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Abstract. For the Schrödinger operators on L2(R2) and L2(R3) with the uniform magnetic field and

the scalar potentials located at all sites of a randomly perturbed lattice, the asymptotic behavior of the

integrated density of states at the infimum of the spectrum is investigated. The randomly perturbed

lattice is the model considered by Fukushima and this describes an intermediate situation between the

ordered lattice and the Poisson random field. In this paper the scalar potentials are assumed to decay

slowly and its effect to the leading term of the asymptotics are determined explicitly. As the perturbed

lattice tends to the Poisson model, the determined leading term tends to that for the Poisson model.

Keywords: Lifshitz tails, magnetic Schrödinger operator

AMS Subject Classification: 34L40, 82B44

1. Introduction

Let

H = A∗A =
(
i
∂

∂x1
− Bx2

2

)2

+
(
i
∂

∂x2
+
Bx1

2

)2

−B (1.1)

be the smaller component of the Pauli Hamiltonian R2 with the uniform magnetic field B > 0, where

i =
√
−1 and

A =
(
i
∂

∂x1
− Bx2

2

)
+ i
(
i
∂

∂x2
+
Bx1

2

)
. (1.2)

Let

Vξ(x) =
∑
q∈Z2

u(x− q − ξq) (1.3)

be a random potential on R2, where ξ = (ξq)q∈Z2 is a collection of independently and identically dis-

tributed R2-valued random variables with the distribution

Pθ(ξq ∈ dx) = exp(−|x|θ)dx/Z(θ), (1.4)
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|x| =
√
x2

1 + x2
2, θ ∈ (0,∞), Z(θ) is the normalizing constant, and u is a nonnegative function belonging

to the Kato class K2 (cf. [2] p-53). Let Hξ,ΛR be the self-adjoint restriction of the random Schrödinger

operator

Hξ = H+ Vξ, (1.5)

to the L2 space on the cube ΛR := (−R/2, R/2)2 with the Dirichlet boundary condition and Nξ,R(λ) be

its number of eigenvalues not exceeding λ. It is well-known that there exists a deterministic increasing

function N such that

R−2Nξ,R(λ) −→ N(λ) as R→∞ (1.6)

for any point of continuity of N and almost all ξ under the condition sup |x|αu(x) < ∞ for some α > 2

(cf. [2], [7], [10]). This function (N(λ))λ≥0 is called as the integrated density of states for the random

Schrödinger operator (1.5). For this function, we show the following:

Theorem 1. (i) If

essinf
|x|≤R

u(x) > 0 (1.7)

holds for any R ≥ 1 and

u(x) = C0|x|−α(1 + o(1)) (1.8)

as |x| → ∞ for some C0 ∈ (0,∞) and α ∈ (2,∞), then we have

lim
λ↓0

λκ logN(λ) =
−κκ

(κ+ 1)κ+1

{∫
R2

dq inf
y∈R2

( C0

|q + y|α
+ |y|θ

)}κ+1

, (1.9)

where κ = (2 + θ)/(α− 2).

(ii) If (1.7) holds for any R ≥ 1 and

u(x) = exp
(−|x|α

C0
(1 + o(1))

)
(1.10)

as |x| → ∞ for some C0 ∈ (0,∞) and α ∈ (0, 2), then we have

lim
λ↓0

(log(1/λ))−(2+θ)/α logN(λ) =
−2πC

(2+θ)/α
0

(θ + 1)(θ + 2)
. (1.11)

We also consider the 3-dimensional problem in the following formulation referring to [8] and [17]. Let

H =
(
i
∂

∂x1
− Bx2

2

)2

+
(
i
∂

∂x2
+
Bx1

2

)2

−B − ∂2

∂x2
3

(1.12)
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be the smaller component of the Pauli Hamiltonian on R3 with the constant magnetic field B parallel to

the x3-axis. We write any element x of R3 as (x⊥, x3) ∈ R2 × R and set

‖x‖θp :=


‖|x⊥|θ⊥ , |x3|θ3‖p = (|x⊥|θ⊥p + |x3|θ3p)1/p if p ∈ [1,∞),

|x⊥|θ⊥ ∨ |x3|θ3 if p =∞,
(1.13)

for arbitrarily fixed θ = (θ⊥, θ3) ∈ (0,∞)2 and p ∈ [1,∞]. Let ξ = (ξq)q∈Z3 be a collection of indepen-

dently and identically distributed R3-valued random variables with the distribution

Pθ(ξq ∈ dx) = exp(−‖x‖θp)dx/Z(θ, p), (1.14)

where Z(θ, p) is the normalizing constant. Let u be a nonnegative function belonging to the Kato class

K3 (cf. [2] p-53) and satisfying

u(x) =
C0

‖x‖αp̃
(1 + o(1)) (1.15)

as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and α = (α⊥, α3) ∈ (0,∞)2 such that

2

α⊥
+

1

α3
< 1. (1.16)

Since ∫
q∈R3:|q|≥1

dq

‖q‖αp
<∞ (1.17)

under the condition (1.16), we can show

Vξ(x) =
∑
q∈Z3

u(x− q − ξq) (1.18)

belong to the local Kato class K3,loc by the same method in Lemma 7.1 in [7]. As in the 2-dimensional

case we will consider the integrated density of states (N(λ))λ≥0 of the random Schrödinger operators

Hξ = H + Vξ : (1.19)

it is a deterministic increasing function satisfying

R−3Nξ,R(λ) −→N(λ) as R→∞ (1.20)

for any point of continuity of N and almost all ξ, where Nξ,R(λ) is the number of eigenvalues not

exceeding λ of the self-adjoint operator Hξ,ΛR on the L2 space on the cube ΛR := (−R/2, R/2)3 with

the Dirichlet boundary condition (cf. [2], [7], [10]). Our result is the following:
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Theorem 2. We assume

essinf
|x|≤R

u(x) > 0 (1.21)

holds for any R ≥ 1 and (1.15) as |x| → ∞ for some C0 ∈ (0,∞) and

2

α⊥
+

3

α3
> 1. (1.22)

We set

κ(α,θ) =

θ⊥
α⊥
∨ θ3

α3
+

2

α⊥
+

1

α3

1− 2

α⊥
− 1

α3

, (1.23)

and

C(α,θ, C0)

=

∫
R3

dq inf
y=(y⊥,y3)∈R3

( C0

‖q + y‖αp̃
+
∥∥∥1 θ⊥

α⊥
≥ θ3
α3

|y⊥|θ⊥ , 1 θ⊥
α⊥
≤ θ3
α3

|y3|θ3
∥∥∥
p

) (1.24)

(cf. (1.17) ). Then we have

lim
λ↓0

λκ(α,θ) logN(λ) =
−κ(α,θ)κ(α,θ)

(1 + κ(α,θ))1+κ(α,θ)
C(α,θ, C0)1+κ(α,θ). (1.25)

These results are extensions of the results in [6] and [7], where the same problem is considered in the

case without magnetic fields. As is discussed in [6] and [7], our model describes an intermediate situation

between a completely ordered situation and a completely disordered situation since the point process

{q + ξq}q∈Z2 converges weakly to the Poisson point process with the intensity 1 as θ → 0 and converges

weakly to the complete lattice Z2 as θ →∞ by slightly modifying the definition as

Pθ(ξq ∈ dx) = exp(−(1 + |x|)θ)dx/Z(θ), (1.26)

which brings no essential changes for our results. The results in [6] and [7] show that the leading term

of the integrated density of states for each case also tends to that for the corresponding Poisson case as

θ → 0 and decays as θ → ∞ which reflects that the infimum of the spectrum is strictly positive if the

perturbations ξq of sites are all bounded. In the case with uniform magnetic fields the asymptotics of

the integrated density of states has been investigated mainly for the Poisson case. For this topic and

the relation with other topics, refer to a recent survey by Kirsch and Metzger [11]. The first result was

given by Broderix, Hundertmark, Kirsch and Leschke [1]: they determined the leading term for the case

corresponding to Theorem 1 (i) in this paper where the point process {q + ξq}q∈Z2 is replaced by the

Poisson point process. As in (1.9), this leading term was determined mainly by the classical effect of the
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scalar potential as in Pastur’s case [14] without magnetic fields. In fact these asymptotics coincide with

those of the corresponding classical integrated density of states defined by

Nc(λ) = Eθ[|{(x, p) ∈ ΛR × R2 : Hξ,c(x, p) ≤ λ}|](2πR)−2 (1.27)

for any R ∈ N, where | · | is the 4-dimensional Lebesgue measure and

Hξ,c(x, p)

=
{(
p1 −

Bx2

2

)
+ i
(
p2 +

Bx1

2

)}∗{(
p1 −

Bx2

2

)
+ i
(
p2 +

Bx1

2

)}
+ Vξ(x)

=
(
p1 −

Bx2

2

)2

+
(
p2 +

Bx1

2

)2

+ Vξ(x)

(1.28)

is the classical Hamiltonian (cf. [9]). Therefore we may say that only the classical effect from the scalar

potential determines the leading term. Then Erdös [4] treated the case where the single site potential u

is replaced by a function with a compact support and he determined the corresponding leading term of

the integrated density of states, which depends only on the magnetic field and the intensity of the point

process and is independent of the precise informations on the single site potential as in Nakao’s case [13]

without magnetic field referring to Donsker and Varadhan’s result [3]. This behavior is different from

that of the classical integrated density of states. Thus we may say that the quantum effect appears in

this behavior. The borderline between the classical and quantum behaviors was determined by Hupfer,

Leschke and Warzel [9]. The borderline corresponds to the case of α = 2 in Theorem 1 (ii) in this paper.

They also determined the leading term for the case of Theorem 1 (ii) in this paper for the Poisson case.

The leading term for the borderline case was determined by Erdös [5]. The leading term for the case that

only the classical effect appears was determined also in the 3-dimensional case by Hundertmark, Kirsch

and Warzel [8]. Results appearing the quantum effect in 3-dimensional cases were obtained by Warzel

[17], where general bounds and the leading order for special cases were obtained. Now our problem is

to consider the same problem in our setting. As is discussed in [16] we conjecture that the borderline

between the classical and quantum behaviors is the case of α = 2 in Theorem 1 (ii) and the case of

2/α⊥ + 3/α3 = 1 in Theorem 2 as in the Poisson case. In this paper we treat only the classical case and

we will treat the quantum case in [16]. Now Theorems 1 and 2 show that our leading terms coincide with

those of the corresponding classical integrated densities of states. They also tend to the corresponding

leading term for the Poisson case as θ → 0.
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The leading term we obtained coincides with that for the classical case without magnetic fields obtained

in [7]. The classical case without magnetic fields is that of (1.8) with 2 < α < 4 if the dimension is 2.

Theorem 1 shows that this condition for only the classical effect to appear is weakened by the magnetic

field, since the effect of the Landau Hamiltonian to the asymptotics of the integrated density of states

is weaker than that of the usual Laplacian. The 3-dimensional classical case without magnetic fields is

that of (1.15) with 4/α⊥ + 1/α3 > 1 and (1.16). This result was obtained for the Poisson case by Kirsch

and Warzel [12], where the results for the single site potential with an anisotropic decay are summarized.

Theorem 2 shows that this condition for only the classical effect to appear is weakened in the direction

perpendicular to the magnetic field and is strengthen in the direction parallel to the magnetic field.

The organization of this paper is as follows. We first prove Theorem 1 in Sections 2 and 3: we give the

upper estimate in Section 2 and the lower estimate in Section 3. We next prove Theorem 2 in Sections 4

and 5: we give the upper estimate in Section 4 and the lower estimate in Section 5. In Section 6 we give

the leading terms of the low energy asymptotics of the classical integrated densities of states defined in

a general setting.

2. 2-dimensional upper estimate

In this section we prove upper estimates necessary to prove Theorem 1. We denote the Laplace-Stieltjes

transform of the integrated density of states N(λ) by Ñ(t):

Ñ(t) =

∫ ∞
0

e−tλdN(λ).

Then the results are the following: :

Proposition 2.1. (i) Under the conditions of Theorem 1 (i) we have

lim
t↑∞

log Ñ(t)

t(2+θ)/(α+θ)
≤ −

∫
R2

dq inf
y∈R2

( C0

|q + y|α
+ |y|θ

)
. (2.1)

(ii) Under the conditions of Theorem 1 (ii) we have

lim
t↑∞

log Ñ(t)

(log t)(2+θ)/α
≤ −2πC

(2+θ)/α
0

(θ + 1)(θ + 2)
. (2.2)

(i) is proven by the following proposition and the same proof of Proposition 4 in [7]. The following

proposition is an extension of the basic inequality (3.6) in [1] for a R2-stationary random potential to a Z2-

stationary random potential, which is proven by applying the basic inequality in [1] to the R2-stationary

random potential

Vξ,ζ(x) =
∑
q∈Z2

u(x− q − ξq − ζq), (2.3)



magnetic Lifshitz tails 7

where ζ = (ζq)q∈Z2 is an independent family of random vectors uniformly distributed on Λ1 :

Proposition 2.2.

Ñ(t) ≤ B

2π(1− e−2Bt)
Ñ1(t),

where

Ñ1(t) =

∫
Λ1

dxEθ[exp(−tVξ(x))]. (2.4)

Proof of Proposition 2.1 (ii). By replacing the summation by the integration, we have

log Ñ1(t) ≤
∫
R2

dq logEθ

[
exp

(
− t inf

x∈Λ2

u(x− q − ξ0)
)]
.

We restrict the integration to |q| ≤ L for some finite L. For any ε1 > 0, there exists R1 such that

u(x) ≥ exp(−(1 + ε1)|x|α/C0) for any |x|∞ ≥ R1, where |x|∞ = |x1| ∨ |x2|. Thus the right hand side is

dominated by ∫
dq

|q|≤L

log

{ ∫
dy

Z(θ)
|q+y|∞≥R1+1

exp
(
− t inf

x∈Λ2

exp
(
− (1 + ε1)

|x− q − y|α

C0

)
− |y|θ

)

+ exp
(
− t inf

Λ2R1+4

u
)}

.

By changing the variables, this equals(C0 log t

1 + ε1

)2/α
∫
|q|≤L

dq log
{
Ñ2(t, q) + exp

(
− t inf

Λ2R1+4

u
)}
,

where L = L((1 + ε1)/(C0 log t))1/α,

Ñ2(t, q) =
(C0 log t

1 + ε1

)2/α
∫
|q+y|∞≥(R1+1)((1+ε1)/(C0 log t))1/α

dy

Z(θ)

× exp
(
− t1−s(t,q,y) −

(C0 log t

1 + ε1

)θ/α
|y|θ
)
,

and

s(t, q, y) = sup
x∈Λ

2((1+ε1)/(C0 log t))1/α

|x− q − y|α.

We take L as an arbitrary positive constant less than 1 and independent of t. Taking ε2 ∈ (0, 1) arbitrarily,

we dominate Ñ2(t, q) by exp(−Ñ3(t, q))ε
−2/θ
2 , where

Ñ3(t, q) = inf
{
t1−s(t,q,y) + (1− ε2)

(C0 log t

1 + ε1

)θ/α
|y|θ : y ∈ R2

}
.

We use the polar coordinate to express as

Ñ3(t, q) = inf
{
t1−(s(t,q)+r)α + (1− ε2)

(C0 log t

1 + ε1

)θ/α
rθ : r > 0

}
, (2.5)
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where

s(t, q) = sup
x∈Λ

2((1+ε1)/(C0 log t))1/α

|x− q|.

We take small ε3 > 0 and estimate the infimum in (2.5) as

Ñ3(t, q) ≥ inf
{

(1− ε2)
(C0 log t

1 + ε1

)θ/α
rθ : r > 1− s(t, q)− ε3

}
∧ inf

{
t1−(s(t,q)+r)α : 0 < r ≤ 1− s(t, q)− ε3

}
=
{

(1− ε2)
(C0 log t

1 + ε1

)θ/α
(1− s(t, q)− ε3)θ

}
∧ t1−(1−ε3)α

The right hand side is bounded from below by

(1− ε2)
(C0 log t

1 + ε1

)θ/α
(1− |q| − 2ε3)θ

for sufficiently large t. By taking L as 1− 3ε3 and using also the positivity assumption (1.7), we obtain

lim
t↑∞

log Ñ1(t)

(log t)(2+θ)/α
≤ −(1− ε2)

( C0

1 + ε1

)(2+θ)/α
∫
|q|≤1−3ε3

(1− |q| − 2ε3)θdq.

Since ε1, ε2, ε3 are arbitrary, we have

lim
t↑∞

log Ñ1(t)

(log t)(2+θ)/α
≤ −C(2+θ)/α

0

∫
|q|≤1

(1− |q|)θdq.

2

3. 2-dimensional lower estimates

In this section we prove the following lower estimates necessary to prove Theorem 1:

Proposition 3.1. (i) If (1.8) holds, then we have

lim
t↑∞

log Ñ(t)

t(2+θ)/(α+θ)
≥ −

∫
R2

dq inf
y∈R2

( C0

|q + y|α
+ |y|θ

)
. (3.1)

(ii) If (1.10) holds with some α ∈ (0, 2), then we have

lim
t↑∞

log Ñ(t)

(log t)(2+θ)/α
≥ −2πC

(2+θ)/α
0

(θ + 1)(θ + 2)
. (3.2)

Proof. We use the bound

Ñ(t) ≥ (2R)−2 exp(−tλ1(HB(R)))Ñ1(t), (3.3)

for any R ∈ N, where

Ñ1(t) = Eθ

[
exp

(
− t
∫
dx|ψR(x)|2Vξ(x)

)]
,
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and ψR is a normalized eigenfunction for the lowest eigenvalue λ1(HB(R)) of the operator H restricted

to the disk B(R) = {x ∈ R2 : |x| < R} by the Dirichlet boundary condition. This is proven by the same

method as for the corresponding bound in Theorem (9.6) in [15] for the R2-stationary random field.

λ1(HB(R)) ≤ exp
(
− B

2
R2(1− ε1)

)
(3.4)

is proven by Erdös [4] for sufficiently large R for an arbitrarily taken ε1 > 0.

If (1.8) holds, then we can show (3.1) by the same proof of Proposition 5 in [7], where R is taken as

ε0t
1/(α+θ) with an arbitrarily small ε0 > 0.

We now assume (1.10).

log Ñ1(t) =
∑
q∈Z2

Ñ2(t, q),

where

Ñ2(t, q) = logEθ

[
exp

(
− t
∫
dx|ψR(x)|2u(x− q − ξ0)

)]
.

If |q| is sufficiently large and ξ0 is less than |q|/2, then we have |x− q − ξ0| ≥ |q|/2−R and

Ñ2(t, q) ≥ −t exp
(
− 1

C0

( |q|
2
−R

)α
(1− ε2)

)
+ logPθ(|ξ0| ≤ |q|/2),

where ε2 is an arbitrarily small positive constant. By a simple estimate using log(1 − X) ≥ −2X for

0 ≤ X ≤ 1/2, we have

∑
q∈Z2\B(R1+ε3 )

Ñ2(t, q) ≥ −c1t exp(−c2R(1+ε3)α)− c3 exp(−c4R(1+ε3)θ) (3.5)

for large enough R, where ε3 is an arbitrarily small positive constant, and c1, . . . , c4 are positive finite

constants. We dominate the other part as∑
q∈Z2∩B(R1+ε3 )

Ñ2(t, q)

≥
∑

q∈Z2∩B(R1+ε3 )

log sup
z∈R2

∫
|y|≤ε4

dy

Z(θ)

× exp
(
− t
∫
dx|ψR(x)|2u(x− q − y − z)− |y + z|θ

)
≥c5R2(1+ε3) log

πε2
4

Z(θ)

−
∑

q∈Z2∩B(R1+ε3 )

inf
z∈R2

sup
|y|≤ε4

(
t

∫
dx|ψR(x)|2u(x− q − y − z)

+ |y + z|θ
)
,

(3.6)
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where c5 is a positive finite constant and ε4 is an arbitrarily small positive constant. We take z = 0 for

q ∈ Z2 satisfying |q| ≥ (1 + s)R + ε4 and z = (−1 + ((1 + s)R + ε4)/|q|)q for other q ∈ Z2, where s is a

finite positive number specified later. Then the second term of the right hand side of (3.6) is bounded

from below by

−
∑

q∈Z2∩(B(R1+ε3 )\B((1+s)R+ε4))

{
t exp

(
− 1− ε2

C0
(|q| −R− ε4)α

)
+ εθ4

}
−

∑
q∈Z2∩B((1+s)R+ε4)

{
t exp

(
− 1− ε2

C0
(sR)α

)
+ ((1 + s)R+ 2ε4 − |q|)θ

}
≥− c6(1 + s)2R2t exp

(
− 1− ε2

C0
(sR)α

)
− c7εθ4R2(1+ε3)

− (1 + ε5)

∫
q∈R2:|q|≤(1+s)R+ε4

((1 + s)R+ 2ε4 − |q|)θdq

for large enough R, where ε5 is an arbitrarily small positive constant, and c6 and c7 are positive finite

constants. By changing the variables, the last term is bounded from below by

−(1 + ε5)((1 + s)R+ 2ε4)2+θ 2π

(θ + 1)(θ + 2)

for large enough R. The above estimate is summarized as follows:

log Ñ(t)

≥− t exp
(
− B

2
R2(1− ε1)

)
− c6(1 + s)2R2t exp

(
− 1− ε2

C0
(sR)α

)
− 2 log(2R)

− c1t exp(−c2R(1+ε3)α)− c3 exp(−c4R(1+ε3)θ)

+ c5R
2(1+ε3) log

πε2
4

Z(θ)
− c7εθ4R2(1+ε3)

− (1 + ε5)((1 + s)R+ 2ε4)2+θ 2π

(θ + 1)(θ + 2)

(3.7)

for large enough R. The first term and the second term change the role according to the value of α.

When α < 2, we take 1/s as an arbitrarily small positive constant and set R̂ = sR. Then the right

hand side of (3.7) is bounded from below by

−c6t exp
(
− 1− 2ε2

C0
R̂α
)
− (1 + 2ε5)R̂2+θ 2π

(θ + 1)(θ + 2)

for large enough R̂. We now take

R̂ =
(C0 log t

1− 2ε2

)1/α

.
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Then we obtain

log Ñ(t) ≥ −c6 − (1 + 2ε5)
(C0 log t

1− 2ε2

)(2+θ)/α 2π

(θ + 1)(θ + 2)

for large enough t, from which we obtain (3.2). 2

4. 3-dimensional upper estimate

In this section we prove an upper estimates necessary to prove Theorem 2. We denote the Laplace-

Stieltjes transform of the integrated density of states N(λ) by Ñ(t):

Ñ(t) =

∫ ∞
0

e−tλdN(λ).

Then the result is the following:

Proposition 4.1. Under the conditions of Theorem 2, we have

lim
t↑∞

log Ñ(t)

tκ̃(α,θ)
≤ −C(α,θ, C0), (4.1)

where

κ̃(α,θ) =

θ⊥
α⊥
∨ θ3

α3
+

2

α⊥
+

1

α3

θ⊥
α⊥
∨ θ3

α3
+ 1

. (4.2)

To prove this proposition, we use the following simple extension of Proposition 2.2:

Proposition 4.2.

Ñ(t) ≤ B

2π(1− e−2Bt)
√

4πt
Ñ1(t),

where

Ñ1(t) =

∫
Λ1

dxEθ[exp(−tVξ(x))]. (4.3)

Proof of Proposition 4.1. By replacing the summation by the integration, we have

log Ñ1(t) ≤
∫
R3

dq logEθ

[
exp

(
− t inf

x∈Λ2

u(x− q − ξ0)
)]
.

We restrict the integration to |q⊥|∞ ≤ L⊥ and |q3| ≤ L3 for some finite L⊥ and L3. For any ε1 > 0,

there exists R1 such that u(x) ≥ C0(1− ε1)/‖x‖αp̃ for any |x|∞ ≥ R1, where |x|∞ = maxi |xi|. Thus the

right hand side is dominated by∫
dq log

|q⊥|∞≤L⊥,|q3|≤L3

{ ∫
dy

Z(θ, p)
|q+y|∞≥R1+2

exp
(
− t inf

x∈Λ2

C0(1− ε1)

‖x− q − y‖αp̃
− ‖y‖θp

)

+ exp
(
− t inf

Λ2R1+6

u
)}

.
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By changing the variables (q⊥, q3) to (tη⊥q⊥, t
η3q3) and (y⊥, y3) to (tη⊥y⊥, t

η3y3) with η⊥, η3 ∈ (0,∞)

satisfying η⊥α⊥ = η3α3, we see that this equals

t2η⊥+η3

∫
|q|∞≤L

dq log
{
Ñ2(t, q) + exp

(
− t inf

Λ2R1+6

u
)}
, (4.4)

where

Ñ2(t, q)

=t2η⊥+η3

∫
dy

Z(θ, p)

|q⊥ + y⊥|∞ ≥ (R1 + 2)t−η⊥

|q3 + y3| ≥ (R1 + 2)t−η3

exp
(
− t1−η⊥α⊥ inf

|x⊥|∞ ≤ t−η⊥

|x3| ≤ t−η3

C0(1− ε1)

‖x− q − y‖αp̃

− tη∗α∗
∥∥∥|y∗|θ∗ , |y∗∗|θ∗∗

t|η⊥θ⊥−η3θ3|

∥∥∥
p

)
,

we take L as an arbitrary constant independent of t by taking (L⊥,L3) appropriately, and we take ∗ and

∗∗ as elements of {⊥, 3} such that η∗θ∗ = (η⊥θ⊥) ∨ (η3θ3) and ∗∗ 6= ∗. Moreover we take η⊥ and η3 as

η∗ = 1/(θ∗+α∗) and η∗∗ = α∗/{α∗∗(θ∗+α∗)} so that 1−η⊥α⊥ = η∗θ∗. Then, taking ε2, ε3 > 0 sufficiently

small and using the positivity assumption, we can dominate Ñ2(t, q) by exp(−tη∗θ∗Ñ3(t, q))ε
−2/θ⊥−1/θ3
2

for large enough t, where

Ñ3(t, q)

= inf
x∈Λε3 ,y∈R3

{ C0(1− ε1)

‖x− q − y‖αp̃
+ (1− ε2)

∥∥∥|y∗|θ∗ , |y∗∗|θ∗∗
t|η⊥θ⊥−η3θ3|

∥∥∥
p

}
.

(4.5)

Therefore we obtain

lim
t↑∞

log Ñ(t)

t2η⊥+η3+η∗θ∗
≤ −

∫
|q|∞≤L

Ñ4(q)dq,

where

Ñ4(q) = inf
x∈Λε3 ,y∈R3

{ C0(1− ε1)

‖x− q − y‖αp̃
+ (1− ε2)

∥∥∥|y∗|θ∗ , 1θ⊥η⊥=θ3η3 |y∗∗|θ∗∗
∥∥∥θ
p

}
.

Since ε1, ε2, ε3 and L are arbitrary, we can complete the proof. 2

5. 3-dimensional lower estimate

In this section we prove the following lower estimates necessary to prove Theorem 2:

Proposition 5.1. If (1.15) holds with (1.16) and (1.22), then we have

lim
t↑∞

log Ñ(t)

tκ̃(α,θ)
≥ −C(α,θ, C0) (5.1)

with (4.2) and (1.24).
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Proof. We use the bound

Ñ(t)

≥(2R⊥)−2(2R3)−1 exp
{
− tλ1(HB(R⊥))

− tλ1

(
−
( d2

dx2

)
(−R3,R3)

)}
Ñ1(t),

(5.2)

where R⊥, R3 ∈ N, HR⊥ is the same symbol used in (3.3), (d2/(dx2))(−R3,R3) is the restriction to the

interval (−R3, R3) of the 1-dimensional Laplacian by the Dirichlet boundary condition,

Ñ1(t) = E

[
exp

(
− t
∫
dxψR⊥(x⊥)2φR3

(x3)2Vξ(x)
)]
,

and ψR⊥ and φR3
are the normalized ground states of HB(R⊥) and −(d2/(dx2))(−R3,R3), respectively.

This can be proven by the same method as for the corresponding bound in (3.3) and Theorem (9.6) in

[15] for Rd-stationary random fields. We have Erdös’s bound

λ1(HR⊥) ≤ exp
(
− B

2
R2
⊥(1− ε1)

)
(5.3)

as in (3.4) and

λ1

(
−
( d2

dx2

)
(−R3,R3)

)
=
( π

2R3

)2

, (5.4)

where ε1 is an arbitrarily fixed positive constant. By replacing the summation by integration, we have

log Ñ1(t) ≥
∫
R3

Ñ2(t, q)dq,

where

Ñ2(t, q) = logE
[

exp
(
− t
∫
dxψR⊥(x⊥)2φR3(x3)2 sup

z∈Λ1

u(x− q − z − ξ0)
)]
.

For any ε2 > 0, there exists R2 such that u(x) ≤ C0(1 + ε2)/‖x‖αp̃ for any |x| ≥ R2 by the assumption

(1.15). To use this bound in the above right hand side, we need inf{|x− q − z − ξ0| : |x⊥| < R⊥, |x3| <

R3, z ∈ Λ1} ≥ R2. A sufficient condition of this is |q⊥| ≥ 2(R2 + R⊥ + 2) with |ξ0,⊥| ≤ |q⊥|/2

or |q3| ≥ 2(R2 + R3 + 1) with |ξ0,3| ≤ |q3|/2. We fix β⊥, β3 > 0 and take t large enough so that

tβ⊥ ≥ 2(R2 +R⊥+ 2) and tβ3 ≥ 2(R2 +R3 + 1). Then, by using also log(1−X) ≥ −2X for 0 ≤ X ≤ 1/2
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we obtain ∫
dq

|q⊥|≥tβ⊥ ,|q3|1/β3≤|q⊥|1/β⊥

Ñ2(t, q)

≥
∫
dq

|q⊥|≥tβ⊥ ,|q3|1/β3≤|q⊥|1/β⊥

( −tC0(1 + ε2)2α⊥

(|q⊥| − 2(R⊥ + 2))α⊥

+ logP (|ξ0,⊥| ≤ |q⊥|/2)
)

≥− c1t1+β3−β⊥(α⊥−2) − c2 exp(−c3tβ⊥θ⊥)

(5.5)

if

α⊥ > 2 + β3/β⊥, (5.6)

and ∫
dq

|q3|≥tβ3 ,|q⊥|1/β⊥≤|q3|1/β3

Ñ2(t, q)

≥
∫
dq

|q3|≥tβ3 ,|q⊥|1/β⊥≤|q3|1/β3

( −tC0(1 + ε2)2α3

(|q3| − 2(R3 + 1))α⊥

+ logP (|ξ0,3| ≤ |q3|/2)
)

≥− c4t1+2β⊥−β3(α3−1) − c5 exp(−c6tβ3θ3)

(5.7)

if

α3 > 1 + 2β⊥/β3. (5.8)

The other part is estimated as∫
dq

|q⊥|≤tβ⊥ ,|q3|≤tβ3

Ñ2(t, q)

≥
∫
dq

|q⊥|≤tβ⊥ ,|q3|≤tβ3

log

∫
dy

Z(θ, p)
|q⊥+y⊥|≥R2+R⊥+2 or |q3+y3|≥R2+R3+1

× exp
( −tC0(1 + ε2)

inf |x⊥|<R⊥,|x3|<R3,z∈Λ1
{‖x− q − z − y‖αp̃ }

− ‖y‖θp
)
.

(5.9)

By the same change of variables as in (4.4) and (4.5), we find that the right hand side equals

t2η⊥+η3

∫
dq

|q⊥|≤tβ⊥−η⊥ ,|q3|≤tβ3−η3

log

∫
dyt2η⊥+η3

Z(θ, p)

|q⊥ + y⊥| ≥ (R2 +R⊥ + 2)/tη⊥

or |q3 + y3| ≥ (R2 +R3 + 1)/tη3

exp(−tη∗θ∗Ñ3(t,y, q)),
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where

Ñ3(t, q,y)

=C0(1 + ε2)/ inf{|x− q − z − y|αp̃ : |x⊥| ≤ R⊥/tη⊥ , |x3| ≤ R3/t
η3 ,

|z⊥|∞ ≤ 1/(2tη⊥), |z3| ≤ 1/(2tη3)}

+
∥∥∥|y∗|θ∗ , |y∗∗|θ∗∗

t|η⊥θ⊥−η3θ3|

∥∥∥
p
.

(5.10)

Taking γ⊥, γ3 ∈ (0,∞) and w ∈ R3, we restrict the integration to B(w⊥, t
−γ⊥)× (w3 − t−γ3 , w3 + t−γ3).

Then we can bound the integrand with respect to q from below by

log
2πt2(η⊥−γ⊥)+(η3−γ3)

Z(θ, p)
− tη∗θ∗Ñ4(t, q), (5.11)

where

Ñ4(t, q)

= inf
{

sup
y∈B(w⊥,t

−γ⊥ )×(w3−t−γ3 ,w3+t−γ3 )

Ñ3(t, q,y)

: w3 ∈ R, w⊥ ∈ R2,

d(B(w⊥, t
−γ⊥),−q⊥) ≥ (R2 +R⊥ + 2)t−η⊥

}
∧ inf

{
sup

y∈B(w⊥,t
−γ⊥ )×(w3−t−γ3 ,w3+t−γ3 )

Ñ3(t, q,y)

: w⊥ ∈ R2, w3 ∈ R,

d((w3 − t−γ3 , w3 + t−γ3),−q3) ≥ (R2 +R3 + 1)t−η3
}
.

(5.12)

We now specify R⊥ and R3 as the integer parts of ε3t
η⊥ and ε3t

η3 , respectively, where ε3 is an arbitrarily

fixed positive number. We take β⊥ and β3 as β⊥ = η⊥ + ζε4 and β3 = η3 + ε4, respectively, where ε4 is

also an arbitrarily fixed positive number and ζ is a number satisfying

1

α⊥ − 2
< ζ <

α3 − 1

2
.

By taking ε4 small, we have 1−2η3, 1+β3−β⊥(α⊥−2), 1+2β⊥−β3(α3−1), 2β⊥+β3 < 2η⊥+η3 +η∗θ∗

and (5.6) and (5.8). Thus we obtain

lim
t↑∞

log Ñ(t)

t2η⊥+η3+η∗θ∗
≥ − lim

t↑∞

∫
|q⊥|≤tβ⊥−η⊥ ,|q3|≤tβ3−η3

Ñ4(t, q)dq. (5.13)
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When |q⊥| ≤ tβ⊥−η⊥ and |q3| ≤ tβ3−η3 , we have t−1 ≤ |q⊥|−1/(β⊥−η⊥) and t−1 ≤ |q3|−1/(β3−η3). Thus,

for large |q|, by taking w as 0, we can dominate Ñ4(t, q) by

(|q⊥| − 1)−α⊥+ ∧ (|q3| − 1)−α3
+ + |q⊥|−γ⊥θ⊥/(β⊥−η⊥) ∧ |q3|−γ3θ3/(β3−η3).

This is integrable if we take γ⊥ and γ3 large enough so that γ⊥θ⊥/(β⊥− η⊥) > 3 and γ3θ3/(β3− η3) > 3.

Thus, by the Lebesgue convergence theorem, we have

lim
t↑∞

∫
|q⊥|≤tβ⊥−η⊥ ,|q3|≤tβ3−η3

Ñ4(t, q)dq

=

∫
R3

dq inf
{ C0(1 + ε2)

inf
|x⊥|,|x3|≤ε3

‖x− q − y‖αp̃
+ ‖|y∗|θ∗ , 1η3θ3=η∗θ∗ |y∗∗|θ∗∗‖p

: |y⊥ + q⊥| ∨ |y3 + q3| ≥ ε3

}
.

Since ε2 and ε3 are arbitrary, this completes the proof. 2

6. Classical integrated density of states

In this section we summarize the results on the leading terms of the low energy asymptotics of the

classical integrated densities of states in a general setting.

The 2-dimensional results are the following:

Theorem 3. (i) If (1.7) holds for any R ≥ 1 and (1.8) as |x| → ∞ for some C0 ∈ (0,∞) and α ∈ (2,∞),

then the classical integrated density of states defined by (1.27) has the same leading term with (1.9):

lim
λ↓0

λκ logNc(λ) =
−κκ

(κ+ 1)κ+1

{∫
R2

dq inf
y∈R2

( C0

|q + y|α
+ |y|θ

)}κ+1

. (6.1)

(ii) If (1.7) holds for any R ≥ 1 and (1.10) as |x| → ∞ for some C0 ∈ (0,∞) and α ∈ (0, 2 + θ), then

the classical integrated density of states defined by (1.27) has the same leading term with (1.11):

lim
λ↓0

(log(1/λ))−(2+θ)/α logNc(λ) =
−2πC

(2+θ)/α
0

(θ + 1)(θ + 2)
. (6.2)

(iii) If (1.7) holds for any R ≥ 1 and (1.10) as |x| → ∞ for some C0 ∈ (0,∞) and α ∈ (2 + θ,∞),

then we have

lim
λ↓0

(log(1/λ))−1 logNc(λ) = −1. (6.3)

(iv) If (1.7) holds for any R ≥ 1 and (1.10) as |x| → ∞ for some C0 ∈ (0,∞) and α = 2 + θ, then we

have

lim
λ↓0

(log(1/λ))−1 logNc(λ) = −1− 2πC0

(θ + 1)(θ + 2)
. (6.4)
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(v) If suppu is compact, then the classical integrated density of states defined by (1.27) satisfies the

following:

Nc(λ) =
Kcλ

4π
(1 + o(1)) (6.5)

as λ ↓ 0, where

Kc =

∫
Λ1

dx
∏
q∈Z2

Pθ(x− q − ξq 6∈ suppu). (6.6)

(i)-(iv) are proven by the same methods in Sections 2 and 3, and (v) is proven by the Lebesgue

convergence theorem.

Similarly by the methods in Sections 4 and 5, and the Lebesgue convergence theorem, we have the

following 3-dimensional results:

Theorem 4. Let Nc(λ) be the classical integrated density of states of our 3-dimensional setting defined

similarly as in (1.27).

(i) If (1.21) holds for any R ≥ 1 and (1.15) as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and

α = (α⊥, α3) ∈ (0,∞)2 satisfying (1.16), then Nc(λ) has the same leading term with (1.25):

lim
λ↓0

λκ(α,θ) logNc(λ) =
−κ(α,θ)κ(α,θ)

(1 + κ(α,θ))1+κ(α,θ)
C(α,θ, C0)1+κ(α,θ). (6.7)

(ii) If (1.21) holds for any R ≥ 1 and

u(x) = exp
(−‖x‖αp̃

C0
(1 + o(1))

)
(6.8)

as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and α = (α⊥, α3) ∈ (0,∞)2 satisfying

χ(α,θ) > 1, (6.9)

then Nc(λ) satisfies

lim
λ↓0

(log(1/λ))−χ(α,θ) logNc(λ) = −Cχ(α,θ)
0 D(α,θ, p, p̃), (6.10)

where

χ(α,θ) :=
2

α⊥
+

1

α3
+
( θ⊥
α⊥
∧ θ3

α3

)
(6.11)

and

D(α,θ, p, p̃)

:=

∫
‖q‖αp̃ ≤1

dq inf
y:‖q+y‖αp̃ ≥1

∥∥∥1 θ⊥
α⊥
≤ θ3
α3

|y⊥|θ⊥ , 1 θ⊥
α⊥
≥ θ3
α3

|y3|θ3
∥∥∥
p
.

(6.12)
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(iii) If (1.21) holds for any R ≥ 1 and (6.8) as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and

α = (α⊥, α3) ∈ (0,∞)2 satisfying

χ(α,θ) < 1, (6.13)

then Nc(λ) satisfies

lim
λ↓0

(log(1/λ))−χ(α,θ) logNc(λ) = −3

2
. (6.14)

(iv) If (1.21) holds for any R ≥ 1 and (6.8) as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and

α = (α⊥, α3) ∈ (0,∞)2 satisfying

χ(α,θ) = 1, (6.15)

then Nc(λ) satisfies

lim
λ↓0

(log(1/λ))−1 logNc(λ) = −3

2
− C0D(α,θ, p, p̃). (6.16)

(v) If suppu is compact, then Nc(λ) satisfies the following:

Nc(λ) =
Kcλ

3/2

6π2
(1 + o(1)) (6.17)

as λ ↓ 0, where

Kc =

∫
Λ1

dx
∏
q∈Z3

Pθ(x− q − ξq 6∈ suppu). (6.18)
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[8] D. Hundertmark, W. Kirsch and S. Warzel (2003) Classical magnetic Lifshits tails in three space dimensions: impurity

potentials with slow anisotropic decay, Markov Process. Related Fields, 9, 651–660.

[9] T. Hupfer, H. Leschke and S. Warzel (1999) Poissonian obstacles with Gaussian walls discriminate between classical

and quantum Lifshits tailing in magnetic fields, J. Statist. Phys., 97, 725–750.



magnetic Lifshitz tails 19

[10] W. Kirsch and F. Martinelli (1982) On the density of states of Schrödinger operators with a random potential, J. Phys.

A, 15, 2139–2156.

[11] W. Kirsch and B. Metzger (2007) The integrated density of states for random Schrödinger operators, In: Spectral theory

and mathematical physics (a Festschrift in honor of Barry Simon’s 60th birthday), F. Gesztesy, P. Deift, C. Galvez,

P. Perry, W. Schlag (eds), Proc. Sympos. Pure Math. 76 Amer. Math. Soc., Providence, RI, 649–696.

[12] W. Kirsch and S. Warzel (2005) Lifshits tails caused by anisotropic decay: the emergence of a quantum-classical regime,

Math. Phys. Anal. Geom., 8, 257–285.

[13] S. Nakao (1977) On the spectral distribution of the Schrödinger operator with random potential, Japan. J. Math.

(N.S.), 3, 111–139.

[14] L. A. Pastur (1977) The behavior of certain Wiener integrals as t → ∞ and the density of states of Schrödinger

equations with random potential, Teoret. Mat. Fiz., 32, 88–95.

[15] L. Pastur and A. Figotin (1992) Spectra of random and almost-periodic operators, Springer-Verlag, Berlin.

[16] N. Ueki Quantum behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed

lattice, to appear in RIMS Kôkyûroku Bessatsu.
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