, are pairwise disjoint. There exists a sequence (bi) ∈ RN such that the quadratic polynomials hi,
given by hi (z) := bi (z−ai)

2 + ai, satisfy J (hi) = ∂B(ai,ri), for each i ∈ N. Set V := D \
⋃

i∈N B(ai,ri).
Observe that there exists a sequence (ni) ∈ NN such that { fi : i ∈ N}, given by fi := hni

i , satisfies the open
set condition with respect to V . Clearly, we have J ( fi) = J (hi) = ∂B(ai,ri). To show that G := 〈 fi : i ∈ I〉
is expanding, let f̃ : IN× Ĉ→ IN× Ĉ denote the associated skew product. Let ω ∈ IN and z ∈ Jω be given.
Since J (G)⊂V , we have z ∈V and fω1 (z) ∈V . Since

∣∣ f ′ω1
(z)
∣∣≥ 2, and since the spherical metric and the

Euclidean metric are equivalent on V , we obtain the G is expanding with respect to { fi : i ∈ I}. Finally, we
observe that G is not hyperbolic, because a∞ ∈ J (G)∩P(G).

In the next example, we show that there exists a nicely expanding infinitely generated rational semig-
roup G = 〈 fi : i ∈ I〉, for which 2 = dimH (J (G)) = dimB (J (G)) > s(G) = t (I) = dimH

(
Jpre (G)

)
and

dimH
(
Jpre (G)

)
< dimB

(
Jpre (G)

)
= dimP

(
Jpre (G)

)
= dimB

(
Jpre (G)

)
= dimB (J (G)) = 2, where dimB

denotes the upper box dimension and dimP denotes the packing dimension. The idea is as follows: we
put infinitely many repelling fixed points such that the Hausdorff dimension of the closure of the set of
repelling fixed points is equal to two. Simultaneously, we can make the multipliers sufficiently large to
make the critical exponent close to one.
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Example 2.3. Let V denote a bounded open set in C for which dimH ∂V = 2. For convenience, suppose
that D⊂V . Let (ai) ∈

(
V \D

)N
be a sequence of pairwise distinct points such that ∂V ⊂ {ai : i ∈ N}. We

assume that {ai : i∈N} is discrete in V . Let { fi : i ∈ N} be a generator system such that the following holds
for the rational semigroup G := 〈 fi : i ∈ N〉. Let f1 be given by f1 (z) = zd , for some d ≥ 2 to be specified
later. For each j ∈ N, j ≥ 2, let f j be given by f j (z) = α j (z−a j)+ a j, for some sequence (α j)

∞

j=2 with
α j > 1, such that { fi : i ∈ N} satisfies the open set condition with respect to V . We may also assume that
P(G)∩V = P( f1) = {0}. Since { fi : i ∈ N} satisfies the open set condition with respect to V , we have
that J (G)⊂V , which implies that G is hyperbolic. Further, we have that G is nicely expanding by Lemma
4.8. Finally, since the repelling fixed points {ai : i ∈ N} are contained in J (G), we have dimH (J (G)) =

dimB (J (G)) = 2.

Next, we show that for each t > 1 there exist d ≥ 2 and (α j)
∞

j=2 such that s(G)≤ t (thus G depends on t). In
order to show it, let x ∈ J(G). Since the spherical metric and the Euclidean metric are equivalent on J (G),
there exists a constant C > 0 such that, for each d ≥ 2,

η(x) := ∑
y∈ f−1

1 (x)

‖ f ′1 (y)‖−t +
∞

∑
j=2

∑
y∈ f−1

j (x)

‖ f ′j (y)‖−t ≤Cdd−t +C
∞

∑
j=2

α
−t
j .

Choose d ≥ 2 and the sequence (α j)
∞

j=2 sufficiently large such that supx∈J(G) η(x) < 1. Hence, we have
s(G) ≤ t. Moreover, by Theorem 1.3, we have s(G) = t(N) = dimH Jpre(G). We have thus shown that
2 = dimH (J (G)) = dimB (J (G))> s(G) = t (N) = dimH

(
Jpre (G)

)
.

We give some examples to which we can apply Theorems 1.4 and 1.5. Recall that the filled-in Julia set
K(g) of a polynomial g is defined by

K (g) :=
{

z ∈ C : (gn (z))n∈N is bounded
}
.

Example 2.4. Let I := {1, . . . ,m + `}, m, ` ∈ N, and let {hi : i ∈ I} be polynomials of degree at least
two. Set I2 := {m+ 1, . . . ,m+ `} and suppose that hi is hyperbolic, for each i ∈ I2. Suppose that K(hi)

is connected, for each i ∈ I, and that K(hi)∩K(h j) = ∅, for all i, j ∈ I with i 6= j. Let R > 0 such that
K(hi) ⊂ B(0,R), for each i ∈ I. Then there exists N ∈ N such that h−N

i (B(0,R)) ⊂ B(0,R), for each i ∈ I,
and that {hN

i : i ∈ I} satisfies the open set condition with open set B(0,R). Set fi := hN
i and consider the

rational semigroup G := 〈 fi : i ∈ I〉. Set A := Ĉ\B(0,R) and observe that A is G-forward invariant. Since
J(G) =

⋃
i∈I f−1

i (J(G)) ⊂
⋃

i∈I f−1
i (B(0,R)) ⊂ B(0,R), we have that A ⊂ F(G). For all i, j ∈ I with i 6= j

we have f j(K( fi)) ⊂ A, because f j(K( f j)) ⊂ B(0,R) and f−1
i (B(0,R))∩ f−1

j (B(0,R)) = ∅. To see that
G satisfies the assumption (1) in Theorem 1.4, we set L := A∪P(G2). L is G-forward invariant because
g(P(G2))⊂ g(

⋃
i∈I2 P( fi)∪A)⊂

⋃
i∈I2 P( fi)∪A⊂ L. To prove that P(G2)⊂ F(G), it suffices to prove that

P( fi)⊂ F(G), for each i ∈ I2. We observe that P( fi)\{∞} ⊂ Int(K( fi)) because K( fi) is connected and fi

is hyperbolic, for each i∈ I2. Since g(K( fi))⊂ A∪K( fi), for each g∈G, it follows from Montel’s Theorem
that P( fi) ⊂ F(G). We have thus shown that G satisfies the assumptions of Theorem 1.4. Hence, we have
dimH (J (G)) = max

{
s(G) ,maxi∈{1,...,m}{dimH (J( fi))}

}
. If additionally, each fi is a non-recurrent critical

point map, then dimH (J (G)) = s(G) (see Figure 2.1 for an example). Using this formula, the numerical
value of the Hausdorff dimension may be computed but we do not do that in this paper. Also, using this
formula the parameter-dependence of dimH(J(G)) may be investigated which is a further interesting task.

Definition 2.5 (PB-D). We say that G = 〈 f1, f2〉 satisfies PB-D, if f1 and f2 are polynomials of degree at
least two, such that each of the following holds.

(1) P(G)\{∞} is a bounded subset of C.
(2) J(G) is disconnected.
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FIGURE 2.1. The Julia set of a 3-generator polynomial semigroup G. G = 〈 f1, f2, f3〉 is
given by fi = h3

i , i ∈ {1,2,3}, where h1(z) = (z+3)2 +0.25−3, h2(z) = z2 and h3(z) =
(z−3)2 +0.25+3. f1 and f3 are not hyperbolic, but they are non-recurrent critical point
maps. We have dimH (J (G)) = s(G).

Lemma 2.6. If G = 〈 f1, f2〉 satisfies PB-D, then it also satisfies the assumptions of Theorem 1.5 (by renum-

bering f1 and f2 if necessary), and the open set condition is satisfied.

Proof. [Sum14] or [Sum11c, Proof of Theorem 2.11, Claim 2]. �

Lemma 2.7. Let f1 be a polynomial of degree at least two with Int(K ( f1)) 6=∅ such that K ( f1) is connec-

ted. Let b ∈ Int(K ( f1)). Let d ∈ N with d ≥ 2 such that (deg( f1) ,d) 6= (2,2). Then, there exists a number

c > 0 such that for each a ∈ C with 0 < |a| < c, setting f2 := a(z−b)d + b, the polynomial semigroup

G = 〈 f1, f2〉 satisfies PB-D.

Proof. [Sum11b, Proposition 2.40] and Lemma 2.6. �

Remark 2.8. If f1 is a non-recurrent critical point map or a Collet-Eckmann map, then dimH (J ( f1)) ≤
s(〈 f1〉) by ([Urb94]) and ([Pr98]). Thus, if in addition to this assumption, G = 〈 f1, f2〉 satisfies the assump-
tions of Theorem 1.5, then dimH (J (G)) = s(G).

FIGURE 2.2. The Julia set of G = 〈 f1, f2〉, where f1(z) = z2 + e2πi 3√0.25z, f2 = h2
2

and h2(z) = 0.1z2. G satisfies PB-D. f1 has a Siegel disc with center in 0. We have
dimH (J (G)) = max{s(G) ,dimH(J( f1))}.
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FIGURE 2.3. The Julia set of G = 〈 f1, f2〉 satisfying PB-D, where f1 is a non-hyperbolic
map (but is a non-recurrent critical point map). J (G) is disconnected. The cone condition
is not satisfied. We have dimH (J (G)) = s(G) = s(〈 f2 ◦ f r

1 : r ∈ N∪{0}〉).

FIGURE 2.4. The Julia set of G =
〈
z2 + 1

4 ,az3
〉
, where a ∈ C is a complex number. G

satisfies the assumptions of Theorem 1.5 and J (G) is connected. The cone condition is
not satisfied. We have dimH (J (G)) = s(G) = s(〈 f2 ◦ f r

1 : r ∈ N∪{0}〉).

Remark. Regarding Figure 2.4, we remark there exists a∈C such that for f1 (z) := z2+ 1
4 and f2 (z) := az3,

we have that f−1
1 (J (G))∩ f−1

2 (J (G)) 6= ∅ (see [Sum14]). Then, it follows from [Sum09, Theorem 1.5,
Theorem 1.7] that J (G) is connected. Like this, for each polynomial f1 of degree at least two with
IntK( f1) 6= ∅ such that K( f1) is connected, there are many examples of G = 〈 f1, f2〉 satisfying the as-
sumptions of Theorem 1.5 for which J (G) is connected (see [Sum14, Theorem 2.27 and its proof]).

3. PRELIMINARIES ON RATIONAL SEMIGROUPS AND SKEW PRODUCTS

In this section, we collect some of the basic results on rational semigroups and the associated skew products.
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Definition 3.1. Let G be a rational semigroup and let z ∈ Ĉ. The backward orbit G− (z) of z and the set of
exceptional points E (G) are defined by G− (z) :=

⋃
g∈G g−1 (z) and E (G) :=

{
z ∈ Ĉ : card(G− (z))< ∞

}
.

We say that a set A⊂ Ĉ is G-backward invariant, if g−1(A)⊂ A, for each g ∈ G.

We refer to [HM96, Sum00] for the fundamental properties of rational semigroups and their Julia sets.

We review some of the basics of the skew product associated to rational semigroups introduced in [Sum00].
We will always assume that I is a topological space. We denote by S the set of all non-constant polynomial
maps on Ĉ endowed with the relative topology inherited from Rat. Note that, for each d ∈ N, the subspace
Ratd := { f ∈ Rat : deg( f ) = d} of Rat is a connected component of Rat, and Ratd is an open subset of Rat.
Similarly, the subspace Sd := { f ∈S : deg( f ) = d} of S is a connected component of S , and Sd is an
open subset of S . A sequence { fn} tends to f in S if and only if there exists a number N ∈ N such that
deg( fn) = deg( f ), for each n≥ N, and if the coefficients of fn converge to those of f appropriately. For the
topology of Rat and S , see [Be91].

Let π1 : IN× Ĉ→ IN and πĈ : IN× Ĉ→ Ĉ denote the canonical projections. For each F ⊂ I, we also set

JF :=
⋃

ω∈FN

Jω and JF :=
⋃

ω∈FN

Jω .

For a finite word ω = (ω1,ω2, . . . ,ωn) ∈ In and an infinite word α = (α1,α2, . . .) ∈ IN, we set ωα =

(ω1, . . . ,ωn,α1,α2, . . .) ∈ IN.

Proposition 3.2. Let ( fi)i∈I ∈C(I,Rat) and let f̃ : IN× Ĉ→ IN× Ĉ be the skew product associated to the

generator system { fi : i ∈ I}. Then we have the following.

(1) f̃ (Jω) = Jσω and ( f̃|π−1
1 (ω))

−1 (Jσω) = Jω , for each ω ∈ IN.

(2) f̃
(
J
(

f̃
))

= J
(

f̃
)
, f̃−1

(
J
(

f̃
))

= J
(

f̃
)
, f̃
(
F
(

f̃
))

= F
(

f̃
)
, f̃−1

(
F
(

f̃
))

= F
(

f̃
)
.

(3) Suppose that I is a finite set endowed with the discrete topology. Let G = 〈 fi : i ∈ I〉 and suppose
that card(J (G))≥ 3. Then we have J

(
f̃
)
=
⋂

n∈N0
f̃−n
(
IN× J (G)

)
and πĈ

(
J
(

f̃
))

= J (G). Here,
N0 := N∪{0}.

Proof. The proof of (1) is straightforward and therefore omitted. We give a proof of (2), following [Sum01,
Lemma 2.4]. The inclusion f̃

(
J
(

f̃
))
⊂ J

(
f̃
)

is obvious. In order to prove f̃−1
(
J
(

f̃
))
⊂ J

(
f̃
)
, let

(ω,x) ∈ f̃−1
(
J
(

f̃
))

be given. Clearly, (σω, fω1 (x)) ∈ J
(

f̃
)
. For each neighborhood U of σω and for

each neighborhood V of fω1 (x), there exists (α,y) ∈ U ×V such that y ∈ Jα and f−1
ω1

(y) ⊂ Jω1α . Con-

sequently, for each neighborhood W of (ω,x), we have W ∩
(⋃

ρ∈IN Jρ

)
6=∅. The assertions on the F

(
f̃
)

follow by taking complements. The assertion in (3) is proved in ([Sum00, Proposition 3.2 (b)]). �

Remark. Regarding Proposition 3.2 (3), we remark that in general, we have Jpre (G)⊂ πĈ
(
J
(

f̃
))
⊂ J (G).

If G is expanding, then Jpre(G) = πĈ(J( f̃ )) = πĈ(∪ω∈INJω) by Lemma 4.1. In particular, if G is a finitely
generated expanding rational semigroup, then Jpre (G)= J (G). The inclusion∪

ω∈INJω ⊂ J
(

f̃
)

can be strict,
see [Sum10a, Remark 2.8] for an example. Theorem 7.14 provides examples of infinitely generated rational
semigroups for which the inclusion πĈ

(
J
(

f̃
))
⊂ J (G) is strict. Namely, let G = 〈 f1, f2〉 be as in Lemma

2.6. Then G = 〈 f1, f2〉 satisfies the assumptions of Theorem 1.5 (by renumbering f1, f2 if necessary). For
the infinitely generated rational semigroup H = 〈 f2 f n

1 : n ∈ N〉 we have that ∅ 6= J( f1)⊂ J(G)\ Jpre(H) =

J(H) \ Jpre(H) by Lemma 7.16, Theorem 7.14 (1) and Lemma 7.5. Further, since H is nicely expanding
by Lemma 7.2, we have Jpre (H) = πĈ

(
J
(

f̃
))

by Lemma 4.1, where f̃ is the skew product associated to
generator system H0 = { f2 f r

1 : r ∈ N}. Thus πĈ(J( f̃ ))$ J(H). An example of a nicely expanding rational
semigroup for which dimH(Jpre(G)) < dimH(J(G)) is given in Example 2.3. We remark that the pre-Julia
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set is a continuous image of a Borel set. In particular, Jpre (G) is a Suslin set and thus universally measurable.
For details on Suslin sets we refer to [Fed69, p.65–70].

4. EXPANDING RATIONAL SEMIGROUPS

In this section, we study the dynamics of expanding rational semigroups. For an expanding rational semig-
roup G = 〈 fi : i ∈ I〉 we have that JI is a closed subset of IN× Ĉ.

Lemma 4.1. Let I be a topological space and let ( fi)i∈I ∈C(I,Rat). If G = 〈 fi : i ∈ I〉 is expanding with

respect to { fi : i ∈ I}, then we have that J
(

f̃
)
= JI . In particular, we have that πĈ

(
J
(

f̃
))

= Jpre (G).

Proof. Let (ω,z)∈ J
(

f̃
)
. Since G is expanding with respect to { fi : i ∈ I}we have limn

∥∥( f̃ n
)′
(ω,z)

∥∥=∞.
This gives z ∈ Jω and hence, (ω,z) ∈ Jω . �

Our next aim is to prove the following characterization for a rational semigroup to be nicely expanding.

Proposition 4.2. Let I be a topological space and let ( fi)i∈I ∈C(I,Rat). For the rational semigroup G =

〈 fi : i ∈ I〉, the following statements are equivalent.

(1) G is nicely expanding.

(2) G is hyperbolic, each element h ∈ G∩Aut(Ĉ) is loxodromic, id /∈ G∩Aut(Ĉ) and there exists a

non-empty compact G-forward invariant set P0 (G)⊂ F (G).

In order to prove Proposition 4.2 we need the following Lemmas 4.3–4.6. We use the following classifica-
tion of Möbius transformations. Let g ∈ Aut(Ĉ) \ {id}. We say that g is elliptic if g has two fixed points,
for which the modulus of the multipliers is equal to one. If g is neither loxodromic nor elliptic, then g is
parabolic.

Lemma 4.3. Let I be a topological space and let ( fi)i∈I ∈C(I,Rat). If G = 〈 fi : i ∈ I〉 is expanding with

respect to { fi : i ∈ I}, then each element g ∈ G∩Aut(Ĉ) is loxodromic.

Proof. Let g ∈ G∩Aut(Ĉ) and suppose by way of contradiction that g is not loxodromic. If g is parabolic,
then the parabolic fixed point z of g satisfies z ∈ J (g) and ‖(gn)′(z)‖ = 1, which contradicts that G is
expanding. Now suppose that g is elliptic or the identity map, and let z0 ∈ Jpre(G). For each n ∈ N,
set zn := g−n (z0) and observe that zn ∈ Jpre(G). By conjugating G by a Möbius transformation, we may
assume that zn ∈ C for each n ∈ N and g(z) = eiθ z, for some θ ∈ R. We see that the modulus of (gn)′ (zn)

is equal to one. Letting n tend to infinity, contradicts that G is expanding and completes the proof. �

Lemma 4.4. Let I be a topological space and let ( fi)i∈I ∈C(I,Rat). If G = 〈 fi : i ∈ I〉 is expanding with

respect to { fi : i ∈ I}, then id /∈ G∩Aut(Ĉ), where the closure is taken in Aut(Ĉ).

Proof. Since G is expanding with respect to { fi : i ∈ I}, there exist C > 0 and λ > 1 such that for all n ∈ N
we have inf(ω,z)∈J( f̃) ‖

(
f̃ n
)′
(ω,z)‖ ≥Cλ n. Suppose by way of contradiction that there exists a sequence

(gn) ∈
(
G∩Aut(Ĉ)

)N such that limn distRat(gn, id) = 0. For each n ∈ N, let gn be given by a product
of an generators in { fi : i ∈ I}, for a sequence (an) ∈ NN. We may assume without loss of generality
that the sequence (an) is unbounded. Otherwise, we choose for each r ∈ N an element nr ∈ N such that
supz∈Ĉ d

(
gr

nr (z) ,z
)
< r−1. Then we have limn distRat(gr

nr , id) = 0, as r tends to infinity, and gr
nr is a product

of ranr generators. By passing to a subsequence, we may assume that limn an = ∞. Choose an arbitrary
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(ω,z0) ∈ JI and write gn = fαan ◦ · · · ◦ fα1 , for some α ∈ Ian . Clearly, g−1
n (z0) ∈ Jαω . Consequently, as n

tends to infinity,

sup
z∈Ĉ
‖g′n (z)‖ ≥ ‖g′n

(
g−1

n (z0)
)
‖ ≥ inf

(τ,y)∈J( f̃)
‖
(

f̃ an
)′
(τ,y)‖ ≥Cλ

an → ∞,

which is impossible since gn tends uniformly to the identity on Ĉ. This contradiction finishes the proof. �

Lemma 4.5. Let I be a topological space and let ( fi)i∈I ∈ C(I,Rat). Suppose that G = 〈 fi : i ∈ I〉 is a

rational semigroup such that card(J (G)) ≤ 2 and such that each element in G∩Aut(Ĉ) is loxodromic.

Further, assume that there exists a non-empty compact, G-forward invariant subset P0 (G) ⊂ F (G). Then

we have the following.

(1) card(J (G)) = 1.

(2) G is expanding with respect to { fi : i ∈ I} if and only if id /∈ G∩Aut(Ĉ).
(3) If I is finite or if G satisfies the open set condition with respect to { fi : i ∈ I}, then G is expanding

with respect to { fi : i ∈ I}.

Proof. It is clear that G ⊂ Aut(Ĉ) because card(J(G)) ≤ 2. Let us start with the proof of (1). Let g ∈ G.
It follows from g−1 (J (G)) ⊂ J (G) [HM96, Theorem 2.1] and card(J(G)) ≤ 2, that g(J (G)) = J (G).
Since g is loxodromic, we have g(x) = x, for each x ∈ J (G). By way of contradiction, suppose that J(G)

consists of two points, say J (G) = {a,b}. We may assume that ‖g′ (a)‖ > 1 and ‖g′ (b)‖ < 1. Now, for
each z ∈ P0 (G), we have limn gn (z) = b. Since g(P0 (G)) ⊂ P0 (G), we conclude that b ∈ P0 (G) ⊂ F (G),
which is a contradiction. Hence, card(J (G)) = 1. For simplicity, we may assume that J (G) = {0} in the
following.

Next, we turn to the proof of (2). By Lemma 4.4, it remains to show that, if G is not expanding with
respect to { fi : i ∈ I}, then id∈G∩Aut(Ĉ). Let bi denote the attracting fixed point of fi. Since fi(P0(G))⊂
P0(G) ⊂ F(G), we have bi ∈ P0(G) ⊂ F(G). Since fi(0) = 0, it follows that ‖ f ′i (0)‖ > 1 for each i ∈ I.
Let hi ∈ Aut(Ĉ) be given by hi (z) := z/

(
b−1

i z−1
)
, and observe that h−1

i fihi (z) = ciz, where ci denotes
the multiplier of fi at 0. If G is not expanding with respect to { fi : i ∈ I}, then there exists a sequence
(in) ∈ IN tending to infinity such that limn ‖ f ′in (0)‖ = 1. After passing to a subsequence, we may assume
that limn distRat(hin ,h) = 0, for some h ∈ Aut(Ĉ), which gives that limn distRat( fin , id) = 0, as n tends to
infinity. The proof of (2) is complete.

To prove (3), recall that by the proof of (2), we have that G is expanding if id /∈
⋃

i∈I fi. Clearly, if I is finite
or if { fi : i ∈ I} satisfies the open set condition, then id /∈

⋃
i∈I fi. The proof is complete. �

Lemma 4.6. Let I be a finite set endowed with the discrete topology. Let G= 〈 fi : i ∈ I〉 denote a hyperbolic

rational semigroup such that each element in G∩Aut
(
Ĉ
)

is loxodromic and there exists a non-empty

compact G-forward invariant set P0 (G)⊂ F (G). Then G is nicely expanding (see Definition 1.1).

Proof. If card(J (G)) ≥ 3, then we can follow the proof of [Sum98, Theorem 2.6] by replacing P(G) by
P0 (G). The remaining case card(J (G))≤ 2 follows from Lemma 4.5 (3). �

We now give the proof of Proposition 4.2.

Proof of Proposition 4.2. The proof that (1) implies (2) follows from Lemma 4.3 and Lemma 4.4.
We now turn our attention to the proof of the converse implication. Our aim is to show that G is expanding
with respect to { fi : i ∈ I}. By Lemma 4.5 (2), we are left to consider the case card(J (G)) ≥ 3. Since
G is hyperbolic, we may assume that P(G) ⊂ P0 (G). We denote by V1, . . . ,Vr, r ∈ N, the finitely many
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connected components of F (G) which have non-empty intersection with the non-empty compact set P0 (G).
Since card(J (G))≥ 3, we have that each Vi is a hyperbolic Riemann surface. We denote by dh the Poincaré
metric on Vi and we set Ui := {z ∈Vi : dh (z,P0 (G)∩Vi)< 1}. Our main task is to verify the following
claim. For g ∈G with g(Vi)⊂Vi, for some i ∈ {1, . . . ,r}, we denote by ‖g′ (z)‖h the norm of the derivative
of g at z with respect to the Poincaré metric on Vi.

Claim 4.7. For each i ∈ {1, . . . ,r} there exists 0 < ci < 1 such that, for all g ∈ G satisfying g(Vi)⊂Vi, we

have supz∈Ui
‖g′ (z)‖h ≤ ci.

Proof of Claim 4.7. Suppose for a contradiction that the claim is false. Since Vi is hyperbolic and g : Vi→Vi

is holomorphic, it follows by Pick’s Theorem ([Mil06, Theorem 2.11]) that ‖g′ (z)‖h ≤ 1, for each z ∈ Vi.
Hence, by our assumption, there exist i ∈ {1, . . . ,r} and sequences (gn) ∈ GN and (zn) ∈ UN

i such that
gn (Vi) ⊂ Vi, for each n ∈ N, and limn ‖g′n (zn)‖h = 1. We may assume that limn zn = z∞ ∈Ui by passing
to a subsequence. Since each family of holomorphic maps between hyperbolic surfaces is normal ([Mil06,
Corollary 3.3]), we may assume that there exists a holomorphic map g∞ : Vi→ Ĉ such that gn ⇒ g∞ on Vi,
where ⇒ denotes uniform convergence on compact subsets of Vi, and g∞ : Vi→Vi is holomorphic. We show
that for each gn there exists a fixed point wn ∈ P0 (G)∩Vi. This is clear in the case that the degree of gn is
equal to one by our assumption that each element in G∩Aut(Ĉ) is loxodromic. We consider the case that
the degree of gn is at least two. Since gn is hyperbolic, for each x ∈Vi∩P0 (G), the gn-orbit of x converges
to some attracting p-periodic point wn ∈ P0 (G)∩Vi of gn. Since gn (Vi) ⊂ Vi, we conclude that p = 1. We
may assume that limn wn = w∞ ∈ P0 (G)∩Vi. It then follows that g∞ (w∞) = w∞ and ‖g′∞ (z∞)‖h = 1. From
the Classification Theorem ([Mil06, Theorem 5.2]) for holomorphic maps between hyperbolic surfaces,
we have four possibilities for g∞ : Vi → Vi, namely, attracting, escape, finite order and irrational rotation.
By Pick’s Theorem and the fact that ‖g′∞ (z∞)‖h = 1 it follows that g∞ is a local isometry, which implies
that ‖g′∞ (w∞)‖h = 1. Thus, g∞ is not attracting. Escape is impossible since we have a fixed point. We
conclude that we have finite order or irrational rotation, hence, in every case we have that there exists a
sequence (m j) j∈N ∈ NN such that g

m j
∞ ⇒ idVi on Vi. Combining with gn ⇒ g∞, we conclude that there

exists (hn) ∈ GN such that hn ⇒ idVi on Vi. Let A :=
{

z ∈ Ĉ : (hn) is normal in a neighborhood of z
}

and
let A0 denote the connected component of A containing Vi. By Vitali’s theorem [Be91, Theorem 3.3.3] we
conclude that hn ⇒ idA0 in A0. By our assumption that id /∈ G∩Aut(Ĉ), it follows that A0 6= Ĉ.

We have ∂A0 ⊂ J (G)⊂ Ĉ\P0 (G). Let x0 ∈ ∂A0 and choose s > 0 such that B(x0,s)⊂ Ĉ\
⋃r

i=1 Ui. There
exists y0 ∈ A0 and s0 > 0 such that B(y0,s0) is a relatively compact subset of B(x0,s)∩A0. Since hn ⇒ idA0 ,
we conclude that there exists n0 ∈ N such that for n ≥ n0 we have hn (B(y0,s0)) ⊂ B(x0,s). Now choose
inverse branches γn : B(x0,s)→ Ĉ of hn, that is, hn ◦ γn = idB(x0,s) such that γn (hn (y0)) = y0. Since

⋃r
i=1 Ui

is G-forward invariant, we have that γn (B(x0,s))∩
⋃r

i=1 Ui = ∅, which implies that (γn)n∈N is normal in
B(x0,s). From this and the equivalence between normality and equicontinuity [Be91, Theorem 3.3.2], we
conclude that there exist ε1,ε2 > 0 such that for all n∈N we have γn (B(hn (y0) ,ε1))⊂B(y0,ε2)⊂B(y0,s0).
Now suppose that γn j ⇒ γ∞ on B(x0,s), for some sequence (n j) tending to infinity and γ∞ : B(x0,s)→ Ĉ
holomorphic. By [Ah79, p154] we obtain that γ∞ = id on B(y0,ε3) , for some ε3 > 0 such that B(y0,ε3)⊂
B(hn (y0) ,ε1) for sufficiently large n. Hence, γn ⇒ idB(x0,s). Combining this with hn ◦ γn = idB(x0,s), we
deduce that there is s1 < s0 such that hn (B(x0,s1)) ⊂ B(x0,s0), for sufficiently large n. Hence, (hn) is
normal in B(x0,s1) contradicting the definition of A0. The claim follows. �

We now continue the proof of Proposition 4.2. With r ∈N and U1, . . . ,Ur from above, we set W :=
⋃r

i=1 Ui.
Next, we verify that there exists a compact set K1 ⊂ W such that fω (W ) ⊂ K1, for each ω ∈ Ir. To
prove this, note that for each i ∈ {1, . . . ,r} and ω ∈ Ir, there exist j,k,q ∈ {1, . . . ,r} with k ≤ q such
that fωk−1,...,ω1 (Ui) ⊂U j and fωq,...,ωk (U j) ⊂U j, where we set f∅ := idĈ. Now it follows from Claim 4.7
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that, for each j ∈ {1, . . . ,r}, there exists 0 < c j < 1 such that fωq,...,ωk (U j)⊂
{

z ∈Vj : dh (z,P0 (G))≤ c j
}

,
which is a compact subset of U j. Hence, by Pick’s Theorem and using that P0 (G) is G-forward invariant,
we obtain that, for each i ∈ {1, . . . ,r} and ω ∈ Ir,

(4.1) fω (Ui)⊂
r⋃

j=1

{
z ∈Vj : dh (z,P0 (G))≤max{c1, . . . ,cr}

}
:= K1.

We have thus shown that there exists a compact set K1 ⊂W such that fω (W )⊂ K1, for each ω ∈ Ir.

The next step is prove the existence of a compact set K2 ⊂ Ĉ \W , such that f−1
ω

(
Ĉ \W

)
⊂ K2 for each

ω ∈ Ir. To prove this, we verify that a := infω∈Ir d
(

f−1
ω

(
Ĉ\W

)
,W
)
> 0, where d(A,B) := infa∈A,b∈B d(a,b).

The claim then follows by setting K2 := {z : d (z,W )≥ a}. Assume for a contradiction that a = 0. Then
there exist (xn) ∈

(
Ĉ \W

)N, (ωn) ∈ (Ir)N and (yn)n∈N with yn ∈ f−1
ωn (xn), for each n ∈ N, such that

limn d (yn,W ) = 0. After passing to a subsequence, we may assume that there exists y0 ∈W such that
limn yn = y0. By (4.1), we conclude that fωn (y0) ∈ K1 for each n ∈ N. Since y0 ∈ F (G), we may as-
sume that fωn ⇒ f , as n tending to infinity, for some holomorphic map f in a neighborhood of y0. Hence,
f (y0) ∈ K1 ⊂W . On the other hand, we have fωn (yn) = xn ∈ Ĉ \W , for each n ∈ N, which implies that
f (y0) ∈ Ĉ\W . This contradiction shows that a > 0.

We now turn to the final step of this proof. We denote by A1, . . . ,A`, ` ∈ N, the connected components of
Ĉ\W for which Ai∩ J (G) 6=∅. Clearly, we have J (G)⊂

⋃`
i=1 Ai. Let z ∈ Jpre (G) , z ∈ Jτ , τ ∈ IN, and set

ω := (τ1, . . . ,τr). There exist j1, j2 ∈N such that z ∈ A j1 and fω (z) ∈ A j2 . For a holomorphic map h : S1→
S2 between hyperbolic Riemann surfaces S1 and S2 and w ∈ S1, we use ‖h′(w)‖S1,S2 to denote the operator
norm of the derivative Dh(w) : TwS1 → Th(w)S2 with respect to the norms ‖ · ‖S1 and ‖ · ‖S2 on the tangent
spaces T S1 and T S2, given by the Poincaré metrics. Now we consider ‖ f ′ω (z)‖A j1 ,A j2

. Let B j2 denote the
connected component of f−1

ω (A j2) which contains z. By the previous step, we have B j2 ⊂A j1∩K2. For each
j ∈ {1, . . . , `} let D j be an open connected subset of A j such that D j is compact in A j and A j∩K2 ⊂D j. For
domains Ω1 ⊂ Ω2 ⊂ Ĉ, let ιΩ1,Ω2 : Ω1→ Ω2 denote the inclusion map. Note that, by Pick’s Theorem, we
have that, for each j1, j2 ∈ {1, . . . ,r}, there exists a constant c j1, j2 := supz∈A j1∩K2

‖ι ′D j1 ,A j1
(z)‖D j1 ,A j1

< 1.
Consequently, for each z ∈ B j2 , we have that

‖ι ′B j2 ,A j1
(z)‖B j2 ,A j1

= ‖(ιD j1 ,A j1
◦ ιB j2 ,D j1 ,

)′ (z)‖B j2 ,A j1

≤ ‖ι ′D j1 ,A j1
(z)‖D j1 ,A j1

· ‖ι ′B j2 ,D j1
(z)‖B j2 ,D j1

≤ c j1, j2 ·1.

Finally, since fω : B j2 → A j2 is a covering map, it follows by Pick’s Theorem that fω is locally a Poincaré
isometry, which implies that for v ∈ TzB j2 with v 6= 0 that ‖D fω(z)(v)‖A j2

/‖v‖B j2
= 1. Hence, we obtain

that for each v ∈ TzA j1 with v 6= 0,

‖ f ′ω (z)‖A j1 ,A j2
=
‖D fω(z)(v)‖A j2

‖v‖A j1

=
‖D fω(z)(v)‖A j2

‖v‖B j2

·
‖v‖B j2

‖v‖A j1

= ‖ι ′B j2 ,A j1
(z)‖−1

B j2 ,A j1
≥ c−1

j1, j2 > 1.

Using the same argument, one verifies that for each z ∈ Jpre (G) , z ∈ Jτ , τ ∈ IN, ` ∈ N with ` < r, and
ρ := (τ1, . . . ,τ`), if z ∈ A j1 , fρ(z) ∈ A j2 then we have ‖ f ′ρ (z)‖A j1 ,A j2

≥ 1.

To finish the proof, we remark that the Poincaré metric and the spherical metric are equivalent on the
compact subset J(G)∩Ai of Ai, which proves that there exist a constant λ > 1 and a constant C > 0 such
that, for each (τ,z) ∈ Jτ , τ ∈ IN and n ∈ N, we have ‖

(
f̃ n
)′
(τ,z)‖ ≥ Cλ n. Finally, continuity of ( f̃ n)′

completes the proof of Proposition 4.2. �

In the following lemma we give a sufficient condition for an infinitely generated rational semigroup to be
nicely expanding in terms of the open set condition.
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Lemma 4.8. Let I be a countable set endowed with the discrete topology. Let G = 〈 fi : i ∈ I〉 denote a

hyperbolic rational semigroup. Suppose that each element in G∩Aut
(
Ĉ
)

is loxodromic, there exists a

non-empty compact, G-forward invariant subset P0 (G) ⊂ F (G) and that { fi : i ∈ I} satisfies the open set

condition. Then G is nicely expanding.

Proof. By Lemma 4.6 we may assume that I =N. By Lemma 4.5 (3), we may assume that card(J (G))≥ 3.
Since G is hyperbolic, we may assume that P(G) ⊂ P0 (G). Let us first show that we can assume without
loss of generality that { fi : i ∈ I} satisfies the open set condition with respect to an open set V such that
V ⊂ C compact. To prove this, first note that there exists a neighborhood W of P0 (G) in F (G) which is
G-forward invariant. By conjugating G with an element of Aut

(
Ĉ
)

we may also assume that W contains
infinity. Now, for any g ∈ G, since g

(
W
)
⊂W we have that g−1

(
Ĉ \W

)
⊂ Ĉ \W . Finally, if G satisfies

the open set condition with respect to some open set V ′ ⊂ Ĉ, then G satisfies the open set condition with
respect to V :=V ′∩

(
Ĉ\W

)
and V ⊂ C.

Our next aim is to verify that

(4.2) lim
n→∞

inf
z∈ f−1

n (J(G))
‖ f ′n (z)‖= ∞.

Since card(J (G)) ≥ 3, the Julia set J (G) is the smallest non-empty compact G-backward invariant subset
of Ĉ ([HM96, Sum00]). Hence, J (G) ⊂ V . Since P0 (G) ⊂ F (G), there exists r1 > 0 such that B(x,r1) ⊂
Ĉ\P0 (G), for all x∈ J (G). Using that J (G) is compact we deduce the existence of r2 > 0 with the property
that, for each x ∈ J (G), there exists yx ∈ V such that B(yx,r2) ⊂ B(x,r1)∩V . By the open set condition
and Koebe’s distortion theorem, it follows that, for each ε > 0, there exists n0 such that ‖γ ′ (x)‖ ≤ ε , for all
n≥ n0, x ∈ J (G) and for all inverse branches γ of fn on B(x,r1). The proof of (4.2) is complete.

We will now verify that id /∈G∩Aut
(
Ĉ
)
, from which the lemma follows by Proposition 4.2. For the proof,

it suffices to show that H :=
{

h−1 : h∈Aut
(
Ĉ
)
∩G
}

is closed in Rat. Let h∈H and (hn)∈HN with hn ⇒ h

on Ĉ be given, where

hn = f−1
ωn

1
◦ · · · ◦ f−1

ωn
`n
, ω

n = (ωn
1 , . . . ,ω

n
`n
) ∈ I`n , `n ∈ N.

In order to show that h ∈ H, we will verify that sup`n < ∞ and that there exists a finite set F ⊂ I, such that
ωn ∈ F`n , for all n ∈ N. To prove this, we will show that each of the following assumptions (1) and (2)
gives a contradiction:

(1) sup`n = ∞ and there exists a finite set F ⊂ I such that ωn ∈ F`n , for all n ∈ N.
(2) There exists a sequence ( jn) ∈ NN with jn ≤ `n such that limn ωn

jn = ∞.

Suppose for a contradiction that (1) holds. Set GF := 〈 fi : i ∈ F〉. We may assume that card(J (GF)) ≥ 3.
Since GF is a finitely generated hyperbolic rational semigroup, we have that GF is expanding with respect
to { fi : i ∈ F} by Lemma 4.6. Since sup ln = ∞, we have h′ = 0 on J (GF). Consequently, since J (GF) is
perfect ([HM96, Sum00]), the identity theorem gives that h is a constant function, which contradicts the
continuity of the degree function.

To derive a contradiction from (2), we assume that limn ωn
jn = ∞. By (4.2) we conclude that

(4.3) lim
n→∞

sup
z∈J(G)

∥∥( f−1
ωn

jn

)′
(z)
∥∥= 0.

To deduce a contradiction, let W denote a G-forward invariant relatively compact open neighborhood of
P0 (G) in F (G). Then we have g−1

(
Ĉ\W

)
⊂ Ĉ\W , for each g ∈ G, which implies that H is normal in the

neighborhood Ĉ \W of J (G). After passing to a subsequence, combining (4.3) with the identity theorem
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gives that f−1
ωn

jn
⇒ cA on A, for each connected component A of Ĉ \W and some cA ∈ J(G). Writing hn =

rn f−1
ωn

jn
sn with rn,sn ∈H∪{id}, for each n ∈N, we may assume that rn ⇒ r and sn ⇒ s in the neighborhood

Ĉ\W of J (G). Consequently, h is a constant function, which gives the desired contradiction. �

Regarding the dynamics on the Fatou set of a nicely expanding rational semigroup, we prove the following
lemma, which will be useful in Section 7.

Lemma 4.9. Let G = 〈 fi : i ∈ I〉 be a nicely expanding rational semigroup with G-forward invariant set

P0(G). Suppose that card(J(G))> 1. Then, for each ω ∈ IN and x∈ Fω , we have limn d( fω|n(x),P0(G)) = 0
and each limit function of ( fω|n)n∈N in a connected neighborhood of x in Fω is a constant function whose

value is in P0(G).

Proof. By Lemmas 4.3 and 4.5 we have card(J(G)) ≥ 3. Let V1, . . . ,Vr, r ∈ N, denote the connected
components of F(G) which meet P0(G). Let ω ∈ IN and x ∈ Fω . Then the family ( fω|n)n is normal in
a neighborhood of x. Suppose for a contradiction that there exists a subsequence (g j) of ( fω|n) which
converges to a non-constant map h in a neighborhood of x. Since h is non-constant, it follows from Claim
4.7 in the proof of Proposition 4.2 that g j(x) ∈ Ĉ\∪r

s=1Vs, for each j. By the method employed in the final
step of the proof of Proposition 4.2, we can show that ‖g′j(x)‖ → ∞, as j→ ∞, which is a contradiction.
Thus, each limit function of ( fω|n) in a connected neighborhood of x in Fω is constant. Now suppose that a
subsequence (g j) of ( fω|n) converges to a constant c in a neighborhood of x. We will show that c ∈ P0(G).
Otherwise, there exists δ > 0 such that B(c,δ )∩P0(G) =∅ and, for each large j, there exists a well defined
inverse branch h j : B(c,δ )→ Ĉ of g j such that h j(g j(x)) = x and g j ◦h j = id on B(c,δ ). Since there exists
a G-forward invariant neighborhood W of P0(G) with W ∩B(c,δ ) =∅, we conclude that (h j) is normal in a
neighborhood Ω of x. Hence (h j) is equicontinuous in Ω. Since g j(x)→ c as j→ ∞, there exist δ0 ∈ (0,δ )
and a relative compact subset Ω0 of Ω such that for each j ∈ N, h j(B(c,δ0))⊂Ω0. Since g j ⇒ c on Ω0 as
j→∞, we have g j ◦h j→ c on B(c,δ0) as j→∞. However, this contradicts g j ◦h j = id on B(c,δ ) for each
j. Therefore, lim j d(g j(x),P0(G)) = 0 and hence, limn d( fω|n(x),P0(G)) = 0. �

Finally, we prove some useful facts about the exceptional sets of expanding rational semigroups.

Lemma 4.10. Let I be a topological space and let ( fi)i∈I ∈ C(I,Rat). Suppose that G = 〈 fi : i ∈ I〉
is expanding with respect to { fi : i ∈ I} and G ⊂ Aut

(
Ĉ
)
. Let G0 ⊂ G be a subsemigroup such that

card(J (G0))≥ 3. Then we have E (G0)⊂ F (G).

Proof. Suppose for a contradiction that there exists z0 ∈ E (G0)∩ J (G). Since card(J (G0)) ≥ 3, it fol-
lows from the density of the repelling fixed points in the Julia set and the perfectness of the Julia set
([HM96, Theorem 3.1, Lemma 3.1], [Sum00, Lemma 2.3]) that there exist z1 ∈ J (G0) and g1 ∈ G0, such
that z1 6= z0, g1 (z1) = z1 and ‖g′1 (z1)‖ > 1. Furthermore, we have card(E (G0)) ≤ 2 ([HM96, Lemma
3.3], [Sum00, Lemma 2.3]) . Combining with the fact that g−1 (E (G0)) ⊂ E (G0) for each g ∈ G0, we
conclude that g2

1 (z0) = z0. Since G is expanding, we have that g1 is loxodromic by Lemma 4.3. Thus, z0

is the attracting fixed point of g2
1. Let V be a neighborhood of z0 and let 0 < c < 1 such that g2

1(V ) ⊂ V

and ‖(g2
1)
′(z)‖ < c, for each z ∈ V . Since the Julia set is perfect and by the density of the repelling fixed

points in the Julia set ([HM96, Sum00]), there exists a sequence (an) with an ∈ Jpre(G) \ {z0} such that
limn an = z0. Then there exists a sequence (nk) ∈ NN tending to infinity, such that g−2nk

1 (ank) ∈ V . Hence,
limk ‖(g2nk

1 )′(g−2nk
1 (ank))‖ ≤ limk cnk = 0. Moreover, write g2

1 = fα , for some m ∈ N and α ∈ Im, and de-
note by αn := (α . . .α) ∈ Imn the n-fold concatenation of α . Let (βk) ∈ IN with (βk,ank) ∈ J( f̃ ). Then(
αnk βk,(g

−2nk
1 )(ank)

)
∈ J( f̃ ). This contradicts that G is expanding and finishes the proof. �
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Lemma 4.11. Let I be a topological space and let ( fi)i∈I ∈ C(I,Rat). Suppose that G = 〈 fi : i ∈ I〉 is

expanding with respect to { fi : i ∈ I} and 1≤ card(J (G))≤ 2. Then we have card(J (G)) = 1.

Proof. Clearly, we have G⊂ Aut
(
Ĉ
)

and each element of G is loxodromic by Lemma 4.3. Now, suppose
by way of contradiction that J (G) = {a,b}. Without loss of generality, we may assume that a = 0 and
b = ∞. Since J(G) is G-backward invariant, we have g(a) = a and g(b) = b. Thus, there exists a sequence
(ci) ∈ CI such that fi (z) = ciz, for each z ∈ Ĉ and i ∈ I. We may assume that there exists i0 ∈ I such that
‖ f ′i0(a)‖ > 1. Since G is expanding with respect to { fi : i ∈ I}, there exists a constant c0 > 1 such that
‖ f ′i (a)‖ = |ci| ≥ c0 > 1, for all i ∈ I and z ∈ C. Hence, we have ‖ f ′i (b)‖ ≤ c−1

0 < 1, for all i ∈ I, which
gives that b ∈ F (G). This contradiction proves the lemma. �

Lemma 4.12. Let I be a topological space and let ( fi)i∈I ∈ C(I,Rat). Suppose that G = 〈 fi : i ∈ I〉 is

expanding with respect to { fi : i ∈ I}, card(J (G))> 1 and G⊂ Aut
(
Ĉ
)
. Then we have the following.

(1) E (G)⊂ F (G).

(2) If E (G) 6=∅, then we have g(x) = x and ‖g′ (x)‖< 1, for all g ∈ G and x ∈ E (G).

Proof. By Lemma 4.11 we have card(J (G)) ≥ 3. Hence, the assertion in (1) follows from Lemma 4.10.
Further, card(J (G)) ≥ 3 implies that card(E (G)) ≤ 2 ([HM96, Sum00]). Hence, g(E (G)) = E (G), for
each g ∈ G. Since G is expanding, we have that each element g ∈ G is loxodromic by Lemma 4.3. By the
first assertion, we can now conclude that, if E (G) is non-empty, then card(E (G)) = 1. Moreover, for each
g ∈ G, the element in E (G) is the attracting fixed point of g, which proves (2). �

5. TOPOLOGICAL PRESSURE

In this section we derive basic properties of two notions of topological pressure associated with the dy-
namics of rational semigroups. We start with a preparatory lemma. The property derived in this lemma is
similar to the finitely primitive condition ([MU03]) for topological Markov chains with an infinite alphabet.

Lemma 5.1. Let I be a topological space and let ( fi)i∈I ∈C(I,Rat). Suppose that either (1) G = 〈 fi : i ∈ I〉
is a hyperbolic rational semigroup which contains an element of degree at least two or (2) G is nicely

expanding. Then for each finite family (Ui)i∈{1,...,s} of non-empty open subsets of J (G), there exists `0 ∈ N
and a finite set I0 ⊂ I such that for each z ∈ J(G), for each ` ∈ N with ` ≥ `0 and for each i ∈ {1, . . . ,s}
there is ω ∈ I`0 such that f−1

ω (z)∩Ui 6=∅.

Proof. Let us first suppose that G satisfies the assumptions in (1). By the density of the repelling fixed
points in the Julia set ([HM96, Theorem 3.1]), we have that for each i ∈ {1, . . . ,s} there exists g ∈ G such
that J (g)∩Ui 6= ∅. Hence, there exists a finitely generated subsemigroup G0 := 〈 fi : i ∈ I0〉, including an
element of degree at least two, such that J (G0)∩Ui 6=∅, for all i∈ {1, . . . ,s}. Since G0 contains an element
of degree at least two, we have E (G0) ⊂ P(G). Combining with our assumption that G is hyperbolic, we
obtain that E (G0)⊂ F (G). In particular, we have J (G) = Ĉ\F (G)⊂ Ĉ\E (G0).

Our aim is to apply [Sum00, Theorem 4.3] to the finitely generated semigroup G0. We have seen that
E (G0) ⊂ F (G) ⊂ F (G0). We now verify that J (G0) ⊂ F

({
h−1 : h ∈ Aut(Ĉ)∩G0

})
. To prove this, let

V1, . . . ,Vr, r ∈ N, denote the finitely many connected components of F (G) which have non-empty inter-
section with the compact set P(G). Since G contains an element of degree at least two, we have that each
Vi is hyperbolic and we denote by dh the Poincaré metric on Vi. Set Wi := {z ∈Vi : dh (z,P(G)∩Vi)< 1}
and note that A :=

⋃r
i=1 Wi is G-forward invariant. Hence, we have g−1

(
Ĉ \A

)
⊂ Ĉ \A, for each g ∈ G,
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which implies that Ĉ \A ⊂ F
({

h−1 : h ∈ Aut(Ĉ)∩G0
})

by Montel’s Theorem. We have thus shown that
J (G0)⊂ J (G)⊂ Ĉ\A⊂ F

({
h−1 : h ∈ Aut(Ĉ)∩G0

})
.

Set K := J (G) and observe that K is a compact subset of Ĉ\E (G0), which is G0-backward invariant. Let
µ denote the Borel probability measure on J (G0) corresponding to the equidistribution on the generators
{ fi : i ∈ I0} of G0, which exists by [Sum00, Theorem 4.3] and whose topological support supp µ is equal
to J(G0). By [Sum00, Theorem 4.3] there exists `0 ∈ N such that, for each z ∈ J(G), for all `≥ `0 and for
each i ∈ {1, . . . ,s}, there exists ω ∈ I`0 such that f−1

ω (z)∩Ui 6=∅. The proof of the first case is complete.

Now suppose that G is nicely expanding and G ⊂ Aut(Ĉ). Since the theorem is obviously true in the
case that card(J (G)) = 1, we may assume that card(J (G)) ≥ 3 by Lemma 4.11. Choose a finitely gen-
erated subsemigroup G0 of G such that card(J (G0)) ≥ 3. Hence, we have J (G) ⊂ Ĉ \E (G0) by Lemma
4.10. By substituting P(G) by P0 (G) in the proof of the first case, we verify that J (G0) ⊂ F

({
h−1 : h ∈

Aut(Ĉ)∩G0
})

. Set K̃ := π
−1
Ĉ

(J (G)). Since K̃ ⊂ π
−1
Ĉ

(
Ĉ\E (G0)

)
, it follows from [Sum00, Proof of

Lemma 4.6] that each unitary eigenvector of the bounded linear operator B̃ : C
(
K̃
)
→ C

(
K̃
)
, given by

B̃(ϕ̃)(τ,z) := card(I0)
−1

∑ω∈I0 ϕ̃
(
ωτ, f−1

ω (z)
)
, for each ϕ̃ ∈C

(
K̃
)

and (τ,z) ∈ K̃, is a constant function
on K̃. Finally, since J (G0)⊂F

({
h−1 : h∈Aut(Ĉ)∩G0

})
, we have that

(
B̃n (ϕ̃)

)
n∈N is a family of equicon-

tinuous functions on K̃. Hence, we have that B̃ is an almost periodic operator by the Arzelà-Ascoli Theorem
and the result of [Sum00, Theorem 4.3] follows from the proof of [Sum00, Theorem 4.3]. The rest of the
proof runs as in case (1). �

5.1. Bounded distortion property and topological pressure. Throughout this subsection, let I be a count-
able set and let ( fi)i∈I ∈ RatI . For each n ∈ N, x ∈ Ĉ and t ∈ R, we define

Zn (I, t,x) := ∑
ω∈In

∑
y∈ f−1

ω (x)

∥∥ f ′ω (y)
∥∥−t

, P(I, t,x) := limsup
n→∞

1
n

logZn (I, t,x) .

Here, the sum ∑y∈ f−1
ω (x) counts the multiplicities, and we set 0−t = ∞ if t ≥ 0, and we set 0−t = 0 if t < 0.

Using Lemma 5.1 the proof of the following lemma is a straightforward application of Koebe’s distortion
theorem.

Lemma 5.2 (Bounded distortion lemma). Let I be a countable set and let ( fi)i∈I ∈RatI . Suppose that either

(1) G = 〈 fi : i ∈ I〉 is a hyperbolic rational semigroup which contains an element of degree at least two or

(2) G = 〈 fi : i ∈ I〉 is nicely expanding. Then, for each t ∈R, there exist C > 1, ` ∈N and a finite set I0 ⊂ I,

such that for all I1 ⊂ I with I0 ⊂ I1, for all n ∈ N and for all x,y ∈ J (G) we have

(5.1) Zn+` (I1, t,y)≥C−1Zn (I1, t,x) .

Furthermore, for each x ∈ J (G) we have that P(I1, t,x) < ∞ if and only if supy∈J(G) Z1 (I1, t,y) < ∞. In

particular, if P(I, t,x0)< ∞ for some x0 ∈ J (G), then there exists C′ > 1 such that, for all n ∈ N and for all

x,y ∈ J (G), we have

(5.2) (C′)−1Zn (I1, t,x)≤ Zn (I1, t,y)≤C′Zn (I1, t,x)< ∞.

Moreover, if P(I1, t,x0) = ∞ for some x0 ∈ J (G), then for all sufficiently large n ∈ N and for all x ∈ J (G)

we have Zn (I1, t,x) = ∞.
Proof. We will verify the lemma under the assumptions given in (1). From this, one can deduce that
the lemma holds under the assumptions in (2) by replacing P(G) by P0(G). Our first aim is to define
the finite set I0 ⊂ I. Since G is hyperbolic, we have d (J (G) ,P(G)) > 0, which allows us to fix some
0 < r < d (J (G) ,P(G))/2. Since J (G) is compact, there exist s ∈ N and x1, . . . ,xs ∈ J (G), such that
J (G) ⊂

⋃s
j=1 B(x j,r). By Lemma 5.1 applied to the open sets Ui := B(xi,r), for i ∈ {1, . . . ,s}, we obtain
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that there exist ` ∈ N and a finite set I0 ⊂ I such that, for all j,k ∈ {1, . . . ,s}, there exist τ ( j,k) ∈ I`0 and
y j,k ∈ Ĉ with the property that y j,k ∈ f−1

τ( j,k) (xk)∩B(x j,r).

In the following, let I1 denote an arbitrary subset of I containing I0. For each n ∈ N and for all j,k ∈
{1, . . . ,s} we then have that

Zn+` (I1, t,xk) = ∑
ω∈I`1

∑
y∈ f−1

ω (xk)

∥∥ f ′ω (y)
∥∥−t Zn (I1, t,y)≥

∥∥ f ′
τ( j,k)(y j,k)

∥∥−tZn
(
I1, t,y j,k

)
.(5.3)

We will now combine the previous estimate with the following consequence of Koebe’s distortion theorem.
There exists a constant C1 =C1 (r) such that, for each m∈N, I′ ⊂ I and for all z,z′ ∈ J (G) with d (z,z′)< r,

(5.4) C−1
1 Zm

(
I′, t,z′

)
≤ Zm

(
I′, t,z

)
≤C1Zm

(
I′, t,z′

)
.

Combining (5.3), (5.4) and d
(
y j,k,x j

)
< r, we obtain Zn+` (I1, t,xk) ≥

∥∥ f ′
τ( j,k)

(
y j,k
)∥∥−tC−1

1 Zn (I1, t,x j).

Setting S :=min j,k∈{1,...,s}
∥∥ f ′

τ( j,k)

(
y j,k
)∥∥−t

> 0 and combining J (G)⊂
⋃s

j=1 B(x j,r) with (5.4), we deduce

that Zn+` (I1, t,y) ≥ SC−3
1 Zn (I1, t,x), for all n ∈ N and for all x,y ∈ J (G). We have thus shown that (5.1)

holds with C := S−1C3
1 .

We now turn to the proof of the second assertion of the lemma. Let x∈ J (G). First suppose that P(I1, t,x)<

∞. Clearly, there exists n≥ 2 such that Zn+` (I1, t,x)<∞. By (5.1) we have Zn (I1, t,y)≤CZn+` (I1, t,x)<∞,
for all y ∈ J (G). Consequently, fixing one element a ∈ I0, we have for all y ∈ J (G),

Z1 (I1, t,y)
(

min
z∈ f−1

a (J(G))

∥∥ f ′a (z)
∥∥−t )n−1

≤ ∑
ω∈I1

∑
z∈ f−1

ω (y)

∥∥ f ′ω (z)
∥∥−t Zn−1 (I1, t,z) = Zn (I1, t,y)≤CZn+` (I1, t,x)< ∞,

which proves supy∈J(G) Z1 (I1, t,y)< ∞. On the other hand, if supy∈J(G) Z1 (I1, t,y)< ∞, then

P(I1, t,x) = limsup
n→∞

1
n

logZn (I1, t,x)≤ log sup
y∈J(G)

Z1 (I1, t,y)< ∞,

which finishes the proof of the second assertion.

In order to prove (5.2), suppose that P(I1, t,x0)< ∞, for some x0 ∈ J (G), and let n ∈N and x,y ∈ J(G). By
(5.1) we have

Zn (I1, t,x)≤CZn+` (I1, t,y) =C ∑
ω∈In

1

∑
z∈ f−1

ω (y)

∥∥ f ′ω (z)
∥∥−t Z` (I1, t,z)≤CZn (I1, t,y) sup

z∈J(G)

Z` (I1, t,z) .

Now, by the second assertion of the lemma, we have supz∈J(G) Z` (I1, t,z)< ∞. Hence, the estimates in (5.2)
hold with C′ :=C supz∈J(G) Z` (I1, t,z).

Next, we prove the final assertion of the lemma. Suppose that P(I1, t,x0) = ∞, for some x0 ∈ J (G). By the
second assertion of the lemma, we have supy∈J(G) Z1 (I1, t,y) = ∞. Let x ∈ J(G). By (5.1) we have

Z1+` (I1, t,x)≥C−1 sup
y∈J(G)

Z1 (I1, t,y) = ∞.

Finally, using the estimate Z1+`+1 (I1, t,x) ≥ Z1+` (I1, t,x)minz∈ f−1
a (J(G)) ‖ f ′a (z)‖

−t = ∞, one inductively
verifies that Zn (I1, t,x) = ∞, for all n≥ 1+ `. The proof is complete. �

The third assertion in the following proposition shows that an exhaustion principle holds for P(I, t,x).
Recall that we say that η : R→ R∪{∞} is convex if its epigraph epi(η) :=

{
(x,y) ∈ R2 : y≥ η (x)

}
is

a convex set, and we say that η is closed if epi(η) is closed subset of R2. Note that epi(η) is closed if
and only if η is lower semicontinuous ([Roc70, Theorem 7.1]). The following properties are well-known
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for countable topological Markov chains satisfying the finite primitivity condition ([MU03]). The proof of
Proposition 5.3 (3) is inspired by ([MU03, Theorem 2.1.5]) .

Proposition 5.3. Let G = 〈 fi : i ∈ I〉 be a rational semigroup. Suppose that either (1) G is a hyperbolic

rational semigroup which contains an element of degree at least two or (2) G is nicely expanding. Then, for

each t ∈ R and for each x ∈ J (G), the following holds.

(1) If P(I, t,x0)< ∞, for some x0 ∈ J (G), then P(I, t,x) = limn→∞ n−1 logZn (I, t,x).

(2) There exists a neighborhood V of J (G), V ⊂ Ĉ\P(G), such that z 7→ P(I, t,z) is constant on V .

(3) supF⊂I,card(F)<∞ P(F, t,x) = P(I, t,x)

(4) The map s 7→ P(I,s,x) is a closed convex function with values in R∪{∞}.
(5) For all I1 ⊂ I with I0 ⊂ I1, where I0 is the finite set in Lemma 5.2, we have

P(I1, t,x) = inf

{
β ∈ R : ∑

n∈N
Zn (I1, t,x)e−βn < ∞

}
.

Proof. We give the proof under the assumption that G is hyperbolic and contains an element of degree at
least two. By replacing P(G) by P0(G), the proposition can be proved under the assumption that G is nicely
expanding.

First note that, for all m,n∈N, we have Zn+m (I, t,x)=∑ω∈In ∑z∈ f−1
ω (x) ‖ f ′ω (z)‖−t Zm (I, t,z). Since P(I, t,x0)<

∞, Lemma 5.2 (5.2) implies that there exists a constant C′ > 1 such that

∑
ω∈In

∑
z∈ f−1

ω (x)

∥∥ f ′ω (z)
∥∥−t Zm (I, t,z)≤C′ ∑

ω∈In
∑

z∈ f−1
ω (x)

∥∥ f ′ω (z)
∥∥−t Zm (I, t,x) =C′Zn (I, t,x)Zm (I, t,x) .

Hence, the sequence (an) ∈ RN, given by an :=logZn (I, t,x), n ∈ N, is almost subadditive in the sense that
an+m ≤ an +am + logC′, for all n,m ∈ N. Hence, limn an/n exists and the proof of (1) is complete.

For the proof of (2), one first observes that z 7→ P(I, t,z) is constant on J (G) by Lemma 5.2. Since G is hy-
perbolic, there exists r > 0 such that B(y,r) ⊂ Ĉ \P(G), for each y ∈ J (G). Set V :=

⋃
y∈J(G) B(y,r).

An application of Koebe’s distortion theorem shows that there exists a constant C1 = C1 (r) such that
Zn (I, t,y)C1 ≥ Zn (I, t,z) ≥ C−1

1 Zn (I, t,y), for each y ∈ J (G), z ∈ B(y,r) and n ∈ N. It follows that z 7→
P(I, t,z) is constant on V .

Let us turn to the proof of (3). Clearly, we have P(F, t,x) ≤ P(I, t,x), for each F ⊂ I. Hence, we
have supF⊂I P(F, t,x) ≤ P(I, t,x). For the opposite inequality, we consider two cases. First suppose that
P(I, t,x)< ∞ for any x ∈ J(G) and let ε > 0. There exists n ∈N, such that n−1 logZn (I, t,x)> P(I, t,x)−ε

and n−1 log(C′)< ε , where C′ > 1 is the constant from (5.2) in Lemma 5.2. Let I0 denote the finite subset
of I given by Lemma 5.2. Choose a finite set F with I0 ⊂ F ⊂ I such that n−1 logZn (F, t,x)> P(I, t,x)−2ε .
Let k ∈ N. By (5.2) we have

Zkn (F, t,x) = ∑
ωk∈Fn,yk∈ f−1

ωk
(x)

∥∥ f ′ωk
(yk)

∥∥−t
∑

ωk−1∈Fn,yk−1∈ f−1
ωk−1

(yk)

∥∥ f ′ωk−1
(yk−1)

∥∥−t
. . .

. . . ∑
ω1∈Fn,y1∈ f−1

ω1 (y2)

∥∥ f ′ω1
(y1)

∥∥−t ≥ (C′)−k (Zn (F, t,x))
k ,

which gives

1
kn

logZkn (F, t,x) ≥ −1
n

logC′+
1
n

logZn (F, t,x)≥−ε +P(I, t,x)−2ε = P(I, t,x)−3ε.

We get P(F, t,x)≥ P(I, t,x)−3ε , because the previous estimate holds for every k ∈N. Since ε was chosen
to be arbitrary, the proof is complete in the case that P(I, t,x) < ∞ for any x ∈ J(G). Now, we consider
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the remaining case P(I, t,x) = ∞ for any x ∈ J(G). Let N ∈ N. Clearly, there exists n ∈ N such that
(n+ `)−1 logZn (I, t,x) > N− ε and such that (n+ `)−1 log(C) < ε , where C > 1 and ` ∈ N are given by
(5.1) in Lemma 5.2. Choose a finite set F with I0 ⊂ F ⊂ I such that (n+ `)−1 logZn (F, t,x)> N−2ε . Let
k ∈ N. By (5.1), we have

Zk(n+`) (F, t,x) = ∑
ωk∈Fn+`,yk∈ f−1

ωk
(x)

∥∥ f ′ωk
(yk)

∥∥−t
∑

ωk−1∈Fn+`,yk−1∈ f−1
ωk−1

(yk)

∥∥ f ′ωk−1
(yk−1)

∥∥−t
. . .

. . . ∑
ω1∈Fn+`,y1∈ f−1

ω1 (y2)

∥∥ f ′ω1
(y1)

∥∥−t ≥ C−k (Zn (F, t,x))
k ,

which gives

1
k (n+ `)

logZk(n+`) (F, t,x) ≥ − 1
n+ `

logC+
1

n+ `
logZn (F, t,x)≥ N−3ε.

We obtain P(F,s,x)> N−3ε , and letting N tend to infinity, finishes the proof of (3).

To prove (4), let x ∈ J (G). If card(I) is finite, then it is standard to deduce (4) from Hölder’s inequality.
Now, suppose that I =N. Let (Fn)n∈N be a sequence of finite subsets of I such that Fn⊂Fn+1, for each n∈N,
and

⋃
n∈N Fn = I. For each n∈N, we define gn :R→R, given by gn (s) :=P(Fn,s,x), and g :R→R∪{±∞}

given by g(s) := P(I,s,x). For each n ∈ N, gn is a real-valued convex function. In particular, epi(gn) is a
closed convex subset of R2. By Proposition 5.3 (3) we have that gn(s)≤ gn+1(s), for each s ∈R and n ∈N,
which implies epi(g) =

⋂
n∈N epi(gn). Hence, epi(g) is closed and convex. Since gn is real-valued and

gn ≤ g, we have g(s)>−∞, for each s ∈ R.
Finally, to prove (5), a straightforward modification of the proof of [Jae11, Theorem 3.16] (see also [JKL14])
shows that

P(I1, t,x) = inf
{

β ∈ R : limsup
T→∞

∑
n∈N,n>T

Zn (I1, t,x)e−βn < ∞

}
.

Further, we clearly have that

(5.5) inf
{

β ∈ R : limsup
T→∞

∑
n∈N,n>T

Zn (I1, t,x)e−βn < ∞

}
≤ inf

{
β ∈ R : ∑

n∈N
Zn (I1, t,x)e−βn < ∞

}
.

Hence, in the case that P(I1, t,x) = ∞, the assertion in (5) follows. If P(I1, t,x) < ∞, then (5.2) gives
Zn (I1, t,x)< ∞, for all n ∈ N. Hence, equality in (5.5) holds and the assertion in (5) follows. �

5.2. The Gurevič pressure. Throughout this subsection, let I ⊂ N be the finite set {1, . . . ,n}, for some
n ∈ N, or let I = N, endowed with the discrete topology. Let ( fi)i∈I ∈ RatI and let f̃ : J

(
f̃
)
→ J

(
f̃
)

be the
associated skew product. Suppose that G = 〈 fi : i ∈ I〉 is expanding with respect to { fi : i ∈ I}. For each
n ∈ N, we set

Pn (t) := P
(

tϕ̃|J{1,...,n}∩I , f̃|J{1,...,n}∩I

)
.

Lemma 5.4. Suppose that G = 〈 fi : i ∈ I〉 is a nicely expanding rational semigroup. Then, for each t ∈ R
and for each x ∈ J (G), we have P (t) = limn→∞ Pn (t) = P(I, t,x).

Proof. We may assume that I = N. Let t ∈ R. Our first aim is to prove that

(5.6) P (t) = sup
F⊂I,card(F)<∞

P
(

tϕ̃|JF , f̃|JF

)
.

To prove (5.6), it suffices to verify that, if K ⊂ J( f̃ ) is compact and f̃ (K) = K, then there exists F ⊂ I

finite such that K ⊂ JF and JF is compact. Let pk : IN → I, pk (ω) := ωk, denote the projection on the
kth symbol for each k ∈ N. As the set p1(π1 (K)) ⊂ I is compact, we have that F := p1(π1 (K)) is finite.
Using that f̃ (K) = K, we conclude that pk(π1 (K)) = p1(π1( f̃ k−1 (K))) = p1(π1 (K)) = F , for each k ∈ N.
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Hence, π1 (K) ⊂ FN. Since G is expanding, we have J
(

f̃
)
=
⋃

ω∈IN Jω by Lemma 4.1. Combining this
with π1 (K) ⊂ FN, we see that K ⊂ JF . Since JI is closed in IN× Ĉ by Lemma 4.1, we obtain that JF =

JI ∩
(
FN× Ĉ

)
is compact, which completes the proof of (5.6). By (5.6) we have P(t) = limn→∞ Pn(t).

To prove limn Pn (t) = P(I, t,x), for x ∈ J(G), it suffices to consider one point x0 ∈ J(G). If F is finite and
x ∈ JF , then it follows from [Sum05, Lemma 3.6 (2) and (4)] that

(5.7) P
(

tϕ̃|JF , f̃|JF

)
= P(F, t,x).

Now fix some x0 ∈ J( f1)⊂
⋂

k∈N J(〈 f1, . . . , fk〉). By (5.7), we have, for each n∈N, Pn (t)=P({1, . . . ,n}, t,x0).
Letting n tend to infinity, we obtain P (t) = limn P({1, . . . ,n}, t,x0) by (5.6). By Proposition 5.3 (3) we
have limn→∞ P({1, . . . ,n}, t,x0) = P(I, t,x0), which completes the proof. �

6. BOWEN’S FORMULA FOR PRE-JULIA SETS

In this section we prove Bowen’s formula for pre-Julia sets, which is one of the main results of this paper.

Definition 6.1 ([Sum98]). Let G be a rational semigroup and let δ ≥ 0. A Borel probability measure µ on
Ĉ is called δ -subconformal if, for each g ∈ G and for each Borel set A⊂ Ĉ, we have

µ (g(A))≤
∫

A

∥∥g′
∥∥δ dµ.

Also, we define the following critical exponent

u(G) := inf{v≥ 0 : there exists a v-subconformal measure for G} .

Lemma 6.2. Let I be a countable set and let G = 〈 fi : i ∈ I〉 be a rational semigroup.

(1) • s(G,x)≤ t (I,x), for each x ∈ Ĉ.

• s(G)≤ t (I).

• u(G)≤ s(G).

(2) If G is a free semigroup, then for each x ∈ Ĉ,

s(G,x) = t (I,x) and s(G) = t (I) .

(3) If G is hyperbolic containing an element of degree at least two (resp. nicely expanding), then there

exists a neighborhood V of J (G) with V ⊂ Ĉ\P(G) (resp. V ⊂ Ĉ\P0 (G)) such that t (I) = t (I,x),

for each x ∈V .

Proof. The assertions in (1) were proved in [Sum98, Theorem 4.2]. The assertions in (2) follow immedi-
ately from the definition. In order to prove (3), we verify the following claim.

Claim. Let t ≥ 0. If ∑n∈N Zn (I, t,x) = ∞, for some x ∈ J (G), then ∑n∈N Zn (I, t,y) = ∞, for every y ∈ Ĉ.

Proof of Claim. Suppose that ∑n∈N Zn (I, t,x) = ∞, for some x∈ J (G). We first show that ∑n∈N Zn (I, t,y) =

∞ for each y ∈ J (G). Since G is hyperbolic, containing an element of degree at least two (resp. nicely
expanding), we can apply Lemma 5.2. If P(I, t,x) < ∞, then we have ∑n∈N Zn (I, t,y) = ∞, for each y ∈
J(G), because there exists a constant C′ > 1 such that Zn (I, t,y) ≥C′−1Zn (I, t,x). If P(I, t,x) = ∞, then it
follows from the last assertion in Lemma 5.2 that Zn (I, t,y) = ∞, for each y ∈ J(G) and for all sufficiently
large n ∈ N. The next step is to show that ∑n∈N Zn (I, t,y) = ∞ for each y in a neighborhood V of J (G).
Since G is hyperbolic (resp. nicely expanding), there exists r > 0 such that B(y,r) ⊂ Ĉ \ P(G) (resp.
B(y,r) ⊂ Ĉ \P0 (G)), for each y ∈ J (G). Set V :=

⋃
y∈J(G) B(y,r). An application of Koebe’s distortion
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theorem shows that there exists a constant C1 =C1 (r) such that ∑n∈N Zn (I, t,z)≥C−1
1 ∑n∈N Zn (I, t,y) = ∞,

for each y ∈ J (G) and z ∈ B(y,r).

In order to finish the proof of the claim, we will distinguish two cases.

Case (1): card(J (G)) > 1. In this case, we have card(J(G)) ≥ 3 by Lemma 4.11. First, let y ∈ Ĉ \E (G)

be given. Then there exists ω ∈ I∗ such that f−1
ω (y)∩V 6= ∅ ([HM96, Lemma 3.2], [Sum00, Lemma

2.3]). Since ∑n∈N Zn (I, t,z) = ∞, for each z ∈ V , we conclude that also ∑n∈N Zn (I, t,y) = ∞. Finally, by
Proposition 4.2, each element of G∩Aut(Ĉ) is loxodromic. Since card(J (G))≥ 3, we have card(E(G))≤ 2
([HM96, Lemma 3.3], [Sum00, Lemma 2.3]). Therefore, by Lemma 4.10 and [Be91, Theorem 4.1.2], for
each y ∈ E (G), there is g ∈ G such that g(y) = y and ‖g′ (y)‖< 1. Hence, ∑n∈N Zn (I, t,y) = ∞.

Case (2): card(J (G)) = 1. Let g ∈ G. By Lemma 4.3, we have that g is loxodromic. Let a denote the
repelling fixed point of g, and let b denote the attracting fixed point of g. Since a ∈ J(G), we have that,
for each y ∈ Ĉ \ {b}, there exists n ∈ N such that g−n (z) ∈ V . Hence, ∑n∈N Zn (I, t,y) = ∞. Finally, since
g(b) = b and ‖g′ (b)‖< 1, we have ∑n∈N Zn (I, t,b) = ∞. The proof of the claim is complete. �

Let us now complete the proof of the lemma. It follows from the claim that t (I,x) ≤ t (I,y), for each
x ∈ J (G) and y ∈ Ĉ. In particular, we have t (I) = t (I,x), for every x ∈ J (G). Again, by Koebe’s distortion
theorem, letting V be the neighborhood of J(G) in the proof of Claim, we conclude that t (I) = t (I,x) =

t (I,y) for all x,y ∈V , which proves the assertion in (3). Thus we have proved Lemma 6.2. �

Proposition 6.3. Let I be a countable set. Let G= 〈 fi : i ∈ I〉 denote a nicely expanding rational semigroup.

Then β 7→P (β ) is strictly decreasing on F := {x ∈ R : P (x)< ∞}, and we have

(6.1) t (I) = inf{β ∈ R : P (β )≤ 0}= inf{β ∈ R : P (β )< 0}= sup
F⊂I,card(F)<∞

t (F) .

Furthermore, we have that P (t (I))≤ 0.

Proof. We may assume that I = {1, . . . ,n}, for some n ∈ N, or I = N. Using that G is expanding, it is
straightforward to verify that the map β 7→P (β ) is strictly decreasing on F := {β ∈ R : P (β )< ∞}.
Let x ∈ J (G). Since G is nicely expanding, Lemma 5.4 yields P (β ) = P(I,β ,x). By definition of t (I,x)

we have
inf{β ∈ R : P (β )≤ 0} ≤ t (I,x)≤ inf{β ∈ R : P (β )< 0} .

Since β 7→P (β ) is strictly decreasing on F , we have inf{β ∈ R : P (β )≤ 0}= inf{β ∈ R : P (β )< 0},
which proves that t (I,x) = inf{β ∈ R : P (β )≤ 0} = inf{β ∈ R : P (β )< 0}. By Lemma 6.2 (3) we
have t (I,x) = t (I). It remains to show that t (I) = supF⊂I,card(F)<∞ t (F). Clearly, we have t (F) ≤ t (I),
for each F ⊂ I. Hence, supF⊂I,card(F)<∞ t (F) ≤ t (I). For the reversed inequality, let ε > 0. Since t (I) =

inf{β ∈ R : P (β )≤ 0}, we have P (t (I)− ε) > 0. Hence, by Lemma 5.4, there exists n ∈ N such that
Pn (t (I)− ε)> 0. Therefore, we have that

sup
F⊂I,card(F)<∞

t (F)≥ t (I∩{1, . . . ,n}) = inf{β ∈ R : Pn (β )≤ 0} ≥ t (I)− ε.

Letting ε tend to zero, finishes the proof of (6.1).

Next, we will show that P (t (I)) ≤ 0. Since t (I) = inf{β ∈ R : P (β )≤ 0} and β 7→P (β ) is a closed
function by Proposition 5.3 (4), the claim follows. The proof is complete. �

In order to state the main theorem of this section, we give the definition of the following subsets of Jpre (G).
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Definition 6.4. For a rational semigroup G, we set

Jur (G) :=
⋃

H finitely generated subsemigroup of G

Jpre (H) and Jr (G) :=
⋃

γ∈GN:∃g∈G:γi=g infinitely often

Jγ .

Remark. If G = 〈 fi : i ∈ I〉 is a rational semigroup, where I = {1, . . . ,n}, for some n ∈ N, or I = N, then

Jur (G) =
⋃

F⊂I:card(F)<∞

JF and Jr (G) =
⋃

ω∈IN:liminfi ωi<∞

Jω .

We remark that the subscript ur in Jur means uniformly radial, and the subscript r in Jr means radial.

Theorem 6.5. For a nicely expanding rational semigroup G = 〈 fi : i ∈ I〉, the following holds.

(1) The u(G)-dimensional outer Hausdorff measure of Jpre(G) is finite. In particular, we have that

dimH
(
Jpre (G)

)
≤ u(G).

(2) If I is countable, then dimH
(
Jpre (G)

)
≤ u(G)≤ s(G)≤ t (I) = inf{β ∈ R : P(β )< 0}.

(3) If I is countable, and if { fi : i ∈ I} satisfies the open set condition, then we have

dimH (Jur (G)) = dimH (Jr (G)) = dimH
(
Jpre (G)

)
= u(G) = s(G) = t (I) = inf{β ∈ R : P(β )< 0}.

Proof. We start with the proof of (1). Let δ := u(G) and let (δn)n∈N be a sequence such that limn δn = δ ,
such that δn > δ for each n ∈ N, and such that there exists a δn-subconformal measure µδn for each n ∈ N.
We may assume that

(
µδn

)
n∈N converges weakly to a Borel probability measure µδ on Ĉ. Then the measure

µδ is δ -subconformal. By [Sum98, Proposition 4.3], Lemmas 4.11, 4.12, [Sum00, Lemma 2.3], and [Be91,
Theorem 4.1.2] we have supp(µδ )⊃ J (G). In order to show that the δ -dimensional Hausdorff measure of
Jpre(G) is finite, we will show that there exists a constant C > 0 such that, for all z ∈ Jpre (G),

(6.2) limsup
r→0

µδ (B(z,r))
rδ

≥C.

It then follows from the uniform mass distribution principle ([Fal03, Proposition 4.9 (b)]) and its proof that
the δ -dimensional outer Hausdorff measure of Jpre (G) is finite. Hence, dimH

(
Jpre (G)

)
≤ δ . In order to

prove (6.2) we extend [Sum98, Proof of Theorem 3.4] to our setting. Since G is nicely expanding, we have
d (J (G) ,P0 (G))> 0, and we can fix some 0 < a < d (J (G) ,P0 (G))/2. Let z ∈ Jpre (G). Then there exists
ω ∈ IN such that z ∈ Jω . Hence, we have fω|n (z) ∈ Jσnω ⊂ Jpre (G), for each n ∈ N. We set gn := fω|n ,
zn := gn (z) and we denote by Sn the unique holomorphic branch of g−1

n on B(zn,a) such that Sn (gn (z)) = z.
It follows from Koebe’s distortion theorem that there is c0 > 1 such that c−1

0 ≤ ‖S′n (x)‖/‖S′n (y)‖ ≤ c0, for
all z ∈ Jpre (G), n ∈ N and for all x,y ∈ B(zn,a). We conclude that

Sn (B(zn,a))⊂ B
(
z0,ac0

∥∥S′n (zn)
∥∥) .

Since J (G) is compact and since supp(µδ ) ⊃ J (G), we have M (a) := infz∈J(G) µδ (B(z,a)) > 0. Setting
rn := ac0 ‖S′n (zn)‖ and using that µδ is δ -subconformal, we estimate

µδ (B(z0,rn)) ≥ µδ (Sn (B(zn,a)))≥
∫

B(zn,a)

∥∥S′n
∥∥δ dµδ

≥ c−δ

0

∥∥S′n (zn)
∥∥δ

µδ (B(zn,a))≥ c−δ

0 (ac0)
−δ rδ

n M (a) .

Since G is expanding, rn tends to zero as n tends to infinity. Hence, (6.2) follows with C := c−δ

0 (ac0)
−δ M (a).

The proof of (1) is complete.

The assertion in (2) follows by combining (1) with Lemma 6.2 (1) and Proposition 6.3. To prove (3), sup-
pose that G satisfies the open set condition and set Gn := 〈 fi : i ∈ I∩{1, . . . ,n}〉, for each n∈N. By [Sum05,
Theorem B] we have dimH (J (Gn)) = t (I∩{1, . . . ,n}), for each n∈N. Since J (Gn) = Jur (Gn)⊂ Jur (G)⊂
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Jr (G) ⊂ Jpre (G), for each n ∈ N, we obtain that t (I∩{1, . . . ,n}) = dimH (J (Gn)) ≤ dimH (Jur (G)) ≤
dimH (Jr (G)) ≤ dimH

(
Jpre (G)

)
. By Proposition 6.3 we have limn t (I∩{1, . . . ,n}) = t (I) . Combining

with the upper bound in (2), finishes the proof of (3). The proof is complete. �

7. APPLICATIONS TO NON-HYPERBOLIC RATIONAL SEMIGROUPS

In this section we apply the results of Section 6 to give estimates for the Hausdorff dimension of the
(pre-)Julia sets of non-hyperbolic rational semigroups which possess an inducing structure.

7.1. General Setting. Throughout this section we assume that I is countable. For a subset Λ of Rat, we
denote by 〈Λ〉 the rational semigroup generated by Λ. Thus 〈Λ〉= 〈g : g ∈ Λ〉= {g1 ◦ · · · ◦gn : n ∈ N,g j ∈
Λ, j = 1, . . . ,n}.

Definition 7.1 (Inducing structure). Let G= 〈 fi : i ∈ I〉 denote a rational semigroup. Suppose that deg(g)≥
2 for each g ∈ G. We say that G = 〈 fi : i ∈ I〉 has an inducing structure (with respect to {I1, I2}) if there
exists a decomposition I = I1 ∪ I2 with I2 6= ∅, such that the following holds for the rational semigroups
G j :=

〈
fi : i ∈ I j

〉
, j ∈ {1,2}, and H := 〈H0〉 given by

H0 := { fi : i ∈ I2}∪
{

fi f j1 . . . f jr : i ∈ I2,r ∈ N,( j1, . . . , jr) ∈ Ir
1
}
.

There exists an H-forward invariant non-empty compact set L⊂F (H) such that P(G2)⊂L and fi (P(G1))⊂
L, for i ∈ I2.

In the following, when G = 〈 fi : i ∈ I〉 has an inducing structure with respect to {I1, I2}, let H0 and H be as
in Definition 7.1. We endow H0 with the discrete topology.

Lemma 7.2. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure. Then H is nicely expanding.

Proof. By Definition 7.1 we have

P(H) =
⋃

h∈H∪{id}
h

( ⋃
f∈H0

CV( f )

)
⊂

⋃
h∈H∪{id}

h

(
P(G2)∪

⋃
i∈I2

fi (P(G1))

)
⊂ L⊂ F (H) .

Since P(G2)⊂ P(H) and P(G2) 6=∅, we have that H is nicely expanding by Proposition 4.2. �

The proof of the next lemma is straightforward and therefore omitted.

Lemma 7.3. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure. If { fi : i ∈ I} satisfies the open set

condition with open set U, then H0 satisfies the open set condition with open set U.

The following lemma holds for arbitrary finitely generated rational semigroups of degree at least two.

Lemma 7.4. Let Γ denote a rational semigroup with deg(g) ≥ 2, for each g ∈ Γ. Let Γ0 be a finitely

generated subsemigroup of Γ. Let Ω denote a subsemigroup of Γ with the property that, for each g ∈ Γ,

there exists h ∈ Γ0 such that hg ∈Ω. Then we have J (Γ) = J (Ω).

Proof. Clearly have J (Ω) ⊂ J (Γ), and it remains to show the opposite inclusion. By the density of the
repelling fixed points in the Julia set ([HM96, Corollary 3.1]), we have J (Γ) =

⋃
g∈Γ J (g) . Hence, it suffices

to prove that J (g) ⊂ J (Ω) for each g ∈ Γ. Let g ∈ Γ and let A be a finite set of generators of 〈Γ0 ∪{g}〉
with g ∈ A. Let γ ∈ AN be given by (g,g, . . .). For each n ∈ N, by our assumptions on Ω and Γ, there exists
hn ∈ Γ0 such that hngn ∈Ω. For each n∈N, let α(n)∈ An be given by (g,g, . . . ,g). Let β (n)∈ Amn be given
by β (n)mn ◦ · · · ◦β (n)1 = hn. Further, for each n ∈ N, we define the sequence γ(n) ∈ AN, given by γ(n) :=
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(α(n),β (n),α(n),β (n), . . .) ∈ AN. We observe that γ(n)→ γ with respect to the product topology on AN,
as n tends to infinity. By lower semicontinuity of the Julia set ([Sum06, Proposition 2.2]), we conclude
that, for each z ∈ Jγ , there is a sequence (yn) ∈ ĈN with yn ∈ Jγ(n) such that limn yn = z. Consequently, we
have J (g) = Jγ ⊂

⋃
n∈N Jγ(n) ⊂ J (Ω), where the last inclusion holds, because we have Jγ(n) = J (hngn) and

hngn ∈Ω, for each n ∈ N. The proof is complete. �

Lemma 7.5. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure. Then J (G) = J (H).

Proof. Let h ∈ I2 be an element. By Definition 7.1, we have that hg ∈ H, for each g ∈ G. Now, the lemma
follows from Lemma 7.4 applied to Γ := G, Γ0 := 〈h〉 and Ω := H. �

Definition 7.6. Let I be a topological space and let ( fi)i∈I ∈ C(I,Rat). Let G = 〈 fi : i ∈ I〉 and let f̃ :
J
(

f̃
)
→ IN× Ĉ→ IN× Ĉ be the associated skew product. For each K ⊂ I and ω ∈ KN, we set Ĵω,K :=

πĈ(J
K ∩π

−1
1 ({ω})), where the closure is taken in IN× Ĉ.

Lemma 7.7 ([Sum10a], Lemma 3.5). Let G = 〈 fi : i ∈ I〉 be a rational semigroup with card(I) < ∞. Let

K ⊂ I and set GK := 〈 fi : i ∈ K〉. For each ω ∈ KN, we have Ĵω,K =
⋂

∞
n=1 f−1

ω|n(J(GK)).

Lemma 7.8. Let G= 〈 fi : i ∈ I〉 be a rational semigroup with card(I)<∞. Suppose that { fi : i ∈ I} satisfies

the open set condition. Let I1⊂ I be a non-empty subset and set G1 := 〈 fi : i ∈ I1〉. Suppose that fi(P(G1))⊂
F(G), for all i ∈ I \ I1, and that there exists a G1-forward invariant compact subset L1 ⊂ F(G). Then we

have Ĵω,I1 = Ĵω,I , for each ω ∈ I1.

Proof. Let ω ∈ IN1 and suppose by way of contradiction that there exists z∞ ∈ Ĵω,I \ Ĵω,I1 . Then there
exist sequences (β n)n∈N and (zn)n∈N with β n ∈ IN \ IN1 and zn ∈ Jβ n , for each n ∈ N, such that limn β n =

ω and limn zn = z∞. Since z∞ /∈ Ĵω,I1 =
⋂

∞
n=1 f−1

ω|n(J(G1)) by Lemma 7.7, there exists m ∈ N such that

fω|m(z∞) ∈ F(G1). We may assume that β n
|m = ω|m, for each n ∈ N. Define the sequence (rn) ∈ NN, given

by rn := min{k ∈ N : β n
k /∈ I1}. Clearly, we have rn > m, for each n ∈ N, and that rn tends to infinity,

because β n tends to ω ∈ IN1 , as n tends to infinity. Since fω|m(z∞) ∈ F(G1) and β n
|rn−1 ∈ Irn−1

1 , we have that

( fβ n
|rn−1

)n∈N is normal in a neighborhood of z∞ in Fω . Let (n j) ∈ NN be a sequence tending to infinity, such

that the sequence (g j) ∈ GN
1 , given by g j := f

β
n j
|rn j−1

, converges uniformly in a neighborhood V of z∞. We

may also assume that there exists i0 ∈ I \ I1 such that β
n j
rn j

= i0, for all j ∈ N. We will now distinguish two
cases.

Case 1: Suppose there exists a constant c ∈ Ĉ, such that g j ⇒ c on V . Since g j(zn j) ∈ J(G), we have
c ∈ J(G). Hence, we have that c /∈ L1 ⊂ F(G) and that there exists a G1-forward invariant neighbor-
hood W of L1 in F(G), such that c /∈W . (To take such W , let δ0 > 0 be a small number such that setting
A = {z ∈ F(G) : d(z,L1) < δ0}, we have c 6∈ ∪g∈G1∪{id}g(A). Let W := ∪g∈G1∪{id}g(A).) To prove that
c ∈ P(G1), suppose on the contrary that c /∈ P(G1). Then there exists δ > 0 such that B(c,δ )∩W =∅ and,
for each large j, there exists a well defined inverse branch h j : B(c,δ )→ Ĉ of g j, such that h j(g j(z∞)) = z∞

and g j ◦ h j = id on B(c,δ ). Since W is G1-forward invariant, we conclude that h j(B(c,δ ))∩W = ∅.
Hence, we obtain that (h j) is normal in z∞, which is a contradiction (see the argument in the proof of
Lemma 4.9). We have thus shown that c ∈ P(G1). Consequently, we have lim j f

β
n j
|rn j

(z∞) = fi0(c) ∈

fi0(P(G1)) ⊂ F(G). On the other hand, we have fi0(c) = lim j f
β

n j
|rn j

(zn j) ∈ J(G), which gives a contradic-

tion.
Case 2: Suppose there exists a non-constant holomorphic map ϕ : V → Ĉ, such that g j ⇒ ϕ on V . Suppose
that { fi : i ∈ I} satisfies the open set condition with open set U . Since fi0(ϕ(z∞)) = lim j f

β
n j
|rn j

(zn j)∈ J(G)⊂
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U and fi0 ◦ϕ is non-constant, there exists z in a neighborhood of z∞, such that fi0(ϕ(z)) ∈U . Moreover,
there exists j0 ∈N such that f

β
n j
|rn j

(z)∈U , for all j≥ j0. We may also assume that rn j+1 > rn j , for all j≥ j0.

Hence, for each j ≥ j0, we have

z ∈
(

f−1
β

n j
1
. . . f−1

β
n j
rn j

(U)

)
∩
(

f−1
β

n j+1
1

. . . f−1
β

n j+1
rn j

. . . f−1
β

n j+1
rn j+1

(U)

)
⊂
(

f−1
β

n j
1
. . . f−1

β
n j
rn j

(U)

)
∩
(

f−1
β

n j+1
1

. . . f−1
β

n j+1
rn j

(U)

)
.

Since { fi : i ∈ I} satisfies the open set condition, we conclude that β
n j
1 . . .β

n j
rn j

= β
n j+1
1 . . .β

n j+1
rn j

. This is a

contradiction, because β
n j
rn j

= i0 ∈ I \ I1 and β
n j+1
rn j
∈ I1. The proof is complete. �

Lemma 7.9. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure and that card(I)< ∞. Let ω ∈ IN and

suppose that there exists γ ∈HN
0 and a sequence (nk) ∈NN tending to infinity, such that fω|nk

= γk ◦ · · · ◦ γ1,

for each k ∈ N. Then we have Jγ = Jω = Ĵω,I .

Proof. Clearly, we have Jγ ⊂ Jω ⊂ Ĵω,I . Suppose for a contradiction that there exists z ∈ Ĵω,I \ Jγ . Since H

is nicely expanding by Lemma 7.2 , there exists c ∈ P(H)⊂ F(H) and a subsequence (n′k) of (nk) tending
to infinity, such that fω|n′k

⇒ c in a neighborhood of z by Lemma 4.9. On the other hand, it follows from

Lemma 7.7 that Ĵω,I =
⋂

∞
k=1 f−1

ω|n′k
(J(G)). Hence, we have c = limk fω|n′k

(z) ∈ J(G). Since J(G) = J(H) by

Lemma 7.5, we get the desired contradiction. �

Lemma 7.10. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure with respect to {I1, I2} and that

card(I) < ∞. Let G1 = 〈 fi : i ∈ I1〉. If there exists a G1-forward invariant compact set L1 ⊂ F(G) and if

{ fi : i ∈ I} satisfies the open set condition, then we have

J (G) = Jpre (H)∪
⋃

g∈G

g−1 (J (G1)) .

Proof. Let z ∈ J (G). Since card(I)< ∞, there exists ω ∈ IN such that z ∈ Ĵω,I by Proposition 3.2 (3). We
now distinguish two cases. If there exists `∈N and τ ∈ IN1 such that ω = (ω1, . . . ,ω`,τ1, . . .), then fω|`(z)∈
Ĵτ,I . By Lemma 7.8, we have Ĵτ,I = Ĵτ,I1 ⊂ J(G1). We have thus shown that z ∈ f−1

ω|`
(J(G1)). If no such `

exists, then there exist γ ∈ HN
0 and a sequence (nk) ∈ IN tending to infinity, such that fω|nk

= γk ◦ · · · ◦ γ1,

for each k ∈ N. Hence, we have z ∈ Ĵω,I = Jγ ⊂ Jpre(H) by Lemma 7.9. �

The following two lemmata give conditions under which we can bound the Hausdorff dimension of the
Julia set of a polynomial semigroup from above.

Lemma 7.11. Let G = 〈 fi : i ∈ I〉 be a rational semigroup with card(I)< ∞ such that the following holds.

(1) There exists a compact G-forward invariant set K ⊂ F(G), such that f j(P( fi))⊂ K, for all i, j ∈ I

with i 6= j.

(2) fi is a polynomial of degree at least two, for each i ∈ I.

Then we have dimH(Jpre(G))≤max{s(G),maxi∈I{dimH(J( fi))}}.

Proof. For each i ∈ I, let i∞ = (i, i, i, . . .) ∈ IN. We will show that

dimH

 ⋃
ω /∈

⋃
n∈N0

σ−n(
⋃

i∈I i∞)

Jω

≤ s(G),
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from which the lemma follows. To prove this, let f̃ : IN× Ĉ→ IN× Ĉ be the skew product associated to
{ fi : i ∈ I}. We set

P( f̃ ) :=
⋃

n∈N
f̃ n({(ω,z) : f ′ω1

(z) = 0})⊂ IN× Ĉ,

and we first verify that

(7.1) J( f̃ )∩P( f̃ ) =
⋃
i∈I

{(i∞,x) ∈ J( f̃ ) : x ∈ P( fi)}.

Let (ω,x) ∈ J( f̃ )∩P( f̃ ) be given. By (1), there exists i ∈ I such that x ∈ P( fi). Since fω|n(x) ∈ J(G),
for each n ∈ N, we have ω = i∞ by (1). Thus (7.1) holds. For each ω /∈

⋃
n∈N0

σ−n(
⋃

i∈I i∞) and for each
n0 ∈ N, there exists n ≥ n0 such that Jσn−1(ω) ⊂ f−1

i f−1
j (J(G)), for some i, j ∈ I with i 6= j. By (7.1) we

then have

min
{

d(a,b) : a ∈ Jσn−1(ω),b ∈ P(G)
}
≥min

{
d(a,b) : i, j ∈ I, i 6= j,a ∈ f−1

i f−1
j (J(G)),b ∈ P(G)

}
> 0.

Now, the claim follows from [Sum06, Proposition 2.11 and Proposition 2.20]. �

Lemma 7.12. Under the hypothesis of Lemma 7.11, suppose that { fi : i ∈ I} additionally satisfies the open

set condition. Then we have Jpre(G) = J(G). In particular, we have

dimH(J(G))≤max{s(G),max
i∈I
{dimH(J( fi))}}.

Proof. We will show that Ĵω,I = Jω , for each ω ∈ IN. Suppose for a contradiction that there exists ω ∈ IN

and z ∈ Ĵω,I \ Jω . Since we have Ĵi∞,I = Ji∞ , for each i ∈ I by Lemma 7.8 applied to I1 := {i}, we conclude
that there exist i, j ∈ I with i 6= j and a sequence (nk) ∈ NN tending to infinity, such that ωnk+1 = i and
ωnk+2 = j. We may assume that there exists g : V → Ĉ in a neighborhood V of z, such that fω|nk

⇒ g on
V . We show that g is non-constant. Otherwise, similarly as in the proof of Lemma 7.8 (Case 1), we can
show that g(z) ∈ P(G), which then implies that limk fω|nk+2(z) = f j fig(z) ∈ F(G). This contradicts that

z ∈ Ĵω,I . We have thus shown that g is non-constant. We may assume that there exists ρ ∈ IN such that
limk σnk(ω) = ρ . Clearly, we have ρ1 = i and ρ2 = j. Now, it follows from [Sum01, Lemma 2.13] that
({ρ}× Ĵρ,I)∩P( f̃ ) 6=∅, which contradicts (7.1). �

In order to state the main result of this section, let us introduce regularity of the pressure function associated
to rational semigroups. We adapt the definitions from [MU03, p.78] in the context of graph directed Markov
systems.

Definition 7.13. Let I be a finite or countable set, let ( fi)i∈I ∈RatI and let f̃ : J
(

f̃
)
→ J

(
f̃
)

be the associated
skew product. Suppose that 〈 fi : i ∈ I〉 is nicely expanding and denote by P(t) the pressure function of
the system { fi : i ∈ I} for t ∈ R. We say that { fi : i ∈ I} is regular if there exists t ≥ 0 such that P(t) = 0.
Otherwise, we say that { fi : i ∈ I} is irregular. If { fi : i ∈ I} is regular and if there exists u ∈ R such that
0 < P(u)< ∞, then { fi : i ∈ I} is called strongly regular, if { fi : i ∈ I} is regular and no such u ∈ R exists,
then { fi : i ∈ I} is called critically regular. Moreover, we set Θ(I) := inf{β ∈R : sup{Z1(I,β ,x) : x ∈ J(〈 fi :
i ∈ I〉)}< ∞}.

Theorem 7.14. Suppose that G = 〈 fi : i ∈ I〉 has an inducing structure with respect to {I1, I2} and that

there exists a G-forward invariant compact set L0 ⊂ F (G). Let H0,H,G1 be as in Definition 7.1. Let H0 be

endowed with the discrete topology. Then, we have the following.

(1) Jpre (G)\ Jpre (H) =
(⋃

g∈G∪{id} g−1
(
Jpre (G1)

))
\ Jpre(H).
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(2) If I is countable, then H is nicely expanding and dimH
(
Jpre (H)

)
≤ s(H) ≤ t(H0) = inf{β ∈ R :

P(β )< 0}, where P denotes the pressure function of the system {h : h ∈ H0}.
(3) If I is countable, and if { fi : i ∈ I} satisfies the open set condition, then we have

s(G1) = t(I1)≤Θ(H0)≤ t (H0) = s(H) = s(G) = t(I) = dimH
(
Jpre (H)

)
and

dimH
(
Jpre (G)

)
= max

{
s(G) ,dimH

(
Jpre (G1)

)}
.

If moreover card(I)< ∞, then we have

dimH (J (G)) = max{s(G),dimH(J(G1))}.

(4) If { fi : i ∈ I} satisfies the open set condition, card(I) < ∞, fi is a polynomial for each i ∈ I1, and

if there exists a compact G1-forward invariant subset K ⊂ F(G1), such that f j(P( fi)) ⊂ K for all

i, j ∈ I1 with i 6= j, then

dimH (J (G)) = max
{

s(G) ,max
i∈I1
{dimH (J( fi))}

}
.

(5) Suppose that I is countable. Then we have all of the following.

(a) Θ(H0) = inf{β : P(H0,β ,x)< ∞}, for each x ∈ J (H).

(b) H0 is strongly regular if Θ(H0)< t(H0).

(c) H0 is critically regular or irregular if Θ(H0) = t(H0).

Proof. To prove the assertion in (1), we first verify that Jγ = Jω , for all γ ∈HN
0 and ω ∈ IN, for which there

exists a sequence (nk) ∈ NN tending to infinity, such that γk ◦ γk−1 ◦ · · · ◦ γ1 = fω|nk
, for each k ∈ N. Since

the inclusion Jγ ⊂ Jω is obviously true, we only address the opposite inclusion. Since L0 is a compact,
G-forward invariant subset of F (G), there exists a forward G-invariant neighborhood V of L0, such that
V ⊂ F (G). Now, suppose by way of contradiction that there exists z ∈ Jω ∩Fγ . Since z ∈ Jω we have
fω|nk

(z) ∈ J (G) for each k ∈N. Since V is a relatively compact subset of F (G), there exists ε > 0 such that
d
(
V, fω|nk

(z)
)
> ε , for each k ∈ N. Combining this with our assumption that z ∈ Fγ , we obtain that there

exists δ > 0 such that γk ◦ γk−1 ◦ · · · ◦ γ1 (B(z,δ ))∩V =∅, for all k ∈N. Since V is G-forward invariant, we
conclude that fω|n (B(z,δ ))∩V = ∅, for all n ∈ N, which implies that z ∈ Fω . This contradiction finishes
the proof of Jγ = Jω . We now let z ∈ Jpre(G)\ Jpre(H). Then there exists ω ∈ IN such that z ∈ Jω . Suppose
card({k ∈ I : ωk ∈ I2}) = ∞. Then there exist γ ∈HN

0 and a sequence (nk) ∈NN tending to infinity such that
γk ◦ · · · ◦ γ1 = fω|nk

for each k. By the above observation, we have z ∈ Jω = Jγ ⊂ Jpre(H). However this is a
contradiction. Hence card({k ∈ I : ωk ∈ I2})< ∞ and z ∈ ∪g∈G∪{id}g−1(Jpre(G1)). Thus the assertion in (1)
holds.

The assertion in (2) follows from Lemma 7.2 and Theorem 6.5 (2). To prove (3), first observe that, since
〈 fi : i ∈ I〉 satisfies the open set condition, we have that H0 satisfies the open set condition by Lemma
7.3. Hence, G = 〈 fi : i ∈ I〉, H = 〈H0〉 and G1 = 〈 fi : i ∈ I1〉 are free semigroups. In particular, we have
s(G1) = t(I1), t (H0) = s(H) and s(G) = t(I) by Lemma 6.2 (2). To prove t(I1) ≤ Θ(H0), we first note
that, for each α ≥ 0, j ∈ I2, x ∈ Ĉ and y ∈ f−1

j (x),∥∥ f ′j (y)
∥∥−α

∑
g∈G1

∑
z∈g−1(y)

∥∥g′ (z)
∥∥−α ≤ Z1 (H0,α,x) .

For each x ∈ J(G2) and y ∈ f−1
j (x) we have ‖ f ′j (y)‖ 6= 0. Hence, we have

(7.2) ∑
g∈G1

∑
z∈g−1(y)

∥∥g′ (z)
∥∥−α ≤

∥∥ f ′j (y)
∥∥α Z1(H0,α,x).
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By the definition of Θ(H0), we have Z1 (H0,α,x)<∞, for each x∈ J(G2)⊂ J(H), ε > 0 and α =Θ(H0)+ε .
Hence, we have ∑g∈G1 ∑z∈g−1(y) ‖g′ (z)‖

−α <∞ by (7.2). We have thus shown that t (I1)≤ t (I1,y)≤Θ(H0).
In order to verify Θ(H0) ≤ t (H0), recall that since H is nicely expanding, we have for each x ∈ J (H) that
t (H0) = t (H0,x) by Lemma 6.2 (3). Consequently, for each ε > 0 and for each x ∈ J (H), we have that

∑n∈N Zn (H0, t (H0)+ ε,x) < ∞. In particular, we have P(H0, t (H0)+ ε,x) ≤ 0 < ∞. By Lemma 5.2 we
conclude that supy∈J(H) Z1 (H0, t (H0)+ ε,y) < ∞, which proves Θ(H0) ≤ t (H0)+ ε . Therefore, Θ(H0) ≤
t (H0). We now prove s(H) = s(G). It is easy to see that s(G) ≥ s(H). In order to show the opposite
inequality, let t > s(H). Then by the Claim in the proof of Lemma 6.2 and Lemma 7.5, there exists a point
x0 ∈ J(H) = J(G) such that ∑n∈N Zn(H0, t,x0)<∞. Let h∈ { fi : i∈ I2} and let x1 ∈ h−1(x0)⊂ J(G) = J(H).
Then ∑n∈N Zn(I1, t,x1)< ∞. Moreover, we have ∑n∈N Zn(H0, t,x1)< ∞ by the Claim in the proof of Lemma
6.2 and Lemma 7.5. Furthermore, by Lemma 5.2, there exists a constant C′ > 1 such that Zn(H0, t,x) ≤
C′Zn(H0, t,x0), for each x ∈ J(G). Therefore, we have

(7.3) ∑
n∈N

Zn(I, t,x1) = ∑
n∈N

Zn(I1, t,x1)+ ∑
n∈N

Zn(H0, t,x1)+ ∑
g∈G1

∑
a∈g−1(x1)

‖g′(a)‖−t
∑

n∈N
Zn(H0, t,a)< ∞.

Thus, we have t > s(G), which finishes the proof of s(G) = s(H). That t(H0) is equal to dimH
(
Jpre (H)

)
follows from Theorem 6.5 because H is nicely expanding by Lemma 7.2 and H0 satisfies the open set
condition by Lemma 7.3. Combining this with the fact that the Hausdorff-dimension is σ -stable and that
Lipschitz continuous maps do not increase Hausdorff-dimension (we can apply this fact to holomorphic
inverse branches of the elements of G defined locally in the complement of the critical values), we ob-
tain that dimH

(
Jpre (G)

)
= max{s(G),dimH(Jpre(G1))} by (1). Finally, if card(I) < ∞, then we have

dimH (J (G)) = max{s(G),dimH(J(G1))} by Lemma 7.10.

The assertion in (4) follows from (3) and Lemma 7.12. Finally, (5a) follows from Lemma 5.2 and the
statements in (5b) and (5c) are derived from (5a) and Proposition 6.3. The proof is complete. �

7.2. Special cases of polynomial semigroups. In this section, we provide a class of polynomial semig-
roups which have an inducing structure. Moreover, we can prove further refinements of our main result.

Definition 7.15 (PB-OSC). We say that G = 〈 f1, f2〉 (or the generator system { f1, f2}) satisfies PB-OSC if
f1 and f2 are polynomials of degree at least two, such that each of the following holds.

(1) P(G)\{∞} is a bounded subset of C.
(2) K ( f1)⊂ IntK ( f2)

(3) { f1, f2} satisfies the open set condition with the open set (IntK ( f2))\K ( f1)

(4) CV( f2)\{∞} ⊂ IntK ( f1).

We will frequently make use of the following facts for G = 〈 f1, f2〉 satisfying PB-OSC. For ω ∈ {1,2}N,
we set Kω =

{
z ∈ C :

(
fω|n (z)

)
n∈N is bounded

}
.

By [Sum10a, Lemma 3.6] it follows from (1) that Jω is connected for each ω ∈ {1,2}N. We also have that
the corresponding filled Julia set Kω is connected. Moreover, we have that Ĉ\Kω is a connected component
of Ĉ \ Jω and that Ĉ \Kω is the basin of attraction of infinity of

(
gω|n

)
. By (1), (2) and (3) we have that

J2,1,1,... = f−1
2 (J ( f1)) and J ( f1) are disjoint. So, by [Sum10a, Lemma 3.9] we have that either f−1

2 (J ( f1))

surrounds J ( f1) or that J ( f1) surrounds f−1
2 (J ( f1)), where, for two compact connected subsets K1 and

K2 of C, we say that K1 surrounds K2 if K2 is included in a bounded component of C \K1. The following
argument shows that J ( f1) does not surround f−1

2 (J ( f1)): Otherwise, we have f−1
2 (J ( f1)) ⊂ IntK ( f1),

which implies that f−1
2 (K ( f1))⊂K ( f1) (here we use that f−1

2 (K ( f1)) containing f−1
2 (J ( f1)) is connected

and that Ĉ \K ( f1) is a connected component of Ĉ \ J ( f1)). However, f−1
2 (K ( f1)) ⊂ K ( f1) implies that
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J ( f2) ⊂ K ( f1) contradicting (2). We have thus shown that f−1
2 (J ( f1)) surrounds J ( f1). Consequently,

we have that f2 (J ( f1)) ⊂ K ( f1), so f2 (K ( f1)) ⊂ K ( f1). Since f2 (J ( f1))∩ J ( f1) = ∅, it follows that
f2 (K ( f1))⊂ IntK ( f1). Combining with the fact that f1 (IntK ( f1))⊂ IntK ( f1), we obtain that IntK ( f1)⊂
F (G) by Montel’s Theorem. We have thus shown that f2 (K ( f1))⊂ IntK ( f1)⊂ F (G).

Our first observation is that PB-OSC implies the existence of an inducing structure.

Lemma 7.16. If G = 〈 f1, f2〉 satisfies PB-OSC, then { f1, f2} has an inducing structure with respect to

I1 = {1} and I2 = {2}. Moreover, there exists a G-forward invariant compact subset of F (G). Furthermore,

we have J (G) = Jpre (G).

Proof. We verify that G = 〈 f1, f2〉 has an inducing structure. Let Gi = 〈 fi〉, for i = 1,2, let H0 := { f2}∪
{ f2 ◦ f r

1 : r ∈ N} and let H = 〈H0〉. Set L := f2 (K ( f1))∪CV( f2) and note that we have shown above
that L is an H-forward invariant compact subset of F (G). Moreover, we have shown that P(H) ⊂ L,
which implies that P(G2) ⊂ P(H) ⊂ L. Furthermore, we have that CV( f1) \ {∞} ⊂ K ( f1). Hence,
f2

(⋃
n∈N f n

1 (CV( f1)\{∞})
)
⊂ f2 (K ( f1))⊂ L. Thus, f2 (P(G1))⊂ L. We have thus shown that G has an

inducing structure. To finish the proof, note that since G is a finitely generated polynomial semigroup, we
have ∞ ∈ F(G) and that {∞} is G-forward invariant. Consequently, by Lemma 7.10, we have

J(G)⊂ Jpre(H)∪
⋃

g∈G

g−1(J( f1))⊂ Jpre(G).

�

The main result of this section is the following corollary of Theorem 7.14.

Corollary 7.17. If G = 〈 f1, f2〉 satisfies PB-OSC, then we have dimH (J (G)) = max{s(G) ,dimH(J( f1))}.
Moreover, all assertions in (1)(2)(3)(5) of Theorem 7.14 hold, where I1 = {1}, I2 = {2}.

8. REMARKS ON THE CONE CONDITION

We comment on the cone condition used in the context of conformal iterated function systems ([MU96]).

Remark 8.1. For the results of this paper, the cone condition is not needed. We have seen in Section 2 that
there are many examples of rational semigroups which do not satisfy the cone condition, and for which our
results can be applied.

In [MU96, Theorem 3.15] it is proved that, for the Hausdorff dimension of the limit set J (Φ) of an infinitely
generated conformal iterated function system Φ satisfying the cone condition, we have

(8.1) dimH J (Φ) = inf{δ : P(δ )< 0}= sup
ΦF

{J (ΦF)} .

Here, P refers to the associated pressure function and ΦF runs over all finitely generated subsystems of Φ.

Remark 8.2. By the methods employed in the proof of Theorem 6.5, one can show that (8.1) holds, even if
the cone condition is not satisfied. Instead of the cone condition (2.7) in [MU96], we need to assume that
|φ ′i (x)| ≤ s, for each x ∈ X in the notation of [MU96]. Since the upper bound for the Hausdorff dimension
is straightforward, we only comment on the lower bound of the Hausdorff dimension. Since the pressure
satisfies an exhaustion principle (see [MU03, Theorem 2.15] or Proposition 5.3 (3)) it suffices to verify (8.1)
for finitely generated conformal iterated function systems, which can be obtained by extending the proof
of [Fal03, Theorem 4.3] via the bounded distortion property of the conformal iterated function system. For
finitely generated expanding rational semigroups, the dimension formula in (8.1) was proved in [Sum05].
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