Quantum behavior of the integrated density of states
for the uniform magnetic field and a randomly per-
turbed lattice

Naomasa Ueki

ABSTRACT. — For the Schrodinger operators on L?(R?) and L?(R?) with the uniform magnetic field
and the scalar potentials located at all sites of a randomly perturbed lattice, the asymptotic behavior of
the integrated density of states at the infimum of the spectrum is investigated. The randomly perturbed
lattice is the model considered by Fukushima and this describes an intermediate situation between the
ordered lattice and the Poisson random field. In this paper the scalar potentials are assumed to decay

rapidly and the effect of the kinetic part are investigated.

1. INTRODUCTION

Let

H:(i%—%)2+(¢%+%)2—3

be the Landau Hamiltonian on L?(R?) with the uniform magnetic field B > 0 subtracted B so that
the lowest eigenvalue is 0, where i = /—1. Let Ve(2) = > cz2 u(z — ¢ — &) be a random potential
on R?, where £ = (£;)4ez2 is a collection of independently and identically distributed R?-valued random

variables with the distribution
(1.1) Py(&g € dx) = exp(—|z|®)dz/Z(0),

0 € (0,00), Z(0) is the normalizing constant, and u is a nonnegative function belonging to the Kato class

Ky (cf. [2] p-53). We will consider the random Schrédinger operators

(1.2) He =H + Vg,

and the restriction ¢ of H to the complement of T'(§) = quzz B(g+ &g : 1) by the Dirichlet boundary

condition, where 79 € (0,00) and B(p : r) := {z € R? : |z — p| < r} is the open ball with the center p



and the radius r. V¢ and T'(§) are soft and hard obstacles, respectively. We will consider the integrated

density of states (N(\))x>0 and (N'(X))a>o of He and He, respectively: (N(X))a>o is defined by
(1.3) R72Ng r(A) — N(N) as R — oo

for any point of continuity of N(X) and almost all &, where N¢ g(A) is the number of eigenvalues not
exceeding A of the self-adjoint operator He 5, on the L? space on the cube Ag := (—R/2, R/2)? with the
Dirichlet boundary condition. N()) exists as a deterministic increasing function (cf. [2], [13]). (NM(N))x>0
is similarly defined for H..

In this note, we first prove the following:

Theorem 1. (i) If

14 inf
(1.4) ?S%}lﬁf u(z) >0

for some R > 0 and

(1.5) lim |z|?logu(x) = —oo,

then we have

1\ —(1+6/2) —92+0/2
1.6 li log — log N(\) >
(+0) A%l( 3) 6NN 2 iy B
and
— 1\-1 1\—"n
(L.7) 1}}% (log X) (log log X) log N(A\) = —o0

for any n € N. Moreover if 0 > 4, then we have

1\ -(He-1/6) K
(1.8) Iim (log 1) log N(A) < Zir=n76"

where K is a finite constant independent of B. The same estimates hold for (N(X\))x>o-

(i) If (1.4) for any R > 1 and

(1.9) u(e) :exp(_|co| (1+o(1)))
as x| — oo with a = 2, then we have
15\ —(146/2) . 2 1+6/2
. i N >\ = .
(1.10) I;Tr{)l(log/\) logN()\)_(9+1)(9+2)(B+Co>



We next formulate the 3-dimensional problem by referring to the corresponding result [9] for the

Poisson case. We write any element z of R? as (z,,23) € R? x R and set

[||® 21?4, 2s|% |, = (loL |7+ + |as|%P) /P if p € [1,00),
X p =

|z |04V |23|% if p = oo,
for arbitrarily fixed 8 = (0,,03) € (0,00)? and p € [1,00]. Let Vg(z) = Y gezs u(® —q —&g) be a
random potential on R3, where u is a nonnegative function belonging to the Kato class K3 (cf. [2] p-53),
& = (&q)qezs is a collection of independently and identically distributed R*-valued random variables with

the distribution
(1.11) Py(&q € dx) = exp(—||z||9)dx/Z(6, p)

and Z(0,p) is the normalizing constant. Let

%(z‘jmi@)2+(iai+?)23§;§

be the direct sum of the Landau Hamiltonian on L?(R?) subtracted the magnetic field B and the Laplacian
on L%(R). As in the 2-dimensional case and as in [20], we will consider the integrated density of states

(N (X))o of the random Schrédinger operator
(1.12) He =H+ Vg,

and that (A(A\))x>o of the restriction H¢ of H to the complement of T'(¢) =

Ugezs B(q + &4 : 70) by the Dirichlet boundary condition, where o € (0,00) and B(p : 7) := {z € R®:
|z — p| < r} is the open ball with the center p € R® and the radius r.

For this we prove the following:

Theorem 2. We assume

(1.13) (@) = S0 (1 4 o(1))

=g

as |x| — oo for some Cy € (0,00), p € [1,00] and o = (o, a3) € (0,00)? satisfying

2
(1.14) — + 3 < 1.

o Q3
We set

3 30 0
(1.15) i (ay,0) = + L _v2



and

2/ay 1 AL b3
1.1 0) = 2 2’
(1.16) o (e, 0) 1—1/0(3-2/0@+2+1_1/a3_2/al/\2

Then we have

(1.17) lim\#1(@4:0) Jog N () > —o0,
A0

(1.18) @Aw(aﬂ) log N(\) <0,

(1.19) %% log N'(\) > —o0

and

(1.20) @\F/\log./\/'(/\) <0.

If suppu is compact, then (1.19) and (1.20) hold by replacing N'(\) by IN(\).

As in [20], the above results are extensions of the results in [7] and [8], where the same problem
is considered in the case without magnetic fields. As is discussed in [7] and [8], our model describes
an intermediate situation between a completely ordered situation and a completely disordered situation
since the point process {q + &;}4ez2 converges weakly to the Poisson point process with the intensity
1 as & — 0 and converges weakly to the lattice Z? as # — oo by slightly modifying the definition as
Py(¢, € dz) = exp(—(1 + |z])?)dz/Z(6), which brings no essential changes for our results. The results
in [7] and [8] shows that the leading term of the integrated density of states also tends to those for the
Poisson case as § — 0 and decays as § — oo which reflects that the infimum of the spectrum is strictly
positive if the perturbations {&,} of sites are all bounded. In the case with uniform magnetic fields the
asymptotics of the integrated density of states has been investigated mainly for the Poisson case. For this
topic and the relation with other topics, refer to a recent survey by Kirsch and Metzger [14]. The first
result was given by Broderix, Hundertmark, Kirsch and Leschke [1]: they determined the leading term
for the case where d = 2, u(x) = Colz|*(1+0(1)) as |z| — oo is satisfied for some o > 2 and Cy > 0 and
the point process {q + & }4ez2 is replaced by the Poisson point process. As is discussed in [10] and [20],
this leading term coincides with that of the classical integrated density of states, which depends only on
the scalar potential, as in Pastur’s case [17] without magnetic fields. Then Erdés [5] treated the same case
where the single site potential u is replaced by a function with a compact support and he determined the
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corresponding leading term of the integrated density of states, which depends only on the magnetic field
and the intensity of the point process and is independent of other precise informations on the single site
potential as in Nakao’s case [15] without magnetic field referring to Donsker and Varadhan’s result [3].
On this behavior we may say that the quantum effect appears. The borderline between the classical and
quantum behaviors was determined by Hupfer, Leschke and Warzel [10]. The borderline corresponds to
the case of (1.9) with oo = 2. They also determined the leading term for the case of (1.9) with « € (0, 2).
The leading term for the borderline case was determined by Erdés [6]. The leading term for the classical
case was determined also in the 3-dimensional case by Hundertmark, Kirsch and Warzel [9]. For the
3-dimensional case, results appearing the quantum effect were obtained by Warzel [21], where general
bounds and the leading order for special cases were obtained. In this note we try to extend the theory to
our setting. We treat simple classical cases in [20] and remaining cases in this note. Our results in this
note give only upper and lower estimates. By these upper estimates and Theorems 6.1 and 6.2 in [20],
we see that the quantum effect appears in the following five cases: (i) (1.4) for any R > 1 and (1.9) with
a>60+2 (i) (1.4) for any R > 1 and (1.9) with a > 6 and 0 > 4, (iii) supp v is a nonempty compact set,
(iv) essinfiz|<gpu(x) > 0 for any R > 1 and (1.13) with (1.14), and (v) suppw is a nonempty compact
set. We conjecture that the leading terms are close to our lower bounds in the 2-dimensional cases and
are close to our upper bounds in the 3-dimensional case. One reason is that the bounds tend to the
corresponding leading terms given in [5], [6] and [14] for the Poisson case as # — 0. Thus the borderline
between the classical and quantum behaviors is expected to be the case of Theorem 1 (ii) and the case
of 2/a; +3/az =1 in Theorem 2 as in the Poisson case.

The organization of this note is as follows. We prove Theorem 1 in Sections 2, 3 and 4: we prove
the lower estimates in Section 2, the upper estimate (1.8) in Section 3 and the upper estimate (1.7) in
Section 4. We next prove Theorem 2 in Sections 5 and 6: we prove the lower estimate in Section 5 and

the upper estimate in Section 6.

2. LOWER ESTIMATES FOR THE 2-DIMENSIONAL CASE

In this section we give lower estimates for Theorem 1. Let

N(t) = /O TN ().

(1.10) is proven by the following, which we prove by referring to [1] and [10]:



Proposition 2.1. If (1.9) holds with a = 2, then we have

. log N(t) —2r 2 146/2
2.1 1 > — .
@1) I g 7 2 G075 (5 )

The basic inequality for the proof is the following extension of (3.5) in [1]:
Proposition 2.2. N(t) > Ni(t)/(4nt), where

Nl(t):/ dz Ey
Ay

exp ( - t/w ¢B(y)Ve(x + y)dy)]

and ¢ (x) = exp(—Bla[2/2) B/ (2r).

Proof. In (2.4) of [20] we obtain

Q% ~
(2.2) lim — Ey[Trlexp(—t(He + Q2|z[*))]] = N ().
Qo
Then the rest of the proof is same with that of (3.5) in [1]. O

Proof of Proposition 2.1. Ni(t) in Proposition 2.2 is rewritten as

/Alda:Eg exp(—tZuB(x—q—fq))],

q€EZ?
where up = u x ¢. By Lemma 3.5 (ii) in [10], we have

lim |z|"?logup(z) = —1/(Co+2/B) =: —1/Cp.

|z|—o00
By the same lower estimate of Section 3 in [20], we obtain

2w

log Ni(1) > ~texp(—(1 =)' B*/C) = (R4 32+ 1) oo

for large enough R. By setting R = \/Cp(logt)(1 —¢)~2, we can complete the proof. a

Proof of 7(1.10) implies (1.6)”. For any n > 0, we can take a single site potential u, satisfying u, > u
and (1.9) where o and Cj is replaced by 2 and 7, respectively. The corresponding integrated density of

states N, (\) satisfies N(A\) > N,(X\) and

1\~ (1+6/2) ~or 2 \1+0/2
lim ( log ~ log Ny(\) > (2 .
A%(ng) ©8 ”(A)—(9+1)(9+2)<B+’7>

Since 7 is arbitrary, we obtain (1.6). a



3. AN UPPER ESTIMATE APPEARING QUANTUM EFFECTS FOR THE 2-DIMENSIONAL CASE

In this section we prove the following upper estimate which is enough for (1.8):

Proposition 3.1. If § > 4 and u(z) = Colp(ry) (), then we have

- log N (t) .G
thos (log 1)2+0)/6 = B(E+0)/6

(3.1)

for some positive constant Cy independent of B, where B(rg) := B(0: 1p).

We reduce the proof to an estimate of the lowest eigenvalue of an operator with the Dirichlet boundary
condition following Section 6 in Erdds [5]: for any 8,1 € (0, 00),

—_— logﬁ(t) —_— 1 €1 —t B+3
(3.2) I e < B0 qorparars o8 /A d:E, {exp (74 Al(H&B(z:S)))}.

In (3.2), s = 1/(8/8) logt and Hgg(i:s) is He p(z:s) where B is replaced by B + 3. The proof of (3.2) can

be given by the same method of the proof of Theorem 6.3 in Erdds [5], where we used the estimate

1o (= {25 < o0 (S ) 5 e (2UEED)

instead of (3.4) in [5].

The obstacles are reduced to the hard obstacles by the following;:

Lemma 3.1. If u(xz) = Colpar,) (), then we have

Oo )\I(HB(Z:S)\T(E))
3.3 MHepes) 2 5 AN =5
(3.3) 1(Hepe) 2 5 A1+ ery?)

Proof. We represent the Landau Hamiltonian by the creation and annihilation operators: H = A*A,

where A = (i0/(0x1) — Bx2/2) +i(i0/(0x2) + Bx1/2). Thus the lowest eigenvalue has the representaion
M(He p(2s)) = [ A0ll* + (Vewo, ¢o),

where g is a normalized ground state of He p(..s). Since

(Vewo, po) = C’OH@o||2L2(13(,z;s)muqEZZ B(gq+£&4:270))?

we have

||(p0H%2(B(z:s)F‘qu€ZQ B(g+£&4:270)) < Al(Hs,B(z:s))/Co-



On the other hand, we take a smooth function ¥ on R? such that ¥ = 0 on Ugeze Bla+ &g i m0), 0 =1

on (Uyeze Blg+&;:3r0/2))%, 0 <9 < 1 and [VO> <9/r§. Then we have

[ Apo||? > [[9.Apo]* >

DO =

9
| AY@o* — %||<P0||2L2(B(z:s)muqezg B(g+£,:3r0/2))

> Al(Hf,B(z:s)).
Z Co

9
M (Hpesnre) 190l — 2
0

[N

Moreover we have

)\1(H ,B(z:s )
ool =1~ [ (o) Pda > (1 - HEEEEA])
B(Z:S)mquz2 B(q+£4:3r0/2) 0 +

Therefore, if 1 — Xy (He p(z.s))/Co > 1/2, then we have

g Al(HE,B(z:s))
’/‘(2) C() ’

1
Al(Hf,B(z:s)) > ZAl(HB(z:s)\T(E)) -
from which we obtain (3.3). O
To estimate A1 (Hp(..s)\1(¢)), We develop Erdés’s isoperimetric inequality stating

(3.4) M(Hp) > M(Hpw))

for any bounded domain D of R? with the area |D| = |B(L)| = mL? and a smooth boundry [4]. The
right hand side is dominated from below by exp(—BL?(1 + €)/2) for sufficiently large L, where ¢ is an
arbitrarily small positive constant. We need more precise estimates for more complicated domains. In

this note we prove the following:

Proposition 3.2. Let D be a bounded domain of R? with the area |D| = wL? whose boundary is a finite

union of smooth curves. Let p be the radius of the largest disk contained in D. Then we have
& 3
(3.5) M(Hp) > 72 exp(—C2BL(1V p)°),

where Cy and Cs are universal positive constants.

Proof. By the same proof of the inequality (17) in [4], we have
A (Hp) > inf { / e A TAC () e / (z)2dz
:0< ¢ eC>®(D)NC¥ (D), =0on oD,
0o —1
Ale) =B d L(d
@=5[ dw>g( [ ve@iw)}

where C¥(D) is the set of all analytic functions on D and L(-) is the measure corresponding to the length

of curves. A is a nonnegative, strictly monotone decreasing, continuous function on the range of . It
8



is also included in the set C2° of all real valued functions on R which are smooth everywhere except for
finitely many points. As in the equations (19) and (20) in [4], we rewrite the quatities in the infimum as
follows:

/ A YAV (1) 2z = B / (©/(b))%e 2 F(b)db
0

and
V2 — - 2,-2b
[varas= [~ ewrer ba,
where ©(b) = A~1(b)e? and F(b) = |{x € D : h(z) < b}| with h(z) = A(x)(x)). We now apply Lemma

3.2 below. Then we have

[{z : h(z) < b} *pﬁ)2>—1

L({x:h(w)=b})>Cl(1VP)\/|{x:h<f”)<b}(1_( [{z : h(w) < b}| + py/a/ +

and
Co(1V p)?

(- (Vger) )

F'(b) >

Therefore (23) in [4] is rewritten as follows:

M(Hbp)

>inf{B/b0(@’(b))2e2bF(b)db< " (9(1))2(3*2171?’(b)db)_1
0

0

:F,0 e (C*,0 > 0,0 is bounded, F is strictly monotone increasing,

2
C2(LV p) 5— for a.a. 0 <b < by,
B(l _ (x/F(b)—pﬁ) )
VE® 4oy ) +

F(0) = 0, F(bo) = | D|, ©(by) = o}.

F'(b) >

As in [4], if we set h*(r) = F~1(7r?), a(r) = (h*)(r) and q(r) = O(h*(r)) exp(—h*(r)), then ¢, ¢’ €

L2((0, L), rdr) and q(L) = 0. (25) and (26) in [4] also hold:

L
T "(r) + a(r)g(r))2rdr "(b))2e—2b
2A<m>+<mm>ds3/@®» F(b)db
and
L
T ) 2rdr = 2g=2bp .
an [t Prdr = (@) F G
(24) in [4] is rewritten as

2mr

0 alr) = (1)) = sy < Ca(1V oy Br(1— (= 0)2) —a,(r).




Therefore we have

M (Hp) >inf {277 /OL(q’(r) +a(r)q(r))*rdr (277 /OL q(r)2rd7“)

14,4 € L*((0, L), 7dr), (L) = 0,q(r) > 0,0 < a(r) < a,(r) }.

By Lemma 3.1 in [4], we have
(3.6)

We rewrite g as ¢(r) = exp(—A,(r))Q(r), where
Ay(r) = / ay(s)ds.
0
Since A,(r) is monotone increasing, by the uniform estimate, we have
L L
M (Hp) >inf {271'/ Q'(r)? exp(—2Ap(r))rdr/27r/ Q(r)* exp(—2A4,(r))rdr
0 0
:Q.Q € L((0, L), 7dr), Q(L) = 0,Q(r) > 0}

> (=Apr) exp(—24,(L)),
where A (—Ap(r)) is the lowest eigenvalue of the Dirichlet Laplacian of B(L). By the scaling, we have

AM(=Apry) = Al(—AB(l))/L2. By a simple calculation, we have
(3.7) A,(r) < C4B(1V p)*L.
Thus we obtain (3.5). O

The following is the estimate used in the proof of the last proposition:

Lemma 3.2. Suppose that the domain D is defined by B(R)\ U,cn B(ai : 7o) for some 0 <19 < R < o0
and {a; : i € N} C R? and that p is the radius of the largest open disk contained in D. Then for any
domain D contained in D such that its boundary 0D is a finite union of rectifiable Jordan curves, we

have

o (/IWD) — pymy?\ - 4xiD]
(3.8) (1 +cp) (1_(\/W+ﬂﬁ) )= LoD

where ¢ is a finite constant depending only on rg.
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Proof. This estimate has its origin in the classical isoperimetric inequality stating L(0D)? > 4x|D|
for any domain D in R? bounded by a finite union of rectifiable Jordan curves. This inequality has
been improved for more complicated domains. Many such inequalities are known as Bonnesen type
isoperimetric inequalities (see Ossermann [16] and references therein). Among them we apply the following

inequality by Ossermann: if D is a domain of R? bounded by a rectifiable Jordan curve, then we have

(3.9) L(0D)? — 4x|D| > L(@D)Q(%)Q,

where R is the radius of the smallest disc including D and p is the radius of the largest disc included
in D ((23) in Ossermann [16]). To apply (3.9), D should be simply connected. Now for any domain D
in D = B(R) \m, we classify its holes to two groups: let {Hy}& ; and {E}iel be simply
connected closed domains such that
HkﬂUB(ai:ro);é(Z), EﬂUB(ai:ro):@
ieN ieN

and D + UkK:1 Hy + UieI]/;I\i is a simply connected domain. Therefore {H)}_, are holes intersecting
the holes of D and {f{\i}ieI are holes apart from the holes of D. We may erase the holes {ff\i}iez to

replace D by the domain D:=D+ U if\i, since the radius of the largest disc included in D is still p-

i€z
For the holes {H}_,, we have K < L(0D)/(2rry), since L(OD) > 27rq. By erasing K numbers of line
segments {Cy }X_| of the length L(C}) less than or equal to 2p, the domain D becomes a disjoint union

of finite number of simply connected domains {D; }}]:15 D\ Zle Cr = ijl D;. Then Ossermann’s

inequality (3.9) gives

L(8D;) > \/47r|7>j|/(1 - (M))

by dominating also the radius of the smallest disc including D; by 1/|D;|/7. By using Lemma 3.3 below,

we have

L(dD) + 2 iL(Ck) > 47r\73|/(1 — (m)),
k=1 — P\

from which we easily obtain (3.8). O

Lemma 3.3. Let H(Fy,---,F,) be a function of Fy,...,F, >0 defined by

n ' 1/2
H(Fy, - Fy) = ;{1_ ( 73)2 }

+6)

5 |

3

11



with B € (0,00). Then we have
H(Fy,- F) > H(zn:Fo 0).
i=1
Proof. Let Hy(f):= H(F\ + f,F> — f, F3,--- , F,,). This function is increasing in small f > 0. By using
also the symmetry in (Fy,- -, F},), we can complete the proof. m]
Finally we complete the proof of Proposition 3.1.

Proof of Proposition 3.1. We have only to show

— 1 €
lim (g E076 log/A dzFEy {exp (cl 152 exp(—ca(B + B)p1(z, 8,5)38))}

tToo

(3.10)

< —Kl(e)/B(2+0)/6
for some 8 by (3.2), Lemma 3.1 and Proposition 3.2, where p1(z,s,&) := 1V p(z,s,£), p(z,s,£) is the
radius of the largest disk contained in B(z : s) \ T(§), ¢1, c2 € (0,00) and K;(6) € (0,00) depends on 6.

For this, we have only to show

—2
_ 1 s ~
e cz(e1—t)R
(3.11) tl#g (log 1) EF1/6 log //\1 dz/0 dRe Py(R < p1(z,8,8))
is less than or equal to the right hand side of (3.10), where R = {(log(R~1s72))/(c2(B + B)s)}'/3. The
qunatity in (3.11) is dominated from above by

. 1 . ~
(3.12) *t%lo (og )06 O<R§1;}£_’26A1{C3(t —e1)R —log Py(R < pi(z,5,€))}

The probability can be estimated as follows:

Py(R < pi(2,5,€)) < Pp(Bla: R) C B(s) \ T(¢) for some a € B(s))

Py(|&4] > R+rg— lg — a| — eq for VqEB(a:E—eg)ﬁZQ)
a€B(s)N(e222)

IN

<SHB)N (@2} exp (~(1-e5) > (R+mo—la—al —22)} +eiR?)
qeB(a:R—ey)NZ2

~

21(R — 1 — 9) 12
0+1)(0+2)

where €5 and e3 are arbitrarily small positive constants, and ¢4 and c5 are finite constants depending &5

<css®exp ( —(1—e3) + 04]:22),

and e3. Thus the quantity (3.12) is less than or equal to

. 1 nf ]_1 1 1/3 0+2
(313) —%Wo<g;572 {Cg(t_fl)R+C6<(g og W) _C7)+ }7

12



where cg = (1—2e3)2m{(0+1)(0+2)(ca(B+B))*+2/31=1 and ¢; = (1+¢€2)(ca(B+3))Y/3. For an arbitrary
positive number v, a sufficient condition for ((log(R~*s72))/s)'/? —c7 > ver is R < exp(—s(v+1)3¢2) /s

Then we have

(11 1 )1/3 S v (11 1)1/3
SOgR52 67*11—&—1 so Rs?

and
1 1 7\1/3 0+2
i _ 2 log —— _ . < _ 3.3\ /.2
1nf{03(t 51)R+66<(slog Rs2) C7>+ 0 < R <exp(—s(v+1)°c)/s }
> inf{F(R):0 < R < exp(—s(v+1)3c3)/s},
where
1 1 \(0+2)/3
F(R)=c3(t—e1)R+ cg(g log ﬁ)
with cg = cg(v/(v + 1))?+2. The infimum of F(R) is attained at R = R(t) satisfying
cs(0+2) 1 \(0-1/3
t) = 1 .
k(®) 3eg(t —eq)s(042)/3 ( ©8 R(t)sQ)

Since R(t) = (14 o(1))(logt)?=/6/t as t — oo, R(t) < exp(—s(v + 1)3c2)/s? and
inf{F(R):0 < R < exp(—s(v+1)3c3)/s*} = F(R(t))

for sufficiently large t. It is easy to see that

F(R(t)) s (ﬂ) (2+9)/6.

tilgo (]og t)(2+9)/6 - §

On the other hand, by only the effect of the first term, we have

1

1/3 0+2 [
ﬁ) — C7>+ cexp(—s(v+1)3¢3) /s> <R < 572}

1
inf{c3(t —e1)R+ cs ((g log

t—e¢
2

> c3 Lexp(—s(v+1)3c3) > coV/t.

S

Thus the quantity (3.13) is less than or equal to —cg(/8)219)/6, By taking the limit 5 | 0 and v — oo,

we see that the quantity (3.13) is less than or equal to

—2r B (2+6)/6
(9+1)(9+2)(8c§(3+,8)2) '

This becomes the optimal value, the right hand side of (3.10), when g = B. a
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4. A GENERAL UPPER ESTIMATE FOR THE 2-DIMENSIONAL CASE
In this section we prove the following upper estimate which is enough for (1.7):

Proposition 4.1. If u(x) = Colp(y,(x) with Cy,ro € (0,00), then we have

o log N (t)
ttoo (logt)(loglogt)™

(4.1) = —oo for anyn € N.

To prove this proposition, we modify Erdds’s upper estimate for the Poisson case [5]. For the estimate,
he applied his method of enlargement of obstacles referring to Sznitman’s theory (cf. [19]). As in [5], we
assume 0 < 79 < 1. We fix 8 and ¢ > 0 arbitrarily, and take s = /(8/83)logt, ¢ = 10,/(logt)/B and
b > 107 specified later. In his theory, the points {g + &;} corresponding to the centers of obstacles are

classified to two groups: £A1(m) 3 g + &, is defined to be "good” if

(tA1(m)) N B(g+ & : 10700 | B +& :b)]
@' +& ELA1 (M)

> Sl(eA1 (m) N Blg +&, : 10575)]
for any k € Z1 N0, (log(¢/(2b)))/(log 10)], and the other A;(m) > g+ &, is defined to be "bad”. Then
bad obstacles B(q+ &, : ro) are erased and good obstacles B(q+ &, : 19) are enlarged to B(g+&,: b). In
his theory, b is fixed to be a constant. We now take b as an increasing function of ¢. A sufficient condition

for his theory to be generalized to this setting is

(4.2) lim bQ(g)_k(E’b) —0,

t—00
where k(e,b) = (41log10)~tlog{(1 — ¢(b)p(e)) "1}, c(b) = P(inf{t : r(t) = r1/b} < inf{t : r(t) = 6}, r(t)
is a 2-dimensional Bessel process starting at 2, m € (0,1) and p(e) is a [0, 1]-valued function decaying
as € L 0 (cf. Lemma 7.5 in [5]). Indeed the condition (4.2) is sufficient to obtain (7.23) in [5] from the
last estimate in the proof of Lemma 7.5 (i) in [5]. By a result on 1-dimensional diffusion process, we can

rewrite
6b
c(b) = (log 3)/10g o
(cf. Theorem VI-3.1 in [11], [12]). Then we see that b = (loglogt)” satisfies (4.2) for any v > 0. The rest

of the proof is same.
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5. LOWER ESTIMATES FOR THE 3-DIMENSIONAL CASE

In this section we prove (1.17). We first assume (1.13) with a € (0,00)2. For R, and R3 € N, we
consider the event
{|QL| <3R, and |g3| <3R3 = [q1 + &g, 1| > 2R or |g3 + &g 3] > 2R3,

las]
R3

a
(5.1) "|q.L| > 3R, or |g3| > 3Rs” and (%) > (

(6%}
B > ) = || < Kilqil,

@ a3
"lqL] > 3R, or |g3| > 3R3” and (%) < (%) = |€g3] < K3|CI3|}>

where K| = (1 — 3~ (N (@s/@1))) /2 and K3 = (1 — 3~ (A (@1/23))y /9 We have
(5.2) Ve(x) < et RT R3(RT A RG®) ™

for ¢ € Aor, x I(Rj3) on this event. Here and in the following, I(R) = (—R, R) for any R > 0. To prove

(5.2) we divide the summation as

Ve(x) = > u(x—q—§&q)
q€Z3N(B(3R.1)XI(3R3))
(5.3) + > u(z —q—&q)
q€Z3\(B(3RL)XI(3R3)):(lgr|/R1)*L >(lgs|/Rs)3
+ Z u(x —q—&q).

q€Z3\(B(3RL)XI(3R3)):(lgr|/R1)*+ <(lgs|/Rs)3

The first term in the right hand side is easily dominated from above by R? R3/(R* A R$*). Since

[z]|g > |1 |*+, the second term is dominated by

> (0= Kol - Ry)

q€Z3\(B(3RL)XI(3R3)):(lgL|/R1)*L >(lgs|/Rs)*3

By taking the summaton with respect to g3 and replacing the summation by the integration, this is

dominated by
/ Ry(lqul/Ry)>+/=
qLER2:|q  [>31Me3/c )R, ((1 —Ki)|q.| - RJ_)

| dQJ_

Since 1 > 2/ay + 1/az and (1 — K )3\@s/@0) — 1 > 0, this is dominated by Rz3R>~**. Simirarly the
third term in the right hand side of (5.3) is dominated by R% R3~®. Therefore we obtain (5.2).

The probability is estimated as

(5.4) log Pa( the event (5.1) occurs ) > —ca R Ry(R%* v RY?).

15



Indeed we have

log Pg( the event (5.1) occurs )

_ Z log Po(|qL +&q, 1| > 2Ry or |3 + &q.3] > 2R3)
qe€Z3N(B(3RL)xI(3R3))

+ > log Po(|¢q. 1| < K1]gv])
q€ZP\(B(3RL)x1(3R3)):(lqL|/R1)*+ = (lgs]/Rs)*3

+ > log Po(|¢q.3] < Kslgsl)-
q€Z3\(B(BRL)xI(3R3)):(IqL|/R1)*L <(lgs|/Rs)*3

The first term in the right hand side is dominated from below by
R3 R3log Py(|€o,1| > 5Ry or |03 > 5R3).

Since the probability is rewritten as

Po(|€o,1| > 5R 1 or |£0,3] > 5R3)

dy
Z(0,p)

—R} R / exp(—[I1RLyL |, | Rsysl® )
|ly1|>5 or |y3|>5

=R1 R3Pg(|¢o,1| > 5 or |£o,3| > 5)

X E{BXP(—(H\RKO,L O+, |RsCo.3| [lp — 1€119)| €0, > 5 or 05| > 5],

this probability is dominated from below by exp(—c;g(R(iL \% Rg“)). Therefore the first term in the right
hand side of (5.5) is dominated from below by —R2 R3(R%* V R%*). The second and the third terms in the
right hand side (5.5) is dominated from below by —R3 exp(fcleef) and —R? exp(705R33), respectively,
by using log(1 — X) > —2X for 0 < X < 1/2. Therefore we obtain (5.4).

‘We now recall

1 d?
NW = g Po (M (e + 3 (= (72),0,)
(5.6) + / delbr, (1) 2o, (23)? Ve (@) < A

and the event (5.1) occurs),

where Hp(g, ) and (d?/(dz?)) (g, are the restrictions to the disk B(R.) and the interval I(Rs), respec-
tively, of H and the d?/(dz?), respectively, by the Dirichlet boundary condition, and g, and ¢gr, are
the normalized eigenfunctions corresponding to Hp(g,) and (d?/(dz?)) I(Rs), Tespectively (cf. Theorem
(5.25) in [18]). By Erdds’s bound

s

M(Hp(ry)) < exp ( - gRi(l - 51)) and Ay ( B (CZ;)(R&R@) - (E)2’
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we have

s )2 C1R2LR3

logN(exp ( — gRi(l — 61)) + (E W) > —C6R3_R3(R0f vV RE?),

where g7 is an arbitrarily fixed positive constant.

By specifying as R) = Rg with 8 € (0, 00), we have

10g N(c’?/Rg/\{(OLL72)ﬂ71}/\(a37172ﬂ)) Z _08R§ﬂ+1+(ﬁ9L)\/93

and log N (\) > —co /N (52:0)  where

. B 28+14(B80L) V03
f(Bia,8) = 2A{(ar —2)B -1} A (a3 —1-208)"

The function f(8; e, ) attains p;(ay,0) at 8 = 3/(ar — 2). Therefore we obatin (1.17).
For the operator H¢, we consider a simpler event, (5.1) with a; = «@3. On this event we have

T(&) N (Aar, x I(R3)) =0 for large R, and Rs. Thus we have

logN(eXp ( - 533(1 - 51)) + (2%3)2) > —cR2 Rs(R) v RY).

By taking R = 2+/(log R3)/(B(1 — 1)) so that exp(—BR? (1 —1)/2) < R;?, we have
log N (¢7/R2) > —cg Ry %% log R3
and log N'(\) > —coA~(1493)/21og(1/N).
6. UPPER ESTIMATES FOR THE 3-DIMENSIONAL CASE

In this section we prove (1.18). We may assume that w is continuous since the essential condition is
only (1.13). Following Proposition 5.11 in Warzel [21], we have

~ B
(6.1) N(t) < m

| dwEolexp(~t(-28 + Ve(ars, ) o ),

Ay

where exp(—t(—95 + Vg(z1,-)))(xs,2%5) is the integral kernel of the heat semigroup generated by the
Schrédinger operator —03 + Ve(x1,-) on L?*(R) and Ag := (—R/2,R/2)3 for any R > 0. By the
Neumann-bracketing, the right hand side is dominated by

B 2 N
2m(1 — c—2B0) Iy /A dz 1 Eo[Trlexp(—t(=05 + Ve(wL, Ditn, /)]

(6.2)

C
S% A d | Eglexp(—(t — e1)A1 (=05 + Ve(z 1, ) 1Ry /2))s
1

where (—93 + ‘Q(xl,~))ﬁR3/2) is the restriction to the interval I(Rs3/2) by the Neumann boundary

condition and ¢€; is an arbitrary small positive constant.
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The eigenvalue is estimated as

A (=05 + Ve(a, '))%33/2)

M
N
> - 03 — 0y :
(6.3) _1nf{)\1( 03 —l—;u(m bj))I(R3/2) bi,...,by € Ag, X I(R3/2)}
d2 CQM
Zinf (A — =3 tbe I(Rs/2
>inf {x az " HR?,It*bI“i*II,-,)uRS/z) € I(Rs/2)}.

where M = #{b € Z3N (Ar, x I(R3/2)) : b+&, € Ar, x I(R3/2)}. We take small positive numbers &3,

ez and €. Then

(6.4) e2R2 Ry > #{beZ°N(Ar, x I(R3/2)) : |€b.1]oo > 1 R1 /2 01 |€p3| > e3R3/2}
implies
(6.5) M > {(1 — EJ_)Q(l — 83) — 52}R3R3.

Indeed since M > #{b € Z* N (A_c yr, X I((1 —£3)R3/2)) : [&b,1]oc < €1 R1/2 and | 3| < e3R3/2},

the right hand side of (6.4) is less than or equal to
#{beZN(Aq—c g, X I((1 —e3)R5/2)) : |€b. 1|00 > €1 R1/2 01 3] > e3R5/2}
> (1 —¢e1)*(1 —e3)R:Rs — M.

(6.5) implies the right hand side of (6.3) is greater than or equal to

d2 03R2 Rg
inf { A\ ( — — L
wf (= G TR vl s

:beI(R3/2)}.

This equals

N

1 P2 R’ R
(6.6) —inf O + Satl

) :be I(Rs/(2h
h dt? has—2|\RiL/hocs7\t_b|a3‘|ﬁ)I(R3/(2h)) (Rs/( ))}

for any h € (0,00) by changing the variables. Referring A\;(—d?/(dt?) + 1[0,1]/3)%,31 > ¢4/ R? for any

R > 2 and the condition (1.14), we let h = (R, R3)*/(®3=1) and
(67) cs < ijf(azfl)/@ag)fl < Ry

so that h®**=2/(R2 R3) = R3/h > 2 and R{*/h® < 1. Thus the quantity in (6.6) is dominated from

below by R3? and we obtain \;(—02 + Vg(x_, '))%Rg/g) > cg/R%. Therefore we have
2 N 2
Po(A1 (=05 + Ve(x1,))1(R, 2) < ¢6/R3)

<Po(#{b € Z* N (AR, x I(R3/2)) : |¢b, 1|00 > €1 R1/2 01 |€p 3| > e3R3/2} > eaR7 R3).
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Since the event in the probability on the right hand side implies

S e zemn(H)" 0 (2)"),

beZ3N(Ar, xI(R3/2))

we have
(6.8) Po(M (=03 + Ve(w 1, )N Ry 2) < c6/R3) < exp(—cr R Rs(RT* A RY)).

We take 8 € (0,00) to specify as R} = Rg. Then the condition (6.7) becomes 8 < (2/ay)/(1 —2/ay —
1/as) =: B and the right hand side of (6.8) becomes exp(fC7R§f(6;e)), where f(3;0) = B+1/24+((B0L) A
03)/2. The function f(3;0) attains its maximum pz(c, @) defined in (1.16) at 3 = 8. Thus our optimal

estimate is

Po(Mi (=05 + Ve(x1,)(r, 2y < c6/R3) < exp(—cy R (9,

By (6.2), we have

t —
N(t) < “a exp(fC7R§”2(a’e)) + 2 exp ( - m)
R3 RB

Since

N(t) = t/o de PN > t/n/Rg dAe*”N(R%) = exp ( - tRi%)N(R%),
we have N (n/R2) < exp(—csR2"?) for large R by taking 1 = cg/2 and t = ¢, R /(21). By
taking A = n/R2, we obtain (1.18).

For A/ and the case that supp u is compact, we may assume u = Cy 1WXW with 0 < r ,rs <1/2.
Then we apply a standard Brownian estimate to reduce to an estimate of the eigenvalue of the operator
with the Dirichlet boundary condition:

~ B

N(t) <

_m /A1 dxlEa[Tr[eXp(*t(fag + ‘/E(CUL, '))I(t)]] + e—cot

<c / dzy Eglexp(—(t — e1)M (=05 + Ve(x1,))1(1))] + e
Ay

(cf. [12] Section 1.7). Then we use Theorem 3.1 in the page 123 in [19] to have
M (=03 + Ve(z1, )i > 7T2/(Sl]ip [Ik| + c2)?,
where {Ij}; are the random open disjoint intervals such that

NI =1I(t)\ U g3 + Eq.3 — 73,43 + Eq.3 + 73]
k

q€Z3:q1 +€q, 1 €B(x1imL)
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and |Ij| is the length of Ij. If supy, |I| > s, then there exists p € Z N I(t) such that
[p.p+s—2IN U g3 + €q,3 — 73,¢3 + &q,3 + 73] = 0.
q€Z3:q1 +E€q, 1 EB(x1:ry)
Then we have (0,0,q) +&0,0,q) € B(x1 :71) X [p—73,p+5—2+73] for any q € [p—r3,p+5—2+73]NZ.

Thus the probability of this event is estimated as

PB(S%PUH >s) < Z H Po(£(0,0,45), 1. & Blw1 :r1) or [£0,0,45),3 > 1)

pEZNI(t) g€[p—r3+1,p+s—3+r3]NZ
< 2texp(—cs(s + 2r3 — 4))

if s > 4. Therefore we have
Po(M (=05 4+ Ve(x1, )iy = 72/ (s + ¢2)?) < 2texp(—cs(s + 2r3 — 4))
for s > 4. The rest of the proof is same.
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