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ABSTRACT. —

For the white noise ¢ on R?, an operator corresponding to a limit of —A + ¢, + ¢, as € — 0 is realized
as a self-adjoint operator, where, for each € > 0, ¢ is a constant, £ is a smooth approximation of &
defined by exp(e2A)¢, and A is the Laplacian. This result is a variant of result’s obtained by Allez and
Chouk, Mouzard, and Ugurcan. The proof in this paper is based on the heat semigroup approach of the
paracontrolled calculus, referring the proof by Mouzard. For the obtained operator, the spectral set is

shown to be R.

1. INTRODUCTION

Our motivation is to study the spectral properties of the Schrédinger operator
—A+V(x)

on the configuration space R?, in the case that the potential V is the white noise & & = (£()),ere is
a Gaussian random field on R? such that E[¢(x)] = 0 and E[¢(x)é(y)] = d(z — y) for any x,y € R?,
where ¢ is the Dirac delta distribution. However the irregularity of the white noise ¢ brings difficulty to
define the operator as a self-adjoint operator. If the configuration space R? is replaced by R, then the
irregularity is mild so that the Schrodinger operator is realized as a self-adjoint operator and we have
many related results. For this aspect, refer the works by Fukushima and Nakao [8] and Minami [18]. For
the multidimensional cases, we know that some renormalization techniques are needed by related works
which are well developed recently as follows: Hairer developed the theory of regularity structures [11],
Gubinelli, Imkeller and Perkowski developed the paracontrolled calculus in [9], and Kupiainen developed
the theory of renormalization group [16]. They studied many stochastic partial differential equations as

the stochastic quantization equation for ¢3 Euclidean quantum field theory, the generalized continuous



parabolic Anderson models, the Kardar-Parisi-Zhang type equation, the Navier-Stokes equation with
very singular forcings and so on. In particular the continuous parabolic Anderson models correspond to
consider the heat semigroups generated by the Schrodinger operators. In the equations, the white noise

¢ is replaced by & + ¢. and the existence of the limit as € — 0 of the solution u. (¢, x) of
Opuc(t, ) = (A — E(x) — co)ue(t,x) for t > 0, and u(0,z) = up(z),

is proven, where & is a smooth approximation of ¢ and c. is a constant satisfying ¢ — oo as € — 0.
These works started in the case that the configuration space is replaced by a compact space as R?/Z2.
For the extension to noncompact spaces, Hairer and Labbé studied the generalized continuous parabolic
Anderson models on R? and R? and the stochastic heat equation on R [12], [13], and Dahlqvist, Diehl
and Driver extended to 2 dimensional closed manifold [6]. On the other hand, Bailleul, Bernicot and
Frey developed the paracontrolled calculus using the heat semigroup so that the calculus can be applied
widely, and applied the calculus to the generalized continuous parabolic Anderson models on 2 or 3
dimensional manifolds and the multiplicative Burgers equation on 3 dimensional manifolds [2], [3]. In
their theory, the approximation &, of ¢ is defined by the heat semigroup as exp(e2A)¢. The constant c. is
replaced by a function. As for the Schrédinger operator, Allez and Chouk proved the self-adjointness of
the operator corresponding to the limit of —A + &, + ¢. as € — 0 in the case that the configuration space
is replaced by the 2-dimensional torus R?/Z? [1]. They used the paracontrolled calculus by Gubinelli,
Imkeller and Perkowski, and they showed also the discreteness of the spectrum and some results on
the asymptotic distributions of the eigenvalues. Gubinelli, Ugurcan and Zachhuber extended the results
to the 3-dimensional torus R3/Z? and apply to study some nonlinear Schrédinger and wave equations
[10]. Ugurcan extended the results to R? where c. is replaced by a function [22]. Labbé extended the
results to the corresponding operators on (—1,1)? and (—1,1)? with the periodic and Dirichlet boundary
conditions by applying the theory on regularity structures [17]. Mouzard extended the results to the case
that the configuration space is a compact 2-dimensional manifold by the heat semigroup approach to
the paracontrolled calculus by Bailleul, Bernicot and Frey [19]. On the other hand, main topics on the
Schrodinger operator with random potentials have been the Anderson localization. In that topics, the
spectral structure is discussed for the Schrédinger operators with stationary random potentials defined
on the Euclidean space R? (cf. [4], [20]).

In this paper we prove the self-adjointness of the operator corresponding to the limit of —A + &, + ¢,

as € — 0 in the case that the configuration space is R? and c. is a constant by referring the methods in
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Mouzard [19]. One vantage point of the heat semigroup approach is that the effects to a paraproduct from
the two functions decay exponentially as the distance between the supports of the two functions becomes
larger. To use this point, we introduce a partition of unity. The convergence to the operator holds in the
strong resolvent sense as is discussed in Proposition 4.1 below, which is weak to obtain spectral results.
Then to show that the spectral set is R, we construct Weyl sequence on domains where the white noise is
close to constants by referring the usual methods to identify the spectral set of the Schrodinger operator
with ergodic random potentials (cf. Pastur and Figotin [20] Section 5d).

The organization of this paper is as follows. In Section 2 we give the definition of our operator and
state the theorem. In Section 3 we prepare basic estimates to apply the paracontrolled calculus. In
Section 4 we prove the theorem on the self-adjointness. In Section 5 we show that the spectral set of our

operator is R.

2. THE FRAMEWORK AND THE RESULTS

We use a partition of unity to extend the results on compact spaces to a noncompact space: we take
a [0, 1]-valued smooth function yo on R? such that

Z X2 =1onR?
a€??

and the support of xq is included in Ay, where xq(z) = xo(z — a) for any a € Z? and = € R?, and
A, = (—=1r/2,7/2)? for any r > 0. For each a € Z2, let A.(a) = a + A,. Referring the paracontrolled

calculus in Mouzard [19], we fix a large even natural number b and consider operators

. c—1 .
(o) _ (ZtA)° 4 (0 ._ Yds o X (FEA) A
Q7 = = 1)!6 and P, =1 — ; ?QS = j:ZO 7 e

for ¢ € [1,b] NN, where A is the Laplacian on R?, and I is the identity operator. The operator Pt(c) is
an operator regularizing distributions such that the difference I — Pt(c) is useful to treat norms of Besov
spaces.

For k € [0,2b] N Z, let StGC* be the set of families of operators of the form
(Vi)™ (Vida)**P()ie o,

with ¢ € [1,0] NN and oy, s € 7Z satisfying aj,as > 0 and a3 + ag = k. These families of operators
are called as the standard families of Gaussian operators with cancellation of order k. For this family,

general operators as (—tA)a/ 2etA may be included. However we consider only differential operators times



a heat semigroup since it is enough for our purpose and the commutator of a differential operator with

a multiplication of a smooth function is simple. We also set

stge! = | ) stae*

kelNZ

for any interval T in [0, 00).

Referring [3] and [19], we decompose the product as follows:

fg=Prg+1(f,9) + Py f + PP (PP g)),

for appropriate distributions f, g on R?, where

1
(21) Prai= Yo [ FQI (R D@ )

v

with a finite subset {(c,,@%",Q*", P")},
of R x StGC/2:28  StGC/2:28  §tGClO-v/2)

and

1
dt
(2 (7)= Yo [ FRAQENQ9)
w
with a finite subset {(c,, Q"*, Q**, P*)},
of R x StGC/2:20] » 51 Cb/2:20] o §tGCl0:b/2) . Pyg is called as a paraproduct and is well-defined as a

distribution for any distributions f and g. II(f,g) is called as a resonating term and we need sufficient

regularity properties of f or g to give a meaning for II(f, g). We use also

1
dt v » v
WPro=3 e | G (PLN@H 9

v

appearing (2.5) below, where h is another appropriate distribution. We use
1
(2.3) A—lee = / dtet®,
0
which is an approximation of the inverse of the Laplacian satisfying
AflocA — AAfloc S eA

and the integral kernel has a Gaussian bound:

log |A~1o¢(z, y)|

< 0.
lz—y|>1 IZ‘ - y‘Q



We use the commutators:

(2.4) C(f,g,h) :==T(ATI°Prg, h) — fII(A™"¢g, h)
and
(2.5) S(f,9,h) == Ppo(A7"°Psg) — s P,(A™1%g)

for any appropriate distributions f, g and h on R%. These commutators are modifications of those used
n [19]. The relations are discussed in Remark 3.2 below.
We use the Besov space By q(RQ) with parameters p, g € [1,00], € (—2b, 2b), defined by the completion

of C§°(R?) with respect to the norm
1B, 2
(2.6) izHeAfHLP(R?:dz)

+ sup{[[t~ /(| Quf | o (w2:ao) | Lao.1ye-1ar) = Q € SGC2},
for any f € C§°(R?), where C§°(R?) is the smooth functions with compact supports. C%(R?) :=
B, (R?) is called as the Besov a-Hélder space, and H*(R?) = By ,(R?) is the Sobolev space with
the index o.
It is known that y,& is C~17¢(R?)-valued for any € > 0 and a € Z2. We take a smooth approximation

of £ by & = €E2A§ for any € > 0, and we set
(2.7) Ve, :=II(ATI%,, &) — E[II(AT°, &)
Then, as in Theorem 2.1 in [19], there exists a random field Y such that

. J— p =
lim Ef||xa (Ye, = Ye) [« (a2)) = 0

for any p € [1,00), € > 0 and a € Z2. Y is the Wick type renormalization of II(A~locg €) as is discussed
in Section 2.1 in [19].

Throughout the paper, we use the variable ¢ for the regularization parameter of the whitenoise, and
the variable e for the regularity of the Besov space, both of which are taken arbitrarily small.

Now we define a Schrédinger type operator. The motivation of the following definition is discussed

after the definition and the main theorems below.



Definition 2.1.

we set

where

This unbounded operator HE with the domain Dom_i,_()(;}z ) is not closed. For the well-definedness of
the each term of the right hand side of (2.9), weaker conditions are enough than the exponential decays
of [[Xaull1-cr2y and [|xo®Pe(u)|l22(r2) in the definition (2.8) of the space D0m+0(f{\g), However the

exponential decays are suitable for our discussion using the heat semigroup, and the space Dom o(H¢)

For any element u in a linear space

— 1
Dom (H¢) ::{u € ﬂ H'7¢(R?) : limsup — log IXatllg1-<@2) <O

>0 la]—o0 Ia’|

for any € > 0,

1
Oe(u) € 7—[2(R2), limsup — log || Xa®e (u)]| 32 ®2) < 0}

|a]—o0 |a‘|

Héu
= — A () + Pe®e(u) + T(@e(u), €) + P (P u)(P{¢))
+ 2 PLE + By Pe(ATI€) + AP, Y
+C(u,€,6) + S(u,€,€)
+ Pyou +T0(u, Ye) + P ((P{"u) (P"Y))
+ Pe(AT1, Pe(ATI0)) + TI(AT'°, P (AT10%), €)

+ Pe(AT1°P,Ye) + II(AT1° P, Y, €),

(I)E(’U,) =y — A_locPuf _ A—ZOCUPE(A—lOCé-) o A—locPuY'E.

becomes a core of a self-adjoint operator by our first main result below.

Now our main results in this paper are stated as follows:

Theorem 1. The operator HE with the domain Dom_‘_o([t-f\g) in Definition 2.1 is essentially self-adjoint

on L?(R?).

Theorem 2. The spectral set of the closure HE of the operator in Definition 2.1 is R.

In the rest of this section, we will discuss the motivation of the definition in Definition 2.1.

Motivation of our definition of the operator



The first formal object was the operator
H® = -A+¢

To erase the singularity of ¢ € C;;17¢(R?) in Héu, we assume u € H},_(R?) so that Au € H,,! “(R?),

loc loc

where (BY,)ioc(R?) := {f : a distribution on R? s.t. x.f € BY,(R?) for any a € Z*} for each Besov

space By (R?). In the decomposition
§u = P& + Peu+ (&) + P" (P u)(P{"¢)),

(u, ) is not defined, and P,¢ and Peu may not belong to L? (R?). To erase the singularity of P,&, we
assume

w=Alcpg @)
with u(#) € #2(1=9)(R?). Then we have
Héu = —Au®) 4 e P,g + Peu+T1(u, &) + P ((P{"u) (P"¢))
= —Au#) + P (A—l"CPug) + H(A‘“’CPug, 5)
+ €A Pug + P + 1™, ) + PP () (P"¢))

We use the commutators to rewrite the second and third terms as

WPe(AT19€) + ull(AT1°¢  €)

to move the function u to outer parts of the products. Now, as the ill defined term IT(A~!¢¢ €) is
separated from the function u, we replace this by Y¢. Then the operator H' ¢ is replaced by H¢. To erase

the singularity of , P:(A~1°¢¢) and Y, we assume
u(#) — Aflocupg(Aflocg) + AflocPu)/f +U#
with u# € H2(R?). Then u# = ®¢(u) and we obtain the definition of (2.9).

3. ESTIMATES FOR PRODUCTS AND COMMUTATORS

In this section we prepare fundamental estimates.
The continuities of the products Pyg and II(f,g) are well known as in Proposition 1.4 in Mouzard
[19], samely as those of the bony products in Proposition 3.1 in Allez and Chouk [1]. Our task is to

show that these products decay exponentially as the distance of the supports of the distributions tends



to the infinity as in Lemma 3.2 (i), (ii), (iii) below. Then its extension Lemma 3.2 (iv) below to ,Pyg is
straightforward. It is also important to modify the estimates for truncated paraproducts Pfg and ,Pjg
defined in (3.8) and (3.9) below. This is basically given by Proposition 2.3 in Mouzard [19], and our
estimates are summarized in Lemma 3.5 below. We also need estimates of the difference Prg — Pfg and
nPrg —n Pjg, which are similarly obtained as in Lemma 3.6 below.

The continuities of the commutators C(f, g, h) and S(f, g, h) were also basically given as in Proposition
1.9 and Proposition 1.11 in Mouzard [19], and our task is to show the exponential decays as in Lemma
3.4 below, where the relation between our commutators and those used in [19] is discussed in Remark 3.2
below.

For the renormalized product Ye, we modify the results on its smooth approximation and an upper
estimate of its Besov norm in Theorem 2.1 and Proposition 2.2 in Mouzard [19] for our setting on the
noncompact space R?: we multiply x, and show the dependence on a. The results are summarized with
the corresponding results for the whitenoise £ as in Lemma 3.3 below.

For our noncompact setting, we prepare also an estimate of A~!°¢ on the continuity and the spatial
decay, and a subadditivity estimate of the square of a Besov norm as Lemma 3.1 and Lemma 3.7 below.

We begin with the estimate of A~!°¢. In the proof, our basic methods are included.

Lemma 3.1. There exists C € (0,00) satisfying the following: for any o € R and € € (0,1), there exist

Co.e € (0,00) such that
(3.1) lxar A7 as Fllae v2) < CaellXaz fllao+e-2(r2) exp(—Clar — az|?)

for any ay,as € Z* and f € HOT2(R?).

Proof. Since
< dt n tA 2 dt n tA 21
1= [ et/ = [ ay e mm) + pa),
0 0
with a polynomial p(-) of the degree n — 1, we have only to estimate

(3.2) lle® Xay A7 Xaz f 1l 22re)

and

(3.3) O 2 (V00 )™ (V)2 € Xay A7 Ny f | L2 (R2 % [0,2):ddt /1)



with a large n1 + ng. For (3.3), we have only to estimate

Ht(*afe)ﬂ(\/{axl )y (\/Eﬁxz ) etAXal
(3.4)

1
x/ dsAme(sH)Axazf‘
0

L2(R2x[0,2]:dzdt/t)

with m € {0,1,...n — 1} and
€120, ) (VoL e xa

1 1
d
></ ds/ —T(TA)”E(S+T)AXa2f‘
0 o T

with a large n. We consider (3.5). By the integration by parts, we have

Ht(faff)/Z(\/Zawl )nl (\/zaicz)nQetAXm

d A n (5+7)A H
/ 8/ (r Xao f L= (R2x[0,1])

< sup // ds—t( a— E)/g( t )(n1+n2)/2< r )n
0<t<2/Jt<otr T s+r s+r

X |2 (Vs 4 10, )" (Vs + 70,,)"™

(3.5)

L2(R2x[0,2]:dzdt /t)

X Xay (5 + 1) A) eI 2y ) Fll Lo (r2)

s [ @y (h) ()T
o0<t<2J Jt>s4r T t s+r

< [ ant v (Vi 8 ) )

x (s + 1Ay, )|

S01< Zl: i sup  [p®em9/2

m1=0 ma=0 z€R?,v€(0,2)

Lo (R2)

% (V002,)™ (V003,)"™2 (0A)" "> Xa ) ()|

+ s [BOR(A)y et Ay, ) (@)])
z€R?,v€(0,2)



where m € NN(0V ((—a—¢€)/2),n A (n— (a+e€)/2)]. Moreover by changing the order of the integrations,

we have

Ht(—a—e)/Q(\/gawl )nl (\/iawz)metAXal

1 1
d
X/ ds/ l(TA)ne(S+T)AXa2f’
0 o T
</2 ﬂ// dsﬂt(—a—e)/2<L)("1+n2)/2( r )'n
>~ 0 t t<s+r T s+r s+r

X e (Vs F700,)" (Vs +100,)" Xay (5 +7)A)"H 2, f|

2 m n—m
A O )

| [ (V32,7 (V02" (08,7 o ) WD HE s £} )

L1(R2x[0,2]:dzdt /t)

ni na
oo D D0 T (oo, ) (ol )
m1=0ms=0
X (0VA)™ " Xay ) ()| L1 (22 x [0,2):dzdv /)
+ ||’U(2_a_€)/2((UA)n_mevAXazf)(x)||L1(R2><[0,2]:d.rdv/1))) .

Thus by the interpolation, we have

£ 2 (a0, )™ (Vi) e A,

1 1
d

></ ds/ —T(TA)”e(S”)A asf
0 o T

SCgHXaszHa+e—2(]R2).

L2(R2 x[0,1]:dzdt/t)

By a similar and simpler method, we have

|2 (a0, ) (VEdh)™ e A X, / dsAm -0y, f|

L2(R2x[0,2]:dzdt/t)

<caXaz fllHo+e-2(re)-
Thus the quantity in (3.3) is dominated by | Xay f|l3o+<—2(®2). The quantity in (3.2) is also dominated by
the same quantity. Thus we obtain (3.1) without the exponential term.

When |a; — az]e > 3, we have

[t 2 (10, )™ (VE0z,)"2 € Xay AT Xay £l 12 (82 % 0,2):ddt /1)

<es [t 2TV 2 2 p0,2g:at ) Z Z / ds| 07 9722 € Xy f | 22 (A (ar):da) -

ml_O mo= =0
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For any k € N, we have

107972 €°* Xay F | L2 (As (a1 ):de)

k

<c,1 (/ dx
Az(ar) Z

’ 2 1/2
/ dy’V?éaglagzeéA(%y) ”X@f”?—[*k‘(ﬂ%z))
0=0 AZ(a2)

<cr,2 exp(—cod(A2(a1), A2(a2))? /)| Xas f I3+ r2)

and

||t(7a7€)/2(\/i81'1 )nl (\/£6$2)n2 etAXth Ailocxlmf”Lr"’(]R2 % [0,2]:dzdt/t)

<cg,3 exp(—cslar — azl?)lXas -+ 2)-

We also have
€2 Xas A™Xay £l L2 (R2:d2)

<cpaexp(—colar — azl?)|[Xas fll2-»2)-

By combining these estimates, we can complete the proof. |

For the paraproduct and resonating terms, we have the following estimate as in Propositions 1.4 and

1.7 in Mouzard [19]:
Lemma 3.2. There exists C' € (0,00) satisfying the following:
(i) For any oo € R and € € (0,1), there exist Co, Co, € (0,00) such that
Hthl‘PXa2g(Xa3f)||H"‘(R2)

<CallXas f 1o ®2) [ Xas 91l Lo (r2) exp(—C(|ar — az|* + |ay — as?))

for any ay,az,a3 € Z2, f € H*(R?) and g € L=(R?), and
||XG1PXa29(Xa3f)HHQ*‘(]}W)

SCa,eHXangca(R?)HXa29||L2(R2) exp(—C(|a1 - a2|2 + |a1 - a3|2))
for any f € C*(R?) and g € L*(R?).

(ii) For any a € (—00,0) and 8 € R, there exists Cy,g € (0,00) such that
HXa1PXa2f(Xa39)H?—t‘“rﬂ(W)

<Ca.pllXas fllco®2) 1 Xas 9l e w2y exp(—C(lar — az|* + |a1 — as|?))

11



for any ay,as,a3 € Z2, f € C(R?) and g € H?(R?), and
1Xar Pxa, £ (Xas 9)[l20+5 ®2)

<Ca.plIXaz fllme@2)lXas gllcs 2y exp(=Cllar — azl* + a1 — as]?))
for any f € H*(R?) and g € C#(R?).
(iii) For any o, B € R such that o+ B > 0, there exists Co 5 € (0,00) such that

HXGIH(Xan7 Xagg) HHO‘Jrﬁ(Rz)

<CapllXaz fllne®2) [ Xas llcs (r2) exp(=C(Jar — as|? + |a1 — az]*))
for any ay,as,a3 € Z2, f € H*(R?) and g € CP(R?).
(iv) For any o € (—00,0), B € R and € € (0,1), there ezists Cq g, € (0,00) such that
X XQQhPx%f(erg)||Ha+ﬁ—f(]R2)

<Cag,e

[Xas fllca®2) IXas9llcs ®2) IXaa Pl L2 (R2)
x exp(—C(lay — az|® + [az — as|* + |az — asl?))

for any ay,az,a3,a4 € Z2, f € C*(R?), g € C#(R?) and h € L*(R?).
To treat white noise, we prepare the following (cf. Theorem 2.1 and Proposition 2.2 in Mouzard [19]):

Lemma 3.3. (i) For any e € (0,1), we take an approzimation of the white noise by smooth random fields
as & = eEzAg, which satisfies

iii%E[HXa(fE - f)”lc)j—lfe(nq@)] =0
for any a € Z? and p € [1,00). Then, there exists a random field Ye such that

; _ P _

A%E[”Xa(yﬁs YE)”c—e(R2)] =0
for any p € [1,00) and a € Z?, where

Yés = H(A_locfeags) - E[H(A_locgags)]'
(ii) For any € € (0,1) and almost all &, there exist Ce¢ € (0,00) such that

IXa€lle-1-c(e2) < Cee(log(2 + [a]))'/?

and

[XaYello—cr2)y < Ceelog(2 + |al)

12



for any a € Z2.

Proof. (i) The proof is same with that of Theorem 2.1 in [19].

(ii) For any € € (0, 1), there exists h, k, p., M € (0,00) such that

&[exp {n(Inaelen) ] <M

for any a € Z2, as in Proposition 2.2 in Mouzard [19] (cf. Fernique [7]). Now, for the event

B 1= {g L exp {h(llxalQII%fe(Ra))l/ps} > (24 \al)?’},
we have

_ M
ZP(:Q)§ZW<OO

acZ? a€’Z?
Thus by the Borel-Cantelli lemma, we can complete the proof for Y¢. By the same method, we can prove

the inequality for &. ]

Remark 3.1. The normalizing constant ¢, := —E[II(A~1°¢¢,, £.)] to define Y; and HE is writen as

c. = —E[(A7lce 6] + B[P (PP A~loce ) (PPeL))]

1 1
(3.6) =58 (1+ 272)

b—1 ;

—A)itk e 5
_ (( .']1' A l e2(1+5 )A)(0,0)7

3,k=0 IR
since
(3.7) E[Pa-toeg, &) = E[Pe. (A7°¢.)] = 0.

(3.7) is proven by

E[Pa-tocg, &
1
:ZCVIE{/O %/w d;thl’V(O,x) /R2 dxl(Pt”A_loceazA)(x,xl)f(ml)
< [ dna(@ e )|
1
d 2
=S [ 4 [ Qi 0 prae et )

1
dt
=Y e / T (PYATITAQE)0,0) | da Q" (0,2) =0,
p 0 R2

and the similar calculation for E[P:_(A~'¢¢.)]. The second term in the right hand side of (3.6) converges

as € — 0.
13



As in Propositions 1.9 and 1.11 in Mouzard [19], we have the following:

Lemma 3.4. There exists C € (0,00) satisfying the following:
(i) For any e, € (0,1),8 € R,y € (—00,0) such that f+~v < 0 and a + B+ v > 0, there exist

Ceapy € (0,00) such that
HXalo(Xaz f7 Xagg7 Xa4 h) ||’H°‘+B+775(R2)
<Cea,81Xas fllae®2) [ Xas 9llcs—2(r2) | Xashll e (r2)
x exp(=C(lar — azl* + a1 — az* + [a1 — aaf?)),
for any ay,as,a3,a4 € Z2, f € H*(R?), g € CP~2(R?) and h € C”(R?), where C*(-,-,-) is the commutator
defined in (2.4).
(ii) For any e, € (0,1),8 € R, v € (—00,0) such that 5+~ < 0 and a + 8+ > 0, there exist

Cea,pny € (0,00) such that
1XarS(Xaz fs Xaz 9> Xash) |l gatstr—em2)
<Ce a8 1Xaz fll2e ®2) 1 Xas 9llcs—2®2) | Xas P llev (m2)
x exp(—C(lar — as|* + a1 — as* + |a1 — a4]?)),
for any ay,az,a3,a4 € Z2, f € H*(R?), g € C°~2(R?) and h € C?(R?), where S%(-,-,-) is the commutator
defined in (2.5).
Remark 3.2. The commutators used in [2] and [19] are
Cni(f,9,h) = T(AT' Py Ag, h) = fTI(g, h).
and
Su(f,9,h) = Po(AT°PrAg) — Py(Phg).

Then our commutators C(f, g, h) and S(f, g, h) are modifications of Cas(f, A~tg, h) and Sp(f, A~1g, h),
respectively. The main difference is the operator A~! acting on g. Thus in the right hand side of the
inequalities in the above lemma, the norm || - ||cs-2 appears instead of || - ||¢s. As for the commutator S,
the second term in the right hand side is modificated so that the complicated structure of the paraproduct

appears once. Our second factor ;Pg is estimated similarly for P,g as is shown in Lemma 3.2 (iv). The
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proof of Lemma 3.4 (ii) is essentially given in [2] since the estimate of Sys(f, g, h) in [2] was obtained by
estimating Py, (A~"°P;Ag) —; Phg and ;Png — Pr(Phg). Similarly
Car(f,g.h) = 11(Prg, h) — hII(f, )

is also estimated by dividing to II(A™!°¢P;Ag, h) — I, (f, g) and 11, (f, g) — hIL(f, g), where

1
(f.0) = Sen [ TREQI D@90
“w

This is also defined by using the structure of the paraproduct only once. However we do not use I (f, g)
and choose the commutator C referring [19], since the key point of this paper is modifying the operator

by introducing Y. For this modification, the commutator C' is used.

Proof of Lemma 3.4. (i) The inequality without the exponential term is obtained by modifying the
proof of Propositions B.4 treating the setting of the Holder norms in Mouzard [19] to our setting of the

Sobolev and Hoélder norms. When |a; — ag| V |a1 — as| V |a1 — a4l is large, we have
HXalH(A_locPXaQ fXaz9> Xaa h)”?-["‘*/;*V*E(]RQ)
<ci1|[Xas f e ®2) | Xas 9llcs—2®2) | Xas Al r2)
2 2 2
x exp(—ca(lar — as|* + |ar — az]* + |a1 — aa]”)).
When |a; — as| V |a1 — a4 is large, we have
||Xa1 Xaz fH(A_lochsg7 Xa4h) “HQ+B+7’E(R2)
<cs|Xas fllaee®2)l1Xas 9lles-2@2) [ Xas bl 2

x exp(—ca(lar — azl® + |a1 — a3]*))Xja, —ay) <2-
By combining these estimates, we can complete the proof.
(ii) The inequality without the exponential term is obtained by modifying the proof of Proposition 38
treating the setting of the Hélder norms in Bailleul and Bernicot [2] to our setting of the Sobolev and

Holder norms. When |a; — ag| V |a; — as| V |ag — as| V |ag — a4 is large, we have
HXman4h(A_lOCan2fXasg)H?—LQWM*E(R?)
<c1llXas fllre®2)lIXasgllcs-2(m2) [ Xai hller (r2)

x exp(—ca(lay — ag|2 + a1 — ag|2 + |ay — a4|2)).
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When |a; — as| V a1 — as| V |a; — a4 is large, we have
1Xar xay £ Proy h (A7 Xas9) 130+ 84— (m2)
SC3||Xazf||Ha(lR2)HXasg”Cﬁ—?(]Rz)HXMhHC“’(RQ)

x exp(—cq(lay — a2|2 + a1 — as)® + |a; — a4|2)).

By combining these estimates, we can complete the proof.

We use also the following products:

5d
&9 Pio= Yo [ FQI R DQ )
and
&9 o= e [ IR @E ),

for appropriate distributions f, g and h on R2. As in Proposition 2.3 in [19], we have the following:
Lemma 3.5. There exists C € (0,00) satisfying the following:
(i) For any B < v, there exists Cg € (0,00) such that
Xa: Py, r(Xas9)llaes (r2)
<Cpr 8" X0y fll L2 @2) IXas 9]l 0 2)

x exp(—C/(d(Aa(ar), Az(a2)) + d(Az(ar), Az(az))?) /5)
for any s € [0,1], a1,az2,a3 € Z*, f € L*(R?) and g € C7(R?).

(i) For any B,7v1,72 € R satisfying v1 <0 and B < v1 + 72, there exists Cg ., ~, € (0,00) such that
Xa1xayh Pra, r(Xas9)llaes r2)
<C81n a8 "2 Xy fllon @2) 1 Xau 9l 02 22) [ Xaz Bl 2 2)
x exp(—C(d(Az(a1), Az(az))? + d(Az(az), Az (a3))?
+d(Az(az), Az (as))?)/s)

for any s € [0,1], a1,az,a3,a4 € Z?, f € C(R?), g € C2(R?) and h € L*(R?).

Lemma 3.6. There exists C' € (0,00) satisfying the following:
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(i) For any B,y € R, there exists Cg., € (0,00) such that

IXar (P, £ (Xas9) = Py, r(Xas 9) 1305 m2)

C
ﬁﬂxazﬂhz(mHXaagHm(W)

x exp(—C(lay — az]? + |ay — as|?)) if B>,

1
0677(1035 g) ||Xa2f||L2(R2)”XaggHC'W(]R?)

IN

x exp(—C(lay — az]? + |ay — asl?)) if B =1,

Cayl1Xas fllL2®2) | Xas 91l o (m2)

x exp(—=C(lar — az]? + |ay — a3|?)) if B <,
for any s € [0,1], a1,az2,a3 € Z*, f € L*(R?) and g € C7(R?).
(i) For any y1 < 0,72, 8 € R, there exists Cg ~, 4, € (0,00) such that
[1Xar (g h-Poag £ (Xas9) =xayh Py, r(Xas9))ll2es r2)

Csm,
78(5,Ji]§)/g 1 Xas fllcm @2) IxXasgllove @2) [ Xan bl 22 (2)

x exp(=C(lar — ag|* + |az — a3|* + |az — a4|?))
if B>+ 72,
1
05,71772 (10g ;) ||Xa3fHC“Vl (R2) ||Xa4gHCWQ (R2) ||Xa2h||L2(]R2)

x exp(—C(la1 — az|® + |ag — a3|* + |az — as]?))

IN

if ="+,
CB71 72 1Xas fllemn ®2) [ Xas 9l ove ®2) X a2 Pl 2 (R2)

x exp(—C(|ay — az|? + |as — a3|? + |az — a4]?))

if B <1+,

for any s € [0,1], a1,az,a3,a4 € Z?, f € C(R?), g € C?(R?) and h € L*(R?).

We prepare also the following:
Lemma 3.7. For any a > 0, there exists ¢, € (0,00) such that
>

a€Z?

for any f, € H*(R?) such that supp f, C As(a), a € Z2.
17
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Proof. For any Q € StGC* with k € (|a|, 2b] N Z, we should estimate

2
I e Ht_a/2 a’ <2(I1 + I>),
0 Q1 Z f L2(R2x[0,1],dzdt/t) — ( o 2)
a€Z?
where
2
L= [0 3 L@
1 Z Aa() @] L2(R2x[0,1],dzdt/t)
a€Z?
and

2
Iy = Ht—W 3 Lay (@ Qifa

a€Z?

L2(R2x[0,1],dwdt/t)

Since As(a) N As(a’) # 0 implies |a — a'|o < 3, the first term is estimated as

L < Z Hfa/QlAg(a)Qtfa

a,a’€Z%:la—a’ |0 <3

L2(R2 x[0,1],dwdt/t)

X Ht_a/21A3(a’)Qtfa’

L2(R2x[0,1],dxdt/t)

<49 > | fallFe m2)-

a€Z?
By
Q) < exp (- 0,
-t cot
we have
Loat ) )
L<es [ e D [ dulfa@)] | dy/lfur )]
0 a,a’ €72
2 o2
></ dwexp(_lx yI° yl).
Ag(a)cﬂAg(a’)C Czt Cgt
Since
lz—yl* + e —y' > > ly—y'?/2
and

[y =4 |oc > la—a'|oc —2

for any © € As(a)° N As(a’), y € Az(a) and 3 € Aa(a’), we have

I §C4/01t;lfaexp<—(;5) Z /dy|fa(y)|

a,a’ €722

< [ ayltu)les (= colla oo~ 22)

<cr Z Hfa||%2(R2,dr)

a€Z?
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and

Io<es Y | fall3e @)

a€Z?
By a similar and simpler method, we obtain

2
| 3 7]
a€Z?

o <00 2 Il ey

a€Z?

and we can complete the proof.

4. PROOF OF THEOREM 1

The self-adjointness is firstly proven in the case that the whitenoise is restricted to bounded regions.
In that case, the corresponding operator }i\g is bounded below as in the case that the configuration
space is compact, and the self-adjointness is proven as in Mouzard [19]. The proof is given by Lemma
4.3-Lemma 4.10 below. Then Theorem 1 is proven after preparing an estimate of the resolvent of ;{\g
in Lemma 4.11-Lemma 4.12. After the proof of the theorem, results on the convergence of HE and }J\g
to HE as ¢ — 0 and R — 00, respectively, are given in Proposition 4.1 below. To prove the essential
self-adjointness of HE in Theorem 1, we will prove that Ran(ﬁ +1) is dense in L?(R?). For this, we will
approximate an element in Raun(l?lE +1) by an element in L?(R?) = Ran(}I\g +1). Now the key condition
of the domain is that ®¢(u) € H*(R?) for any u € Dom+0(;ﬁ). To use this condition, @ is modified
by the truncated paraproducts so that the inverse exists in Mouzard [19]. In our case, to dominate the
growth of |[xa€|lc-1-<(m2) and || xaYe | c—<®2) in |a|, we should modify the truncation. We will begin with

the truncation.

For s = (s(a), s1(a,a’),s2(a))a.aecz2 € 0, 1% % [0,1)% %% x [0,1]%" specified later, we set
O (u) ==u— Q;?(u),

where

Z A~ locPs(a) X f Z A—loc P;%’(;’a)(Ailocxzxf)

a€Z? a,a’ €72

£ 30 AT (321
a€Z?

for appropriate distributions v on R?. By Lemma 3.2, Lemma 3.3 (ii) and Lemma 3.5, we have the

following:

19



Lemma 4.1. For any ¢ € (0,1) and almost all &, there exist s(€,&),s1(€,§),s2(6,€) € (0,1) and

M, M (€), M;(€), Ma(e) € (0,00) such that

s(€,€,0
(4.1) Ixa®E S (W)lpgr-ezey <0 Y exp(=Mla— a'[2)|x3 ull 2 ze),
a’ €72

fOT any 0 Z 07 where 8(63 57 6) = (5(0’; 6757 5)7 Sl(aa a/; €, ga 6)7 52((1; € fa 6))a,a’€Z2 18

(w060 =6 (g mm)

(log(2 + |al
, B B M (€)
si(a,a’;€,€,6) = 51(€’§)<(10g(2 + |a]))/2(log(2 + |a’|))1/2)
and
) Mo (€)
s2(a;€,6,0) = 82(€7§)<m) :

By this lemma and Lemma 3.7, we obtain the finite constant C¢ ., which may depend ¢ and e, such

that

(42) 1255 (W) lp-(gz) < Ceedlullpr- e
. ¢ H1-e(R2) < Cge H1-<(R2)-

Thus for § € (0,1/C¢ ), there exists the inverse

€,6,0)\— €,£,6)\n
((I)Z( 13 )) 1 :Z((I)z( 3 ))

n=0

such that

€,£,0)\—
(4.3) (@) ()31« m2y < [[0ll3a-<(r2)/ (1 — Ck.c8)

for any v € H!'7¢(R?).

We use also Lemma 3.6. Then we have the following:

Lemma 4.2. (i) For any ¢ € (0,1), we set

-~ 1
Dom,(H¢) ::{u € H'(R?) : limsup — log || a1« (r2) <O,
a

|a]—o0 ‘ |

Pe(u) € H2(R), msup 1 L 1og || xa@e () [32(z2) < 0}.

|a|—o0
Then we have Dome(ﬁz) = D0m+0(}{\2), where the set in the right hand side is defined in (2.8).

(ii) Dom+0(ﬁg) is dense in L?(R?).
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Proof. (i) For any u € Dome(f{\z) and ¢ € (0,¢€), we will show that v € H'~¢ (R?) and that

) 1
limsup —
la]—o0 |a‘|

log [[Xatllg—er g2y <O
By Lemma 4.1, we have

IXatll31-er )

s(€,&,8
<a®e 5 () 31— g2y

c- n S s(€',&,8
30 Y e (—ad a1 - 4 e, 88 W),
n=1

ai,az,...,an €Z? Jj=1

where ag = a. By Lemma 3.6 and Lemma 3.3, we have

s(€ &,
Ixa(®e () = D (w)) 31— gy

<ep(log(2 +al)) D Ixarullrzme) exp(—esla —d').
a'€Z?

For small enough m > 0, there exists ¢4 € (0,00) such that

—m|a|

IXaull2-<®2), [Xa®e (w32 m2) < cae
for any a € Z? since u € Dome(ﬁz). Thus we have
||Xa¢)§(6 7676)(“)”7—[176’(11@2) < cgecolal

and

||Xau||7-¢1—s’(R2)

o0
c
<cy E (cgd)" E exp ( — z9|a —apl? — clo|an|)
n=0

an €Z2

<ci1 2(0125)n exp(—cislal)

n=0
<ci4 exp(—cisal)

by taking J as sufficiently small numbers. Thus we can complete the proof.

21



(ii) We will show that Dome(ﬁz) is dense in L?(R?) for arbitrarily taken € € (0,1). For any R € (1, 00),

u € C5°(AR) and € € (0,1), we set u, := (‘1)2(6’576))71(@25(6’5’6)@)). For this, we have

”XaUeH'Hl*e(R?)

€,£,0
SHX“‘I)EE( ‘ )(U)HHFE(RZ)

i c10)" Z exp(—%|a—an‘2)’

a, €72

¥, 940 (w)

L2(R2) ’

By the estimate (4.2) in the case of £ = £, we have

€,£,0)
1@ (W)l -y < xatillaieqary + 8 3 exp(=Mla — o/ )|t 2(e,
a’' €72

Thus we have u. € H!7¢(R?) and

limsup — al IOgHXaU3||H1 c(r2) < 0.

|a|— o0
In the decomposition
Be(uc) = Bg 4 (u) + (B¢ — D) (ue),
the each term is estimated by Lemma 3.1, Lemma 3.5 and Lemma 3.6 as follows:
Ixa AT P8 (x| 42 (ro)
< eslixarull L2 w2)llxaréeller g2y exp(—cala — a'|?),
a1 P4 (0 XE ) 2 )
<eslIxarull 22 1 Xar€elle-1 (r2) I xarée leom2y exp(—cs(|a — a'|* + |a — a”'|?)),
IXa AT P2 (o Ve ) ez ey

<crllxarull 22 Xa Ye. llor v2) exp(—cs(la — a'|* + |a — a”'|?))

IXaA TPy, (xar€) = Pyl (xar &) ez 2y

C9

s(a’;e, &6

_ _ . /7 ”;e, 5 _
||XGA lOC(Xa//uPXa/E(A locxallf)_xa//up;i,(g ¢ E )(A locxaﬂf))H’H2(R2)

C11 _1
S or@ o e g gyrreXar el Xarlle-r—ema) A7 XarElles—<cee)

yA+o/2 ||Xa’u6||L2(R2) ”Xa’g”C*l*E(R?) exp(—ciola — a'|2)’

x exp(—ciz(la —a']* +Ja — a”[?)),
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and

IXa A" (P (XarYe) = P25 (Xar V)l m2)

c
_WHM"%HLZ(R?) [ Xar Yellc-e (o) exp(—cia(a — a? +a—a"]?)).

Thus we have ®¢(u.) € H?*(R?),

, 1
lim sup 77 log [IXa®e (ue)ll32(m2) <0,

|a|— 00
and u; € Domé(f{\z).
Since
we —u = (B TH@E () — @ (w)),
we have

s(e,&,0 s(e,&,0
e — ul2a ey < sl @85 (w) — @D (u) |22 e

,£,0 s(e,&,8
<e O Ixa(@95 (u) — D40 ()12 gy
acZ?
<err 3 { 2 016,600l
a€Z? a’ €72

x [Ixar (€ = ) lle-1-(r2) exp(—cisla — a'[)

+ Y si(d a6 &6 xarul 2

a’,a" €72
X (IIxar€lle-1-<®2)llXar (€ = E)llc-1-<(m2)
+ Ixar (€ = &e)lle—1-<(r2) IXar€llc-1-¢(r2))
x exp(—crolla — " +]a’ — a”[%))

+ > sa(a56,6,6) I xarull L2 Ixar (Ye. — Ye)llo—e @2
a’ €72

2

x exp(—cxla—a'P)} .
We take a sequence {€(m)}men such that e(m) — 0 and [|xa(Ec(m) — &)lle-1-<r2z) — 0 and [|xa(Ye,(,,, —
Ye)lc-emz)y — 0 as m — oo for any a € Z* and for almost all {. Then we have [[uc(m) — ul|L2r2) — 0 as

m — oo for almost all £&. Since C§°(Ag) is dense in L?(Ag), we can complete the proof. O

For any R € N, we set

Dom(Hg) = {u e (\H' () : @ nlu) € H2(E?) }

>0
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and, for ¢ € Dom(H}%), we set
Héu
= — A®g p(u) + Pe (D r(w) + (D¢ r(w), &r) + P (P"w) (PV¢R))
+ €2 Pubp + €2y Pe, (AT°¢R) + €2 PuYe r
+C(uw, &R, ER) + S(u, &R, ER)
+ Py g+ (u, Ye r) + PO (PP u) (P Ye 1)
+ Pep (AT, Pe (AT19°¢R)) + TI(A ™%, Pe,y (AT1°€R), €R)

+ PSR(A_ZOCPUYS,R) + H(A_ZOCPuY&Ra €R)a
where

CI)&R(’LL) =y — A—locpué-R o A—locupgR (A—loch) o A_locPuY—g,R7

gR = Z Xigv

a€Z2NARr

2
ge,R = Z Xies Af»

a€Z2NARr

Ye. g = (AT%, g, & r) — E[II(AT%, r, & R)),

and Y g is a random field such that
: _ P —
;%E[Hxa(}@sﬁ Y‘é,R)”cfe(Rz)] =0
for any p € [1,00), € > 0 and a € Z2. For these, Lemma 3.3 (ii) and Lemma 4.1 are modified as follows:

Lemma 4.3. (i) For any € € (0,1) and almost all &, there exist Ce¢,C{ ¢, Cl,Ce, CL,C¢ € (0,00) such

that

IxaYerllc-<r2) <Ceclog(2 + |a]) exp(—Ced(a, Ag)?)
<Cl¢10g(2 + R) exp(—Cld(a, Ar)?)
and

IXa(Ye = Ye,r) | o-e(r2) < O log(2 + |al) exp(—C'd(a, A%)?)

for any a € Z® and R € N.
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(ii) For any R € N,¢,6 € (0,1], u € L*(R?) and almost all £, we set

s(R;€,€,0) = s(€,§) <5>)1/2)M(6),

(log(2+ R
) M (€)
s1(R;€,6,0) = 51(@5)(@) )
) Mo (€)
s2(R;€,6,0) = 52(@5)(@) )

and
IICE) (1)) oA ~loe patetid) gy 4 A-loe, pR(ec&d) (A -locg )
+ A_ZOCPSQ(R7€’576)Y%,R7

where s(€,£),51(€,&), s2(e,€) € (0,1) and M (e), My (€), Ma(e) € (0,00) are given in Lemma 4.1. Then we

have
(4.4) IxXa®e S () 3-cmzy <6 Y exp(=M(la — a'[* + d(a’, Ap)?))l|xart] L2 ze).
a' €72
Thus, as in (4.2), we have
R,e,£,0)\—
(4.5) (@) ()l < [[vllsa—e /(1 — Ce.c8)

for any § € (0,1/C¢.) and v € H'~(R?), where @255’6’5’5) (u) = u— @zfg’e’g’é)(u) for any u € L?(R?).

Then, as in Lemma 4.2, we have the following;:

Lemma 4.4. (i) For any e € (0,1), we set
Dom, (HS,) := {u € HIT(R?) : B¢ p(u) € ’HQ(RQ)}.

Then we have Dome(HI%) = Dom(Hf%).

(i) Dom(H]%) is dense in L*(R?).

Moreover, as in Proposition 2.8 in [19], we can show the following:

Lemma 4.5. (i) For any ¢,e € (0,1),R € N, almost all £ and any u € Dom(HI%), we set ue =
(@giﬁ‘;’é’&))_l(@gfg"e’g’&)(u)), where & is an arbitrarily fived number in (0,1). Then we have u. €
Dom(H5),

lim [Ju = ue [[31-c(r2) = 0

and
lim ||E-£I;u - ;I\ElgusHLz(Rz) =0.
e—0
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(i) For anye € (0,1), R € N, almost all £ and anyu € D0m+0(I§E), we setup = (@2}5’6’5’6))_1((I)E(R’E’g’é)(u)) €

Dom(HI%), where § is an arbitrarily fived number in (0,1). Then we have up € Dom(HI%),

1
i — 1 — 1—e <0
lgljolip R og |lur — ully (R?)

and

1 - —
lim sup = log HH%UR — Héul| 122y <O0.

R—o0

By this lemma, we have the following:

Lemma 4.6. (i) (Héu,v)Lz(Rz) = (u,Hgv)Lz(Rz) for any u,v € Dom(HI%),

(11) (E—I\Eu, U)L2(]R2) = (u, EéU)Lz(R?,) for any u,v € D0m+0(ﬁz).
On the other hand, as in Proposition 2.6 in [19], we have the following:

Lemma 4.7. For any R €N, § > 0 and almost all &, there exists ¢(§,d, R) € (0,00) such that
[P, r(u)||L2r2) < (&6, R)[|ullL2(r2),

(1= 0)|A®e g (u)l| L2 ey < || Hpull 2rey + c(€, 6, R)||ull 2 r2),
and
| Hgul| L2 ey < (1 + 0)||A®e g ()| 12r2) + (€, 6, R)||ull £2(r2)

for any u € Dom(H}%).

Then, as in Proposition 2.7 in [19], we have the following:

Lemma 4.8. The operator H}% with the domain Dom(H}%) is a closed operator on L*(R?).
Moreover, as in Proposition 2.9 in [19], we have the following:

Lemma 4.9. For any R €N, s € (0,1], and almost all £, there exists k(§, s, R) € (0,00) such that
(4.6) IV De ()2 < (o, (H + k(Ex 5, R)w) o)
for any u € Dom(}{\}é).

Now we can show the following;:

Lemma 4.10. The operator HIE% with the domain Dom(HI%) is self-adjoint on L?(R?).
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Proof. By Lemma 4.9, (¢, ¢')1/2) := (¢, (HS, + k(¢,5,R) + 1)¢") L2(r2) for any ¢, ¢’ € Dom(H%,) is an

inner product of Dom(H%). We take {¢on}n C Dom(Hf%) so that this is a complete orthonormal basis

——I"ll(1/2)

of the completion Dom(HI%) of Dom(ﬁ) with respect to this inner product. For any 0 # ¢ €
Dom(/f}g), since
Y= Z(?ﬁ, ©on)1/2)P
—————lase '
converges in Dom(H3) , this converges also in L2(R?) and it holds that

2

0 # 191172 gy = Jim (1/1 ZW ©n)(1/2)Pn

)L2(R2>

2

N-Soo L2(R2)

= tim (. 3. pn) 2 (HE + k(€ 5. B) + 1o,

Thus we have ¢ & (Ran(HI% + k(& s, R) + 1)), By considering the contraposition, we have (Ran(H% +
————lla/2 ——-llasy N _
k(€, 5, R) + 1))~ N Dom(H5,) = {0} and Dom(H$,) C Ran(H5 + k(€,5,R) + 1). Since Hj, is

densely defined and closed by Lemma 4.2 and Lemma 4.8, we have Ran(Hf%—Hc(f, s, R)+1) = L*(R?). O

We prepare the following Combes-Thomas type estimate (cf. [5]):

Lemma 4.11. For almost all &, there exist C¢, C € (0,00) and m € N such that

— Clla — b
- ¢
(4.7) ||XA1(a)(HI£% +1) 1XA1(b)||L2(]R2)—>L2(R2) < Ceexp ( - m)7

for any a,b € R? and R € N, where || - | L2 (R2)— L2 (r2) 18 the operator norm on L?(R?), and XAy (a) 5 the

operators of multiplying the characteristic function of the square Ai(a).
Proof. For any v € R?, since
eV f 1 v
(Hy, +1i)~
=(Hf, — [ +8) 721 = (Hy — [o* + )7 /?20 - V(Hp = |of” +4) %) 7 (HE, — o +1) 712,
we have

||€7D'I(-’7[1£:zJFi)flew||L2(1R2)—>L2(R2>SE:H(H6 o> +4)71/*20 - V( — [V +0) V2|2 2y L2 (re)-
n=0

By Lemma 4.12 below, we have

lle” (H§ +1i)” ! e’ || 2 (R2)—L2(R2) < 2
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if ju] <1 and
o] <1/(8C¢(log(2 + R))™).

With this v, we have

”XAl(a)(H]% + i)_IXAl(b)||L2(R2)—>L2(R2) <2 sup exp(v . (a/ - b/)).
a’€Nq(a),beEA;(b)

By taking v appropriately, we obtain (4.7).

Lemma 4.12. For almost all &, there exist Ce € (0,00) and m € N such that

ICHG — o + 1)~ /20 - V(HG — [0 + )7 |2z c2e) < Cellog(2 4+ B)™ ol (1 + u])?

for any v € R? and R € N.

Proof. We write as

(Hy, — [ +i) 720 - V(HE — [0]* +0) 72| 2oy s L2 o)

= sup (B,v - Vi) 2o,
H‘PHLQ(RQ) HwHLQ(]@) 1
where ¢ := (Hg [u]> = i)~1/2p and ¢ := ( — |v> +14)71/%¢. By

dt "t
>4 [ iy mm =1,

~
Il

i

sU7JL
e~
~

we have
(@0 VJ)L?(RZ‘)‘
<crvl|@ll 2 w2y 19| 2 (r2)
1 1
o s U \Y - 5 ) .
I F5m e [ e
For the second term, we rewrite as

([ Frmressos [Searess),

= [ [ (Vi wtar et (sayesi)

L2(R2)

dt n _tA -~ n_sA
/ =% / (—tA) e, /sv - V(—sA)"e w) .
Then we obtain

[(@,v - V) r2gey] < ca|vl|@llmarorz2 @y [¥ oo 22y
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and

||(H1£a —[vf* + i)_l/% ) V(HI% — [vf? + i)_1/2||L2(R2)—>L2(R2) <cslv|  sup ||SZ||3.[<1+5>/2(R2)~

#llL2@2y=1
By (4.5), we have

~ R,e,£,8) / ~
1Bll2g+0/2@2) < cal @ (@) g e

< e (1B @l o) + IVEEE O (@)l 2a)-
By (4.4), we have
||‘I>§,(1§’e’f’6) (@)l L2 @2y < c6l|@ll L2 (w2)-
By Lemma 3.3, Lemma 3.6 and Lemma 4.3, there exists mg € N and ¢7 € (0, 00) such that
IV(@e.r(@) ~ B E " @)l
<IIPer(@) ~ 25k (@l

<cr(log(2 + R))"™ (|4l L2 ®2)-
By Lemma 4.9, we have
V@ r(@)r2r2) < el + o]l z2ces).

Then we can complete the proof. |
Then we can prove the theorem:

Proof of Theorem 1. In this proof, ¢; will be constants that may change from one equation to the

next. For any f € Ran(f]E + 1)+, we consider

(4.8) £ 2y = ngﬂoo(ﬁ XrS) L2 (R2),

where Yz is a [0, 1]-valued smooth function on R? such that Yz = 0 on R2\ Ag and Yz = 1 on Ag_;. For

any L € N, we set pp = (Hzgz-s-L +i)7IXRf € Dom(H§+L) and Qg7 = (@2(6’5’6))’1(szf;ii)(goR,L))
with arbitrarily fixed € € (0,1) and 6 € (0,1/C.), where C. is the constant given in (4.2). We will show
that pg 1 € Dom_H)(ﬁE). By Lemma 4.11, we have

—czd(a, AR)
(log(2+ R+ L))ca

(4.9) Xar,Lllz2®2) < c1(log(2+ R+ L)) exp ( ) IXRS N L2(r2)-
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From this inequality, the methods as in the proof of Lemma 4.2 are enough to obtain only the exponential
decay in a of ||xa®r,L|l#1-<®2) and ||xa®Pe(@r,1)|22(r2) for each fixed L. However our proof of the self-
adjointness uses the decay in L of {||xa@r,Lllz1-c®2) : @ € Z* \ Apyr} and {||xa®e(@rL)||22R2) : a €

Z2\ Aryr}. For this purpose, we here give sharper estimates. We start with
”Xaq){,R-i-L((PR,L))Hq.[1+e(R2)

1
<a (W Z 1Xa1 Pe, Rt L(PR,L) |22 R2)

a1€Z2NA4(a)

A ||Xa1A‘I’s,RJrL(S"RL)“Lz(R"‘))

a1€2Z2NA2(a)

for any ¢ € (0,00). By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

[ Xay (A®¢ gy (0r,2) + Hiypor,n) |2 ee)

<cr Y {(log(2 + |a20) [ Xas Pe, mr L (9R,L) I3+ (r2)
(4.10) az€2?

+ (log(2 + |az|)[|Xas PR, Ll 2 (2)

+ (log(2 + |az2)))* %I Xa, PR, Ll 2 (r2) } exp(—ca(lar — az|? + d(az, Ar+1)?))

and
[ Xa>®Pe R+L(PR.L)|7e (R
2 2
<er Y (log(2 + |as]))l[Xas ©r.Lll L2 (r2) exp(—ca(|az — as|* + d(as, Ary1)?))-
(13622

By

¢rL = Pe r+r(PRL) — Pe.r+L(PR,1L)
and

H163+L90R7L =Xrf —i9R,L,

we have

||Xa280R,L||He(R2)

<Xao Pe, e L(PR,L) |l21+ (m2)

(4.11)

+er Y (log(2 + [as]))XasPr.Ll L2 (R2)
a3z €Z2

x exp(—cz(|az — as|* + d(as, Arsr)?)).
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and

Xa, A®Pe riL(9R,L) L2 ®2)

<lxa XRf 2 (r2)
(4.12)
+er Y ((log(2 + |az)))l[Xas Pe, ot 1 (9R,L) 701+ 82

ag €72

+ (log(2 + [az]))|IXas ¥R L L2 (r2)) exp(—c2(|ar — azf® + d(az, Ar+1)?)).-

Thus, from (4.9), we obtain

IXa®e, R+-L(PR.L) 121+ (m2)

<er (log(2+ R+ L)) (( —cgd(a, AR) )

t(+e)/2 log(2+ R+ L))
(4.13)
+ ¢5t1792(log(2 + R+ L))

X Y Xar @ re£(0R.1) 300+ 2y exp(—cr(la — ar|* + d(ar, Apyr)?)).-
a1 €72

By iterating the estimates, we have

Xa®e,reL(PR.L)|l71+e®2)
(log(2+ R+ L))°2 N ( B csd(aj, AR) )
(

<ec1

t(1+e)/2 log(2+ R+ L))
n—1
(10g(2+R+L))C2 1—e)/2 ce\J
" 2:1 “ ((+e)/2 (5t =9/?(log(2 + R + L)) )’
o
j
ng((lj, AR)
X Z exp| —cr Z(|ak,1 —ax? +d(ar, Ary1)?) — -
a1yea, €22 ( 1 (log(2+ R+ L))ca )
+ (estt 92 (log(2 + R + L))%)"
n—1
X3 e @i n(enn) e exp (= er 3 (lak — o + d(arsr, Anir)?)
al,...,an €Z2 k=0
—1
(log(2 + R+ L))* csd(a, Ar) S (1-6)/2 :
— € L c6\J
= it P ( (log(2 + R+ L))es ) > elest (log(2 + R+ L))*)

=0
+ (cst ' 2 (log(2 + R+ L))" co|®e, ps L(PR.L) | 301+ (m2)

for any n € N, where ag = a. For any Se (0,1), we take t as

t = 62/=9(¢; (log(2 + R + L))~ %/ (-9,
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Then, by taking the limit n — oo, we obtain

—csd(a,AR) )’

4.14 P . < c¢1(log(2 L))
(@19 Ia®enren(ens)lne < alos@+ Rt L) exp (qostTe i

where the constants ¢; depend on §. Thus, from (4.10), (4.11) and (4.12), we have

—czd(a, A
||Xa<PR,L| 3d( R) )7

(log(2+ R+ L))e
—crd(a, AR) )
(log(2+ R+ L))/’

He(R2) <c (10g(2 + R+ L))C2 exp (

XaA®P¢ riL(pR,L) | L2®2) < c5(log(2 + R+ L))® exp (

and

IXa(AP¢ rir(pRr,L) + HngrLLPR,L) ll 22 (r2)

—csd(a, AR) )

<ci(log(2+ R+ L)) exp ((log(2 + R+ L))o

By using also the estimates

5 —C3d<a,AR> —
e, omn) e < erllog(2-+ Rt 1)) exp (om0 e I lnecee)
and
13 c _C3d(a’7 AR) —
||XLLHR+LSOR,L||L2(R2) < Cl(log(2 + R+ L)) ? exp ((log(2 + R+ L))C4)||XRfHL2(R2)'

obtained by Lemma 3.2 and (4.9), we obtain

. —C3d(a7 AR)
4.15 P <ci(log(2+ R+ L)) .
(4.15) Ia®e, s (o)) < 082+ R+ 1) exp (oo™ i)
By Lemma 3.3 and Lemma 3.6, we have
_ p(esd) < e —c3d(a, Ag)
IXa(®e,rrr(pr.L) = P 5L (PR.L)) 22 (R2) < c1(log(2+ R+ L)) exp <(log(2 iy L))C4)
and
8(6,5,5) < Cco _c3d(a7 AR)
IXa®e giL (Pr.L) 222y < c1(log(2+ R+ L)) exp ((log(2 TR+ L)) )

As in the proof of Lemma 4.2 (i), we have
IXaPR Lll21-<®2)

,£,0
<xa® 550 (0r.) 30— r2)

- n & s(e,6,0
3 Y ew(—ad o - o) I 05D (er) e
n=1 j=1

a1,az,...,an €22

(4.16)

—cqd(a, AR) )

<co(log(2 + R+ L))** exp ((10g(2 + R+ L))
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for small enough § > 0, where ag = a. By Lemma 3.3 and Lemma 3.6, we have

) B2EED) (5 Ve s < e —czd(a, AR)
Ia(@(@R2) = B2V (R ) e < exlog(2+ R+ L) exp (a0 )
and
_ . —csd(a, AR)
. a 2r2y < 2 .
(4.17) Ixa®e(PRL) ) < ex(log(2 + Rt 1)) exp (oo )

Thus we obtain ¢ 1, € Dom+0(j¥vf) and sufficiently sharp estimates of || xa @R L [|71-<(®2) and || xa®e (@R, L) |72 ®2)
for our proof of the self-adjointness.

Since (EEIE +i)oRr 1 € Raun(l?{\E + 1), we have

(4.18) ||f||2L2(R2) = ngnoo(f’ (H§+L + i)@R,L - (H5 + i)@)LZ(R?)-
As in the proof of Lemma 4.2 we have

s(€,£,0 s(€,£,0
Ixa (@55 (0r,1) — @EGTY (0R.L)) 31— (o)

<ci(log(2 + R+ L))* exp ( —c3 (d(a, AG )+ d(a, Ar) )>,

(log(2+ R+ L))
and
_ L +d(a,AR)
4.19 . _ ey < e1(log(2 + R + L)) (— ’ )
( ) ”X (QDR,L WR,L)H’}-U (R?2) = cl( Og( + 1+ )) exp C3 (10g(2+R+L))C4
We next consider
16
||H§+L%0R,L — H0r 1|22y < lev
j=1
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where

and

Since

we have

I =[|A® riL(pr,L) — APe(PR L) L2(R2),

Iy =||Pepy, P ryL(0r,L) — PePe(0Rr, L) 12 (R2),

I3 =|1H(®¢, r+(R,L):§R,L) — H(Pe(PR,L): €l L2 (R2)>

L =I|P (P orn) (P €rs)) — PV (P R L) (P€) 12wy,

Iy =|e*Pop Er1 L — € Pl o),

Is =[l€® ot Peror (A7) — €2 5y Pe(AT1°) || 12 (o),

I =[|e® Py Ye it — € Pory Vel L2 2y,

Is =||C(¢r,L,ér+1,ER+L) — C(PR.L, &) L2 (m2)

Iy =||S(¢r,L:€r+L,ER+L) — S(PR. L, &) L2 (R2),

Lo =[|Pye,ve ri PRL — Pre PR Ll L2 (R2),

Iy =|(er,L, Ye, 1) — (@R 1, Ye) L2 (R2),

L =[P (P o) (P Ye rn)) = P (P 0R) (P Ye)) 2.

I =[|Pery (A7 Pepo (A€ 1)) — Pe(AT1° iy Pe(AT°0)) | 22,
Ly =[[T(AT G Pen (AT €Ry 1), Err) — AT o Pe(AT'°€), €| L2 ),

Iis =||Pep, (AT°P, Ve pir) — Pe(AT° P Ye) || 12 (r2),

$R,L
Iig = [TATPy pn  YeriL §rin) — AP o Ve, )| 22

H5(6:¢:9)

€,£,0
S (pn) = @2

PRL),

6
I < Zfl,ja
j=1
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where

_ 2 s(aze,€,6) 2
Il,l - Z (Pch,L—ZpARI(Xaé-) - P@R,L—m(xag))‘ L2(]R2),
aEZQOAR+L
_ ) (2 2¢) _ ps(aiegd) 2
ho=| Y P8 ~ P 0
a€Z?\ARr+1L
_ —loc., 2 s1(a,a’;6,€,6) ¢ A —loc, 2
Iz = Z (SDR,L—mPXaﬁ(A "Xar€) — %R,L—mpxié (A OCXa/f))‘ L2(R2)’
a,a’ €Z2NAR+L
_loc ,a'56,6,8 —loc
Ia= 3 (s Prae(AT19X28) — sy P (A xz,@)\ww),
(a,a’)EZ2><Zz\AR+L><AR+L
= (2 _ ps2(ae,0) (2
Do = 30 (Pop s O Vern) = P 0 Vemen)| o

a€Z?

and

s2(a;e,&,0
Lie= (Pomy O3 (Yerir — Ye)) — P2 (2 (Ye pyr — Ye)))
A PR,L
a€EZ

L2(R2)
To estimate the each term, we apply Lemma 3.6, Lemma 3.3 and Lemma 4.1. For Iy 1,1 3 and Iy 5, we

apply (4.19), and, for I 9,11 4 and Iy g, we apply (4.16). Then we have

—c3L
I < e1(R+log(2 + R+ L)) exp ((1og(2 TR L)) )

which converges to 0 as L — oo. Similar methods show that {I;}2< ;<16 also converges to 0 as L — oo by
Lemma 3.2, Lemma 3.3, Lemma 3.4, Lemma 3.6, Lemma 4.1, (4.19), (4.16), and (4.17). Thus the right

hand side of (4.8) is zero, and we obtain Raun(lftl\g +14)t = {0} (cf.[21]). O

In [19], the obtained operator is shown to be the limit of the smooth approximation in the norm
resolvent sense, and many results on the spectrum are obtained from this fact (cf. Proposition 2.14 in

[19]). In our case we obtain only the following results on the convergence in the strong resolvent sense:

Proposition 4.1. (i) The closure Heée of the operator HE: with the domain C§°(R?) converges to the
closure HE of the operator HE with the domain Dom+0(ffv5) in the strong resolvent sense as € — 0.
(ii) The self-adjoint oeprator HI% in Lemma 4.10 converges to the closure HE of the operator HE with

the domain D0m+o(ﬁg) in the strong resolvent sense as R — oo.

Proof. (i) For any v € L?(R?), we set u := (EZ + i)~ tv. Then, for any n,e > 0, there exists ug €
Dom, (I}E) such that

||u - UOHL2(]R2), ||H§7.L - HEUOHLz(Rz) <n.
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As in Lemma 4.5, we set u. := (@25(6’5’5))_1(@?6’5’5) (ug)). Then we have
gl_r)% HU() — u€||H1—e(R2) =0

and
im || Huo — Héullromey —
glE)I%)||H (%) H UEHL (R2) 0.
Thus we have

I(HE +0) 1o — (HE + 1) ol|p2gge)
<||(Hé + )" (HE 4 i) (u — uo) || L2(re) + [(HE +4) 7 (HE + i)ug — uel|p2(re)

—+ H’U,E — UO”L?(R?) —+ ||u0 — u||L2(R2).
This is less than 3n for sufficiently small €.
(ii) In the proof of (i), we replace u. by ug := (@2(16%’5’5))’1(@2(6’5’6)(1@)). Then the rest of the proof

is same with that of (i).

5. PROOF OF THEOREM 2

In this section we prove Theorem 2: we show that the spectral set of E is R.

For a smooth stationary ergodic Gaussian random field V on R¢, we have spec(—A + V) = R. This is
Theorem 5.34 (i) in Pastur and Figotin [20] and its proof is summarized as follows: for any real number
A, any large L > 0, and any small € > 0, we have P(sup,¢,, |V (z) — A| < &) > 0. From this, we have
P(supgen, (y) |V (%) — Al < € for some y € R%) = 1 by the ergodicity. Then we can construct a Weyl
sequence showing A € spec(—A + V) with the probability 1. Similarly for any » € R and L > 0, we
will show that the whitenoise £ is near to the constant r» on Ay with a positive probability. For this, we
will firstly represent the whitenoise £ on Ap by a random Fourier series including a constant term. The
positivity of the event we use is given in Lemma 5.3 below. To use this, we decompose the operator as
in Lemma 5.1 below. Then a Weyl sequence is constructed by Lemma 5.5 below.

On the 2-dimensional flat torus T2 := R2?/(LZ)? with any L € N, we take an orthonormal basis

{@L} ez of L2(T2) defined by

Py oy (@1, 2) = OF (21) 91, (2)
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and
/2/Lcos(2mnix1/L)  for 0 < my € Z,

L

nl(xl): ]./

h

for n; =0,

2/Lsin(2rnyxz1 /L)  for 0 > ny € Z.
Then any white noise £ on T% is represented as

i) =" Xn(E")pk(x)

nez?

in the Besov Holder space C~17¢(T2) on T2 for any € > 0, where { Xy, (£X)}ez2 is a system of indepen-
dently identically distributed random variables having the standard normal distribution. Let X7 and x7°
be [0, 1]-valued smooth function on R? such that Yz = 0 on R2\ Ay, Xz = Lon A1 and X1+ (xz°)% = 1
on R2.

We represent the white noise as
(5.1) &= X" +x°¢n,

where ¢& and £19¢ are white noises on T2 and R?, respectively, such that £€& and £1+¢ are independent as
random fields. (5.1) is justified by showing that the probability distribution of the pairing of the right
hand side with any ¢ € L?(R?) is the normal distribution with the mean 0 and the variance [|¢[|2, (R2)"

For any N € N, we decompose & as
(52) gL = fJI(Iz + 51%7<»

where

(@)= Y Xalt)er(@)

neZ2NAyN

and

()= > Xn(€")eh().

neZ*\An
For the random field £5 _ = X7&K o + x2°¢M¢, we set (€& ). = €E2A£]l\‘]<,

Yeronne i= (AT ) (65 ). — BII(AT°(¢L )., xa(€E_).)]),

and Y 1 n< is a random variable such that

i B Xa(YVee 1< — Ve e) [ ga] =0
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for any p € [1,00), € > 0 and a € Z2. We note the relation
}/f,L,N< = Y:EL/ - H(Ailocfll\‘l<7/>-(\zgll\‘fz) - H(AilOC/X\Zgll\‘fZ7€II\‘/'<)

STATXeks Xigks) + Y AT Rk Xiek).
neEZ2NAN

We modify the operator as follows:

p—— 1
Dom, (H&L:N<) ::{u € H'7¢(R?) : limsup al log [|xatll31-<m2) <0,

la]—o0 ‘a

1
Qe n<(u) € H%(R?), lim sup o

log [[xa®e,1.v< (1) [3282) < 0},
|a]—o0 | |
P pn<(u) i=u— APk — Aflocupgzv(Aflocfﬁk) — AP Ye 1 ne
N<

and

HELN<y,

=—A®¢ ;N (u) + PEJL;:(I)&L,N<(U) + I(Pe, 1 n< (u), €5 )
+ PO (PP u)(PVek )
+eAPek_+ eAuPEIL;(A—IOCE]LV:) + AP Ye e
+Cu ek ek )+ S(u, ek _ ek )

+ Py, vou+ 1w, Ye pn<) + PO(PP ) (PP Ye v <))

+ PN(AflocuP/\/(Aflocgll\,[<))

L L
£N< EN<

+ 1—I(A7locu‘ljg/§:(Aflocé-][\,[<)7 fjl\/f<)
+ Pg’LI\:/(AilOCPuY%’L7N<) + H(Ailocpuyyg,L,N<a 6][\/7<)7
<

Then we have the following:

Lemma 5.1. For any L and N € N, we have
Dom, (ﬁ) = Dome(m)

and

Héu = (HSEN< 4 ypek, — yINz)yy,

for any u € Dom, (E\IZ), where

YENZ = ST (AT ek, XTek).

neZ2NAN
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The term YN2Z may diverge as N — oo. However we have the following bound:

Lemma 5.2. For any n € (0,1), there exists ¢, € [0,00) such that

sup [Y2V2 (2)] < e (N/L)"
z€R?

for any L and N € N.
Proof. By the L*-version of Lemma 3.2 (iii), we have

sup [TI(xaA ™ Xar X295, XaXLP5)|
A2 (a/)

<e1]|XaD X XL 5 | 4 (m2) || Xa XL 95 |- 140 (R2) €xP(—c2]a — a'|?)

<cslXar XL llo-1+9(r2) [ XaXLPR || - 140 (R2) €xp(—c2la — a'[?)
and
IXaXL2Phllc-14n @2y < ca L™ |n| =127,
from which we obtain the bound. O
For any N, R, L € N satisfying R+2 < L, the lowest eigenvalue A(L, N, R) of the operator —A —Y L:N=

on the domain Agr with the Dirichlet boundary condition is estimated by this lemma as

NA\7
(5.3) INL, N, R)| < c’n(l v f> .
For any € € (0,1), we take a function . p € C°°(R?) such that supp ¢ r C Ag, e, rllL2r) = 1 and
(5.4) (=& = Y5NZ) = X(L, N, R)) e, gl 2 (r2) < €.
Then this function also has the estimate

NA\7
(5.5) ||S¢75,R||H2(]R2) < CZ <1 \Y f) .
We use the euality
(5.6) (=A —YEN2) _XN(L,N,R) = (-A+7r(\ L,N,R)p§ — YEN2) — A

for any A € R, where
r(A,L,N,R) := L(A = XL, N, R)).

We fix R arbitrarily.
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For any €,e € (0,1), A € R and N, R, L € N satisfying R + 2 < L, we define the event F(e, ¢, A\, L) by
{f : In the representation of (5.1) and (5.2) with N = L%, it holds that
| Xo(¢E) —7(N\, L, N, R)|,| Xn(£¥)| < ¢/N? for any n € Z> N Ay \ {0}, and
”Xafjl\‘//:HC*l*E(RQ) VIxXaYe L. n<lle-c@2) < 1a,,0(@) L7+ 1a;  (a)lalf
for any a € ZQ.}.

The positivity of this event is proven as in the proof of Lemma 3.3:

Lemma 5.3. For any e, e € (0,1), A € R, and R € N, there exists Ly € N such that P(E(e,e, A\, L)) > 0

for any Lo < L € N.

Proof. In this proof, ¢; will be constants that may change from one equation to the next. We devide

the probability as follows:

P(B(e, e\ L) = To (1= 3 Lo = > Ja),

a€Z? a€Z?
where
Io =P(|Xo(¢") —7(\, L, N, R)| < ¢/N?) II PUXaE") <e/N?),
n€Z2NAN\{0}
Lo =P(Ixa€f clle-1-c@2) > 1a, (@) L7 + 15¢ _(a)lal)
and

Jo =P([[XaYe L v<lle=c®2) = (1a,0 (@) L7 +1ag  (a)]al ).

L/2

Iy is positive for any € > 0 and N € N. By taking p = 4/e and €9 = ¢/2, we have
L L _
Z Ia S Cl( Z E[||XG§N<||Z;;7EO(R2)]L4 + Z E[||Xa£]l<7<HZ;;*Q(RQ)Ha‘l 4)'
a€Z? a€Z?NAL )2 a€Z2\AL 2

As in Lemma 3.3, we have

sup E[”Xaf{(f<”; ] < Q.

. —
aEZ2,L€N PP O(Rz)
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Moreover, for any @Q € StGC™(R?) with r € N, we have

]E[Ht(HEO)/QQtYZXafJ%K ||§p(R2x[o,1]:dxdt/t)]

1
dt
gc/*/ de{t e 3 (QiNixa
e (Qixr

neZ?\An,1€{1,2}

X aL(ATQL)(160)/2¢7LL)($))2(|TLL|>60}p/2

Lt . bodr
SCQ/O ?/dex{to Z </om

neZ?\An,1€{1,2}

(5.7) X (Vt0,QiXLXa eXp(TATi)‘Pﬁ)(x))Q( L )60 }p/2

n|

1 1
dt 1+eo dr
+ Co /0 ? \/RQ dl’{t Z ( ; 7r(1+€0)/2

neZ?\An,e{1,2}

<@z et an ) ()"

n|

o /Ol‘it Lo S (@b

n€Z\An . €{1,2}

g (/1OO r(lf:o)/z €xp (_szNz))2<|nL|)50 }10/27

where, for each L,a,t, X1.a, is a smooth function with a support in As(a) N Ar. The first term in the

right hand side is dominated by

LN? [tat bodn Lodry
S) S da{ee
(N) /0 t /R v 2 /0 7n§1+eo)/2/0 (102

ve{1,2}

< ((VIQNE X 5D~ (1 + 72)Ags )X XE(VEDL Q) )}

LN2 [at d —x2\ [t d
by [ e [ (- [
N7 Jo t Jge As(a)nAp T cat o pitteo

X/l d’/‘g / dl‘g ZeX (_|$1—$2—|—Ly|2)}ex (_‘mg—x|2)}p/2
0 rg1+€0)/2 AQ(G.)QAL 1 + 79 p 4(7"1 + TQ) t p

cot
yEZ? 2

<c3L?/N2.

The other terms are also similarly estimated. Therefore we obtain

E[IXEXa€R <10 o)) < 1 L?/N?.

Thus there exist Ly such that
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for any L > Lg. Simirarly we have

Z Jo <1 Z E[||XG}E»L7N<||ZI;;;0(R2)]

a€Z? a€Z?

% (1,2 (a) L4+ 1ag  (@)lal ™).

L/2

As in Lemma 3.3, we have
sup E Y, P < 00.
sup [IxaYe,r.v<llg-co )]
To obtain sharper estimates, we consider the approximation Y . y<. For any @ € StGC"(R?) with

r € NN (0, 2b], by the hypercontractivity, we have
B[t QiXaYe o1, N <o (g2 x (0.1]:dmat /1))

1
dt
<o [ G [ dBl@Yeern @
0 R

Moreover by the Gaussian property, we have

E[[(QeXaYee,L.n<)(@)?]
Vs 1 s )
- 5 d G'PSM ’ — d t an )
MZ;/O ° [ am@upteen [ 2 [ an@oapa)

* AB[(QM AT (¢E ) () QL AT (€ ). ) (w0)]
X E[(Q>" (65 _)o)(e1) (Q2™(€k ) (21)]

+E[(QMF AT (ek_)) (1) (Q2™(¢L 1)) ()]

X E[(Qs*A7(¢k )e (21)(Q¥(€k 2)e) (@1)]}
23 (X[ 5] @)

2
QAT DL (1) QP e A0k ) 1))
where {®L},, = {(X20% XL ¢0m : n,n' € Z?\ Ay,m € N} and {¢,, : m € N} is a complete orthonormal

basis of L?(R?). As in (5.7), we have

4
E['(Qt}(ayvﬁ’gﬁL’N<)(x)|2] < ZIi(tv 1’),
=1
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where

Iﬂt,x)z(%)%l Z/ 33/2/ dry (QixaP)(, 1)

n nEZQ\AN ve{1,2} I
X QAT A (@)

oo [P dr 2
x (Vs0,Q3"e A ) WGXP(TATi)SO’fL)(xl))

nen=(x) X (Z /d d1 (Quxa P (x,21)

n,nEZ>\An,e{1,2} © 5 Jre
-~ 2
X (QUH A B 1)

1
dr 2
x (Q21e"ANT, A WGXP(TATQL)%LL)(M))

LA 261 ds
Is(t, v) :<N) Z/ / dz1(QixaPL)(z, 1)
nnEZQ\AN ve{1,2} Iz R2

X (QUFATIe ) (@)

on 2 [e%s) _ 2 2
X Qe AXL@@ﬁ)(wl)) (/1 T(1f:1)/2 eXp( C2LTQN ))
([ %] an@arre)
L Jo S JR2 s

2 2A—~—c 2
X (QUr AT ABL) (1) (Q2 e ANT ) (21))
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XL, is a smooth function with a support in Ay, and €; € (0,1) are taken arbitrarily. Z; (¢, z) is dominated

by

L 2€1 ‘x — x0|2
(N) exp(—ci(|z — af® + d(a,AL)? / 33/2/ T)
/ dm —|zo — x1|2> / dxo (—|931 - x2|2)
y —exp | ———
R2 S C3s R2 S €45
b/ay [ d — |y — x5
X(/ d0_+/da( ) )/ 075 ey (L2l
0 o R2 O 50
/ i |zs — s ) /1 ds / dzo (—|x — $0|2)
. dzy ds aZo —r Lol
R2 452 0 §3/2 Ag(a) t exp CQt
/ dx —|zg — 21 |? / dzxa —|xy —29|?
[ g () [ (e
B2 S c3s R2 S €45
w4 —|zo — 32
x(/ da+/ da *e p(M)
0 C50
y / dx’2 *|=T1 - IZF) / L?exp (M)
R2 S CeS AL € 46
day (|- dzg —lrh — 24/*
g / I >/AL aor()
[y <”3”§‘Ly'2>
X —exp B
r61 r crr
261 2 2
SCS(N) exp(—ci(lz — a|* + d(a,AL)?))
1 s 1 !
ds 5\ b/4 ds
/ 7(/ d"*/ w(3)") ],

b/4 Yar 1 1
d0—|— da —
o ™t+stot+at+tss+r+s

1

ter”

<C9<N)261 exp(—ci(|z — af* + d(a,AL)?))
The part of E[[[t°/2Q;xaYe.e.. N< ||’ZP(R2X[07”:dxdt/t)] dominated by using Z; (¢, z) is dominated by
/0 ittéop/Q /R2 daZy(t,z)P? < ¢y <%)elp exp(—cod(a, Ap)?).
The other parts are also similarly estimated, and we obtain
Bl Yoz v o] < €1 (/N exp(—cad(a Au)?) + ey exp(—cadla, A5 _1)?),

where €5 € (0,1) is taken arbitrarily small. Thus, we can take Lg so that

ZJG<%

a€Z?
for any L > Ly.
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For

Ppve(u) =3 ATPIO0GE )+ DD AT PR (AT ek )

a€z? a,a’ €72 XaSN<

+ ) ATPRO(CYe <),
a€Z?

we modify Lemma 4.1:

Lemma 5.4. Foranye € (0,1/2) and & € E(e, ¢, \, L), there exist s(¢,€,L), s1(¢,&, L), sa(e,&, L) € (0,1)
and M, M(€), M;(e), Ma(e) € (0,00) such that

E,L,6
Ixa® 555" (1) 12 ey

(5.8) Sg Z (exp(—Md(a’,Ar2)*) L™

a’ €72
+exp(=Md(a’, A )5)?)) exp(=Mla — o' [*) [ xartll L2 22)
fOT any 0 2 07 where 8(63 57 La 6) = (S(a7 €, 57 La 5)3 51(a7 CL/; €, 57 La 6)7 SQ(CL; € ga L7 5))a,a’EZQ 18

S(a; € Ea L7 6) = 8(6, 57 L)(SM(E)(lAL/2 (CL) + ]-AC (a)|a|6)72M(6)7

L/2

si(a;d’s€,&, L,8) = s1(€,& L) (1n, . (a) + 1ac ,_(a)]al*) 20

L2
X (1AL/2 (a') 4 IACL'/Q (a/)|a’|5)*2M1(e)

and

s2(ai€,&, L, 6) = sa(e,&, L) D (1a, ,(a) + La: _(a)|al) 2.

L/2

Under the event E(e, ¢, A\, L), we set po g 1= ((I)g’(z’%é’é))—l(gpeﬂ). As in the proof of Theorem 1, we

have the following:

Lemma 5.5. For any ¢ € (0,1/2), § € (0,1), A € R and R € N, there exists a positive finite constant
c(e, 6, \, R), and for these and anyn € (0, 1), there exists a positive finite constant c(n, €, 0, A\, R) satisfying

the following: under the event E(e,¢e,\,L), ¢cr € DOHIQE(EE),

(59) ||82;7—é - QOE,RHL2(]R2) S 6(6757 )‘7R)L76
and
— NN7 1
. ¢~ Norn < =) =).
(5.10) |(HE = N@ZRl e < clne 6 A R) (e + (1v 2) 2
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Proof. By Lemma 5.4, we have

— C
(5.11) [Xa(Per = Pe,R)[l21-2¢(m2) < L% exp(—cad(a, AR)).

(5.9) is a simple consequence of this. By (5.5), we have

NAn(1/2-9
(5.12) IXaee mllar-2ega2) < calanea@)(1V T )
and

. c Ny n(1/2-0)
(5.13) @7l a2y < 2= exp(—cad(a, Ap)) + es1an,(0) (1V ) .

We here note that

— C
(514) ”Xa@s,R“LQ(DW) < Lil6 eXp(chd(aa AR)) =+ 1AR+2 (a)7

since ¢ g is normalized in L?(R?). By this, £ € E(e, ¢, A\, L), Lemma 3.6 and Lemma 5.4, we have
s(6.6,L,N.5)

IXa(Pe,2N<(Per) = Pe e " (@e k) 122 R2)
(5.15)

<cys L™ exp(—csd(a, AR)?).

By using also (5.5), we have

IXa®e.L.n< (e R)ll3e2 @)
(5.16)
—€ 2 N n
<cy L™ exp(—csd(a, Ar)”) + celap.,(a) (1 v f) .

Thus we have ¢ g € Doma, (f{\z)

For (5.10), we estimate as

I(H® = A)pe rllL2@2)

<INNeer = @erllrage) + 1A = (=A + (A, L, N, R)og = YEN2)) e L]l 2 (re)

+I(=A+7(A\, L, N, R)pg — Y*N2)p, p — Héo Rl L2 r2)-
The first term of the right hand side is estimated by (5.9). The second term is estimated by (5.4) and

(5.6). For the third term, we use Lemma 5.1 to estimate as

[(=A+r(\ LN, R)pg — Y"N2)o. p — HEQ Rl 12 (r2)

<N A@e,r + HEEN<Q R L2 (re2)
+Ir(A\, L, N, R)pgpe r — X1EN>Pe rllL>®2)

+ Y52 (0e r — 92 R) |2 @2)-
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By Lemma 5.2 and (5.11), we have
Y52 (e, r — @)l L2 (re) < er(N/L)"L7°
By £ € E(e,¢,A, L) and (5.9), we have
L L —— €
[7(As L, Ny, R)pg e r — XLEN>Pe Rl L2 (R2) < CS(E + (1 vV —

Moreover we estimate each term of the right hand side of

16
|Ape r + m@”m(n@?) < ij,
j=1
where
I =[[Ape r — APe 1 N< (02 R) | L2 ®2),
I, =||PEL];'¢’5,L,N<(@)HL?(R?),
I3 :Hn(gﬁ\/‘Za¢£,L,N<(<ZE\,7?))”L2(]R2)7
L =P (PP ek (P e 1 < (G2m) 2,
I =[|e® Prrk _ll22g2),
I =||€AJ:RP€ZLV<(A_IOC%Z)HH(R?)’
It =||e® Po= Ye . n< || L2 @2y,
Is =||C(7o R €k < €5 )l 2 @2),
Iy =|15(Fems €5, €5 ) 2z,
Lo =[Py, , x.Pe.rllL2®2),
Iy =|1(Ye,L,nv<, Pe.r) L2 (m2),
Lo =[PP Ye rv ) (PG R) 12 2y,
Dy =P (A7 g P (A7 )2 e,
T =R o A o P (A€ )l e
Is5 :||PELJ\:Z(AilOCPmY'§,L,N<)HL2(R2)7
and

L =|TI(E% o, AP Ye 1ov<) || 12 (r2)-

Pe,R
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By (5.15), we have
Il S CgL_e.
By € € E(e,¢,\, L), (5.16), (5.13), Lemma 3.2 and Lemma 3.4, we have
Ny7 1
Iy, I3, I8, 19, o, I11, 112 < 610(1 \ f) Ie

By € € E(e,¢,\, L), (5.14), Lemma 3.1 and Lemma 3.2, we have

14,15, I, I7, 113, 114, I15, 116 < cnl™°.

Proof of Theorem 2. For any zy € Z2, ¢ € (0,1), e € (0,1/2), A € R and L € N, we set
E(x(ngaEv)\aL) = {g : 5( - 1’0) € E(€767)‘7L)}'

Then U, ez2 E(wo,€,€,A, L) is Z2-invariant. Thus by Lemma 5.3 and the ergodicity of the white noise,

we have

]P’( U E(xo,s,e,)\,L)> —1.

xoEZ2
For any zg € Z? and & € E(wg,¢,¢€,\, L), we define

Pe R0 (¥) = Pe r(7;§(- — 70))

for any = € R?, where ¢; r(-;€) is the function ¢- g(-) used in Lemma 5.5 whose dependence on ¢ is

denoted. Then we have pe g 4, (- + 7o) € DomQG(?IE) and
Tre — Nyn 1
|(HE = N@z o -+ 30) |2y < e, e S0 R) (e + (1v 7))
In this estimate, € and 7 are taken arbitrarily small, and L is taken arbitrarily large. Thus by Weyl’s

criterion (cf. Hislop and Sigal [14], Theorem 5.10), A belongs to the spectral set of HE. O
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Note added in proofs
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After the submission of the paper, the author knows that Hsu and Labbé [15] obtain the similar results

on R? and R? from the works by Hairer and Labbé [12], [13] on the corresponding parabolic Anderson
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odels.
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