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Abstract. – TheWegner estimate for the Hamiltonian of the Anderson model for the special Gaussian

random magnetic field is extended to more general magnetic fields. The Lifshitz tail upper bounds of

the integrated density of states as analyzed by Nakamura are reviewed and extended so that Gaussian

random magnetic fields can be treated. By these and multiscale analysis, the Anderson localization at

low energies is proven.

1. Introduction

For any L ≥ 1 and ω in a probability space, we consider the self-adjoint operator

(1.1) Hω
L :=

2∑
ι=1

(i∂ι +Aω
L,ι(x))

2

with the Dirichlet boundary condition on the open square ΛL = (−L/2, L/2)2 centered on the origin

and with side length L; here i =
√
−1 and Aω

L is a C1-map from ΛL to R2 satisfying ∇ × Aω
L :=

∂1A
ω
L,2 − ∂2A

ω
L,1 = Bω. Its spectrum depends only on Bω and is independent of the choice of the vector

potential Aω
L. This is the Schrödinger operator for the magnetic field Bω.

For Bω, we take a Gaussian random field on R2. We assume Bω(x) is stationary with respect to the

shift in the space variable x ∈ R2: the random fields Bω(·) and Bω(x+ ·) obey a similar law. Moreover,

we assume its covariance function V (x− y) = Cov(Bω(x), Bω(y)) is

(1.2) V (x) =

∫
σ(x− y)σ(y)dy,

where σ is a function satisfying the following conditions:

(A1) (i) |σ̂(ξ)|2(1 + |ξ|)4 ∈ L1(R2),

(ii) limε↓0 supR∈[1,∞) |{ξ ∈ R2 : |ξ| ≤ R, |σ̂(ξ)|2(1 + |ξ|)m ≤ ε}|/(R2εµ) = 0 for some µ ∈ (0,∞)

and m ∈ (8,∞),
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where

(1.3) f̂(ξ) =

∫
R2

exp(−2πiξ · x)f(x)dx

is the Fourier transform of an integrable function f .

(A2) ∃ε1, ε2, c1, . . . , c5 ∈ (0,∞), θ∗ ∈ R/(2πZ), ν > 3/2 s.t.

(i) σ(x) ≥ 0 for any x ∈ R2,

(ii) suppσ is compact and ∂ suppσ is a finite union of piecewise C1 closed curves,

(iii) σ(x) ≤ c1d(x, ∂ suppσ)
ν for any x ∈ suppσ,

(iv) ∀s ∈ [0, ε1] and y ∈ {y : 0 < d(y, suppσ) ≤ ε1},

H1({x ∈ suppσ : d(x, y) = s+ d(y, suppσ)}) ≤ c2s
1/2,

(v) ∀s ∈ [0, ε1] and y ∈ Σ(θ∗, ε1, ε2),

H1({x : σ(x) ≥ c3s
ν , d(x, y) = s+ d(y, suppσ)}) ≥ c4s

1/2,

(vi) H1{y ∈ Σ(θ∗, ε1, ε2) : d(y, suppσ) = t} ≥ c5 for ∀t ∈ [0, ε1],

where d(·, ·) is the Euclidean distance, H1 is the one-dimensional Hausdorff measure, Σ(θ∗, ε1, ε2) = {y :

0 < d(y, supp σ) ≤ ε1, | arg y − θ∗| ≤ ε2} and arg y ∈ R such that y = |y|(cos arg y, sin arg y).

In this paper, we prove the following:

Theorem 1 (Wegner estimate).

Under the above assumptions, there exist positive finite constants C0, C1, and C2 such that

(1.4) E[Tr[χ[E−η,E+η](H
ω
L)]] ≤ C0R

2ηLC1

for any R ∈ [1,∞), L ≥
√
R ∨ C2 and E, η > 0 satisfying E + η ≤ R.

By this theorem, the results regarding the Lifshitz tail owing to Nakamura [12] and the theory on the

multi-scale analysis by Germinet and Klein [9], we obtain the following:

Corollary (Anderson localization).

Under the same assumptions in the last theorem, the operator

(1.5) Hω :=
2∑

ι=1

(i∂ι +Aω
ι (x))

2

with a C1 vector potential Aω on R2 such that ∇×Aω = Bω exhibits Anderson localization at low energies

defined by the following: there exists a positive finite constant ε0 such that [0, ε0] is included in the pure
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point spectrum of Hω, the corresponding eigenfunctions decay exponentially, and

(1.6) E
[
sup
t

∥∥∥|x|pe−itHω

1I(H
ω)1K

∥∥∥
L2(R2)→L2(R2)

]
<∞

for any p ∈ (0,∞), I ⊂ [0, ε0], and any compact set K in R2, where ∥ · ∥L2(R2)→L2(R2) is the operator

norm of bounded operators on L2(R2).

The above theorem and its corollary are generalizations of results in a previous paper [19] for the

following typical example:

(1.7) V (x) =

∫
σ̃(x− y)σ̃(y)dy,

where

(1.8) σ̃(x) = P(∆)(σ2 − |x|2)ν+,

a+ = max{a, 0} is the positive part, σ ∈ (0,∞), ν ∈ (3/2,∞), ∆ = ∂21 + ∂22 , and P is a non-zero

polynomial of degree less than (ν − 3/2)/2.

As discussed in the previous paper [19], this work is based on Erdös and Hasler’s Wegner estimate

for special random magnetic fields [5, 6, 7]: because the Schrödinger operator for random magnetic

fields does not feature monotonicity used in the original work by Wegner’s estimate [20], Erdös and

Hasler made it possible to apply integration by parts twice under a nondegeneracy condition. The

nondegeneracy condition is analogous to the nondegeneracy in the Malliavin sense used to prove the

regularity of the probability density function of the solution of the stochastic differential equation of Itô

type. The importance of the integration by parts on the probability space is also common in Malliavin

calculus. Hence, we shall also use Malliavin calculus. However, we use a different representation of the

Gaussian random field given by

(1.9) Bω(x) = B +

∫ Re(σ̂(ξ))

 cos(2πxξ)

− sin(2πxξ)

+ Im(σ̂(ξ))

sin(2πxξ)

cos(2πxξ)


 · ω(dξ),

where ω = t(ω1, ω2), and ω1 and ω2 are independent copies of white noise on R2 (Cf. Nualart [13]). This

is the so-called spectral representation of stationary random fields. By this representation we do not need

the special form of Eq. (1.8). Then, our probability space is the Wiener space D′(R2)⊕D′(R2) with the

Cameron–Martin space L2(R2)⊕ L2(R2). The ℓ-th eigenvalue λℓ(H
ω
L) is a smooth Wiener functional on

this space and the following estimate of the H-derivative Dλℓ(H
ω
L) is one of the key estimates in this

paper (Cf. Shigekawa [16]):
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Lemma 1.1 (A bound of the gradient norm by a quadratic form).

Under Condition (A1), there exist universal constants c1, c2,m1,m2,m3,m4,m5 ∈ (0,∞) such that for

any L and ω, one can choose a xω ∈ ΛL so that for any R ∈ (0,∞), the following inequality holds

whenever λℓ(H
ω
L) < R and x0 satisfies |x0 − xω| ≤ c2L

−m3(∥Bω∥2W 2,2((ΛL)) +R)−m4 :

∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2)

≥ c1
Lm1(∥Bω∥2W 2,2(ΛL) +R)m2

Xω

( c2
Lm3(∥Bω∥2W 2,2(ΛL) +R)m4

, x0

)m5

.
(1.10)

In this inequality, Xω(R, x) is the quadratic form in ω defined by

(1.11) Xω(R, x) =
∫ R

0

∣∣∣ ∫
|y|≤r

Bω(x+ y)dy
∣∣∣2 dr
2πr

for any R and x ∈ R2, and ∥ · ∥W 2,2(ΛL) is the norm of the Sobolev space of functions on ΛL whose

derivatives of order ≤ 2 are square integrable.

This is essentially the estimate on nondegeneracy obtained by Erdös and Hasler [5] in their special

case. We extended it to the special case Eq. (1.7) in the previous paper [19] using the known information

on the behavior of the Bessel function. In this paper, we extend it to the general setting of Eq. (1.2)

using the spectral representation Eq. (1.9). Contrary to the case of Erdös and Hasler, the right-hand side

of Eq. (1.10) still may attain zero. Therefore, we prepare the following as in the previous paper [19]:

Lemma 1.2 (Non degeneracy of a quadratic form).

Under Condition (A2), there exists a finite positive constant R such that, for any p ∈ [1,∞), there exists

c ∈ (0,∞) satisfying

(1.12) E
[ 1

X(R)p

]
≤ c

Rp(2ν+5)(2ν+4)/(2ν+3)

for any R ∈ (0,R), where X(R) = Xω(R, 0).

This is a simple extension of the corollary of Lemma 4.1 in the previous paper [19]. As examples

satisfying both Conditions (A1) and (A2), we have the following:

Example 1.1.

In the representation Eq. (1.2), we can take σ as follows:

(i) (An elliptic case) σ(x) = (σ2 −
∑2

j,k=1 ajk(x − x0)j(x − x0)k)
ν
+, where ν ∈ (3/2,∞), (ajk) is a

positive symmetric matrix, x0 is a point in R2, and a+ := a ∨ 0 is the positive part for any a ∈ R.
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(ii) (A case where the variables are separated) σ(x) = σ1((x−x0) ·v1)σ2((x−x0) ·v2), where {v1, v2} is

an orthonormal base of R2, x0 is a point in R2 and σj are functions on R of the form σj(t) = |t|νj (σj−|t|)νj

+

or σj(t) = (σj
2 − t2)

νj

+ with some σj , νj ∈ (0,∞).

(iii) We can also construct such functions σ by repeating appropriately taking either the convolution

or the sum with functions of the form in (i) or (ii) above.

To prove these examples satisfy Condition (A1), we use the uniform nondegeneracy of the Bessel

function proven in Appendix A below. Appendix B is devoted to the proof of the fact that the example

in (i) satisfies Condition (A2). This condition is easily checked for the example in (ii).

The organization of this paper is as follows. The next three sections are devoted to the proof of the

Wegner estimate: in Sections 2 and 3, we prove Lemmas 1.1 and 1.2, respectively. In Section 4, we use

these lemmas to prove Theorem 1. In Section 5, we proceed to prove the Lifshitz tail for the corollary of

Theorem 1. In Appendices A and B, we prove results used in the above explanation for Example 1.1.

2. Proof of Lemma 1.1

As in the previous paper [19], we take the vector potential as

(2.1) Aω
L,1(x) = (∂2F

ω
L )(x) and Aω

L,2(x) = −(∂1F
ω
L )(x)

on ΛL, where

(2.2) Fω
L (x) =

∑
n∈N2

Φn,L(x)

En,L

∫
ΛL

Φn,L(y)B
ω(y)dy,

and

(2.3) En,L =
(π|n|

L

)2
and Φn,L(x) =

2

L

2∏
ι=1

sin
(
nιπ
(xι
L

+
1

2

))
for n = (n1, n2) ∈ N2. {En,L,Φn,L}n∈N2 are the eigenvalues and a complete orthonormal basis consisting

of the eigenfunctions of the negative Dirichlet Laplacian −∆D
ΛL

(Cf. Reed and Simon [15], p. 266). We

take also the current jωL(x) = (jω1,L(x), j
ω
2,L(x)) of the normalized eigenfunction ψℓ of the eigenvalue

λℓ(H
ω
L) defined by

(2.4) jωι,L(x) = 2Reψℓ(i∂ι +Aω
L,ι(x))ψℓ.

Then, by the Feynman–Hellmann theorem, we have

(2.5) (Dλℓ(H
ω
L),Φ)L2(R2)⊕L2(R2) =

∫
ΛL

jωL(x) · (DAω
L(x),Φ)L2(R2)⊕L2(R2)dx,
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(DAω
L,1(x),Φ)L2(R2)⊕L2(R2) =

∑
n∈N2

(∂2Φn,L)(x)

En,L

∫
ΛL

dyΦn,L(y)

∫
R2

(
Re(σ̂(ξ))

 cos(2πyξ)

− sin(2πyξ)



+ Im(σ̂(ξ))

sin(2πyξ)

cos(2πyξ)

) ·Φ(ξ)dξ

(2.6)

and

(DAω
L,2(x),Φ)L2(R2)⊕L2(R2) =−

∑
n∈N2

∂1Φn,L(x)

En,L

∫
ΛL

dyΦn,L(y)

∫
R2

(
Re(σ̂(ξ))

 cos(2πyξ)

− sin(2πyξ)



+ Im(σ̂(ξ))

sin(2πyξ)

cos(2πyξ)

) ·Φ(ξ)dξ

(2.7)

for any Φ ∈ L2(R2)⊕ L2(R2). Thus, we have

(Dλℓ(H
ω
L),Φ)L2(R2)⊕L2(R2) =

∫
R2

dξΦ(ξ) ·
∫
ΛL

dy

(
Re(σ̂(ξ))

 cos(2πyξ)

− sin(2πyξ)



+ Im(σ̂(ξ))

sin(2πyξ)

cos(2πyξ)

) ∑
n∈N2

Φn,L(y)

En,L
(Φn,L,∇× jωL)L2(ΛL),

(2.8)

where ∇× jωL = ∂1j
ω
2,L − ∂2j

ω
1,L. Subsequently,

(2.9) ∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2) =

∫
R2

dξβ̂(ξ)|Ĵω
L (ξ)|

2,

where β̂(ξ) := |σ̂(ξ)|2 and

(2.10) Jω
L (y) =

∑
n∈N2

Φn,L(y)

En,L
(Φn,L,∇× jωL)L2(ΛL).

We now take R ∈ [1,∞) and ε ∈ (0, 1)—to be specified later—to obtain the estimate

(2.11) ∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2) ≥

∫
|ξ|≤R,β̃(ξ)≥ε

dξβ̂(ξ)|Ĵω
L (ξ)|2 ≥ ε

(2R)m

∫
|ξ|≤R,β̃(ξ)≥ε

dξ|Ĵω
L (ξ)|2,

where β̃(ξ) = β̂(ξ)(1 + |ξ|)m and m is the number in Condition (A1) (ii). We divide the right-hand side

as

(2.12)

∫
|ξ|≤R,β̃(ξ)≥ε

dξ|Ĵω
L (ξ)|2 = ∥Ĵω

L (ξ)∥2L2(R2) −
∫
|ξ|≥R

dξ|Ĵω
L (ξ)|2 −

∫
|ξ|≤R,β̃(ξ)<ε

dξ|Ĵω
L (ξ)|2.

The first term is ∥Jω
L∥2L2(ΛL). By (3.1) in the previous paper [19], the second term is estimated as

(2.13)

∫
|ξ|≥R

dξ|Ĵω
L (ξ)|2 ≤ 1

R4

∫
|ξ|≥R

dξ|ξ|4|Ĵω
L (ξ)|2 ≤ ∥∇× jωL∥2

(2πR)4
≤ c1L

18

R4
(∥Bω∥2W 2,2(ΛL) +R)4.
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In this inequality and in the following, {cj}j=1,2,... are universal constants. By Condition (A1) (ii), for

any η ∈ (0, 1), there exists εη ∈ (0, 1) such that

(2.14) |{ξ ∈ R2 : |ξ| ≤ R, β̃(ξ) ≤ ε}| ≤ ηR2εµ

for any ε ∈ (0, εη) and R ∈ [1,∞). Then, the third term is estimated as

(2.15)

∫
|ξ|≤R,β̃(ξ)<ε

dξ|Ĵω
L (ξ)|2 ≤ ηR2εµ sup

ξ
|Ĵω

L (ξ)|2.

By En,L ≥ (π/L)2 and (3.1) in the previous paper [19], we have

sup
ξ

|Ĵω
L (ξ)|2 ≤ ∥Jω

L∥2L1(ΛL) ≤ L2∥Jω
L∥2L2(ΛL)

≤ L6

π4
∥∇ × jωL∥2L2(ΛL) ≤ c2L

24(∥Bω∥2W 2,2(ΛL) +R)4.

(2.16)

Thus we have ∫
|ξ|≤R,β̃(ξ)≥ε

dξ|Ĵω
L (ξ)|2

≥∥Jω
L∥2L2(ΛL) −

c1L
18

R4
(∥Bω∥2W 2,2(ΛL) +R)4 − c2ηR2εµL24(∥Bω∥2W 2,2(ΛL) +R)4.

(2.17)

We here takeR = (2c1)
1/4L9/2(∥Bω∥2W 2,2(ΛL)+R)∥J

ω
L∥

−1/2
L2(ΛL) so that the second term becomes ∥Jω

L∥2L2(ΛL)/2.

By going back to the estimate Eq. (2.18), we have

∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2)

≥
c3ε∥Jω

L∥
m/2
L2(ΛL)

L9m/2(∥Bω∥2W 2,2(ΛL) +R)m

{
∥Jω

L∥2L2(ΛL) −
c4ηε

µL33

∥Jω
L∥L2(ΛL)

(∥Bω∥2W 2,2(ΛL) +R)6
}
.

(2.18)

We here take

(2.19) ε =

{ ∥Jω
L∥3L2(ΛL)

2c4ηL33(∥Bω∥2W 2,2(ΛL) +R)6

}1/µ

so that the terms in the last bracket become ∥Jω
L∥2L2(ΛL)/2. We here note that ε < εη is satisfied for large

L by (3.1) in the previous paper [19]. Then, we have

(2.20) ∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2) ≥

c5∥Jω
L∥

m/2+3/µ+2
L2(ΛL)

η1/µL9m/2+33/µ(∥Bω∥2W 2,2(ΛL) +R)m+6/µ
.

We next introduce L ∈ (1,∞) to obtain the estimate

∥Jω
L∥2L2(ΛL) =

∑
n∈N2

( L

π|n|

)4
(Φn,L,∇× jωL)

2
L2(ΛL)

≥
( L

πL

)4 ∑
|n|≤L

(Φn,L,∇× jωL)
2
L2(ΛL) =

( L

πL

)4(
∥∇ × jωL∥2L2(ΛL) −

∑
|n|>L

(Φn,L,∇× jωL)
2
L2(ΛL)

)
.

(2.21)
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As in Section 2 of the previous paper [19], we have

(2.22)
∑

|n|>L

(Φn,L,∇× jωL)
2
L2(ΛL) ≤ c6

L24

L2
(∥Bω∥2W 2,2(ΛL) +R)6.

By taking L so that the right-hand side becomes ∥∇ × jωL∥2L2(ΛL)/2 and using ∥∇ × jωL∥L2(ΛL) =

∥∇jωL∥L2(ΛL) ≥ (π/L)∥jωL∥L2(ΛL), we have

(2.23) ∥Jω
L∥2L2(ΛL) ≥

c7∥∇ × jωL∥6L2(ΛL)

L44(∥Bω∥2W 2,2(ΛL) +R)12
≥

c8∥jωL∥6L2(ΛL)

L50(∥Bω∥2W 2,2(ΛL) +R)12
.

Finally, we use Lemma 3.2 as in Section 2 of the previous paper [19] to complete the proof. For this

proof, Condition (A1) is not used.

3. Proof of Lemma 1.2

As in Section 4 of the previous paper [19], we have only to prove

Lemma 3.1.

Under Condition (A2), there exist R, c ∈ (0,∞) such that

(3.1) E(exp(−sX(R))) ≤ exp(−cR(2ν+4)(2ν+3)s1/(2ν+5))

for any s ∈ [1,∞) and R ∈ (0, R].

In the rest of this section, we prove this lemma. We also represent the Gaussian random magnetic

field by

(3.2) Bω(x) = B +

∫
R2

σ(x+ y)ω(dy)

as in the previous paper [19], where ω represents white noise. The condition ν > 3/2 is extendible to

ν > 1 in the following proof. For any 0 < R1 < R, we have

X(R)−X(R1)

=

∫ R

R1

dr

2πr

∣∣∣∣ ∫
B(R1)

dxBω(x) +

∫
B(r)\B(R1)

dx
(
B

+

∫
(suppσ)R1

σ(x+ y)ω(dy) +

∫
((suppσ)R1 )c

σ(x+ y)ω(dy)
)∣∣∣∣2,

(3.3)

where B(R1) = {x ∈ R2 : |x| < R1) and (suppσ)R1 = {x ∈ R2 : d(x, suppσ) < R1}. The key point is

that ω on ((suppσ)R1)c is independent of X(R1), B
ω(x) on B(R1), and ω on (suppσ)R1 . Thus, as in
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Section 4 of the previous paper [19], we have

(3.4) E(exp(−sX(R))) ≤ E(exp(−sX(R1)))F (R,R1; s),

where

(3.5) F (R,R1; s) := E[exp{−sX(R,R1)}]

and

(3.6) X(R,R1) :=

∫ R

R1

dr

2πr

(∫
B(r)\B(R1)

dx

∫
((suppσ)R1 )c

σ(x+ y)ω(dy)

)2

.

Using the property that the distribution of a centered Gaussian random variable is determined by the

variance, as in Section 4 of the previous paper [19], we have

(3.7) F (R,R1; s) ≤ 1− sE[X(R,R1)] +
3s2

2
E[X(R,R1)]

2.

Thus, we have only to dominate the integral

(3.8) E[X(R,R1)] =

∫ R

R1

dr

2πr

∫
((suppσ)R1 )c

dy

(∫
B(r)\B(R1)

dxσ(x+ y)

)2

from above and below. For the upper estimate, we first use Condition (A2) (iii) to obtain

E[X(R,R1)]

≤c21
∫ R

R1

dr

2πr

∫
(suppσ)r\(suppσ)R1

dy

(∫
(B(y:r)\B(y:d(y,suppσ))∩suppσ

dxd(x, ∂ suppσ)ν
)2

,

(3.9)

where B(y : r) = y +B(r). By Condition (A2) (iv), the previous factor is estimated as∫
(B(y:r)\B(y:d(y,suppσ))∩suppσ

dxd(x, ∂ suppσ)ν

=

∫ r

d(y,suppσ)

ds

∫
S1(y:s)∩suppσ

H1(dx)d(x, ∂ suppσ)ν

≤
∫ r

d(y,suppσ)

ds(s− d(y, suppσ))νH1(S1(y : s) ∩ suppσ)

≤c2
∫ r

d(y,suppσ)

ds(s− d(y, suppσ))ν+1/2,

(3.10)
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where S1(y : s) = {x ∈ R2 : |x− y| = s}. Thus, we use also (A2) (ii) to obtain

E[X(R,R1)] ≤ c6

∫ R

R1

dr

r

∫
(suppσ)r\(suppσ)R1

dy

(∫ r−d(y,suppσ)

0

sν+1/2ds

)2

= c7

∫ R

R1

dr

r

∫
(suppσ)r\(suppσ)R1

dy(r − d(y, suppσ))2ν+3

= c7

∫ R

R1

dr

r

∫ r

R1

dt(r − t)2ν+3

∫
{y∈R2:d(y,suppσ)=t}

H1(dy)

|∇d(y, suppσ)|

≤ c8

∫ R

R1

dr

r

∫ r

R1

dt(r − t)2ν+3 =
c9

⟨R,R1⟩2ν+4
(R−R1)

2ν+5,

(3.11)

where

(3.12) ⟨R,R1⟩2ν+4 :=

(∫ 1

0

(2ν + 5)r2ν+4dr

R1 + r(R−R1)

)−1

is a harmonic mean of the probability distribution (2ν +5)r2ν+4dr on the interval [R1, R]. For the lower

estimate, we first use Condition (A2) (i) to restrict as

(3.13) E[X(R,R1)] ≥
∫ R

R1

dr

2πr

∫
Σ(θ∗,ε1,ε2)\(suppσ)R1

dy

∣∣∣∣ ∫
B(y,r)\B(y,d(y,suppσ))

dxσ(x)

∣∣∣∣2.
By assuming R ≤ ε1 and using Condition (A2) (v), the last factor is estimated as∫

dxσ(x)

B(y,r)\B(y,d(y,suppσ))

=

∫ r

d(y,suppσ)

dt

∫
S1(y:t)

H1(dx)σ(x)

≥ c10

∫ r

d(y,suppσ)

dt(t− d(y, suppσ))ν+1/2 ≥ c11(r − d(y, suppσ))ν+3/2

(3.14)

Next, we use also (ii) and (vi) in Condition (A2) to obtain

E[X(R,R1)] ≥c12
∫ R

R1

dr

r

∫
Σ(θ∗,ε1,ε2)\(suppσ)R1

dy(r − d(y, suppσ))2ν+3
+

=c12

∫ R

R1

dr

r

∫ r

R1

dt(r − t)2ν+3

∫
{y∈Σ(θ∗,ε1,ε2):d(y,suppσ)=t}

H1(dy)

|∇d(y, suppσ)|

≥c13
∫ R

R1

dr

r

∫ r

R1

dt(r − t)2ν+3 =
c14

⟨R,R1⟩2ν+4
(R−R1)

2ν+5.

(3.15)

Eqs. (3.11) and (3.15) mean that their right-hand sides are the leading terms up to constants.

As in the proof of Lemma 4.2 in the previous paper [19], we take {Rj}j as follows: taking ε ∈ (0, 1/2)

and introducing the sequence

(3.16) bk :=


1− 2ε

(1− ε)⌈1/ε⌉
for k ∈ [0, ⌈1/ε⌉] ∩ N,

εk−⌈1/ε⌉ for k ∈ (⌈1/ε⌉,∞) ∩ N,
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whose elements are in (0, ε) and whose sum is 1, we set R0 = R and

(3.17) Rj−1 −Rj =
bkR

⌊Rs1/(2ν+5)⌋
for j ∈ ((k − 1)⌊Rs1/(2ν+5)⌋, k⌊Rs1/(2ν+5)⌋] ∩ N,

where ⌊a⌋ = max{(−∞, a] ∩ Z} and ⌈a⌉ = min{[a,∞) ∩ Z} for any a ∈ R. For

(3.18) F (Rj−1, Rj : s) ≤ 1− sc14
2⟨Rj−1, Rj⟩2ν+4

(Rj−1 −Rj)
2ν+5

and

(3.19) logF (Rj−1, Rj : s) ≤ − sc14
2⟨Rj−1, Rj⟩2ν+4

(Rj−1 −Rj)
2ν+5

to be satisfied, it suffices that

(3.20) s(Rj−1 −Rj)
2ν+5 ≤ c15Rj

for some c15 ∈ (0,∞), and subsequently

(3.21) ε ≤ c16R
1/(2ν+3)

for some c16 ∈ (0,∞). Then we have

logE[exp(−sX(R))] ≤
∞∑
j=1

logF (Rj−1, Rj : s)

≤− sc17

∞∑
j=1

(Rj−1 −Rj)
2ν+5

Rj−1
≤ −c18ε2ν+4s1/(2ν+5).

(3.22)

For the above first inequality, we need only X(R) ≥
∑

j(X(Rj−1)−X(Rj)). By taking ε as c16R
1/(2ν+3),

we can complete the proof.

4. Proof of Theorem 1

We first note that our Cameron–Martin space L2(R2)⊕ L2(R2) may be replaced by a smaller space,

(4.1)

Re

Im

FL2(ΛL+Σ)

by Eq. (1.9), where Σ = 2 supx,y∈suppσ |x−y|∞ and F is the Fourier transform on L2(R2). As its complete

orthonormal basis, we take

(4.2) Φn :=

Re

Im

 Φ̂n,L+Σ

11



for n ∈ N2, where Φn,L+Σ is the function appeared in Eq. (2.2) where L is replaced by L+Σ. Then, we

have

(4.3) ∥Dλℓ(Hω
L)∥2L2(R2)⊕L2(R2) =

∑
n∈N2

(DΦnλℓ(H
ω
L))

2,

where DΦnλℓ(H
ω
L) := (Dλℓ(H

ω
L),Φn)L2(R2)⊕L2(R2). We modify Lemma 1.1 so that the left-hand side of

Eq. (1.10) is replaced by a partial finite sum of the right-hand side of the preceding equation. In the

previous paper [19], this step was done in Section 2. Because

DΦnλℓ(H
ω
L)

=Re

∫
R2

dξσ̂(ξ)Φ̂n,L+Σ(ξ)

∫
ΛL

dy exp(i2πy · ξ)
∑

n′∈N2

Φn′,L(y)

En′,L
(Φn′,L,∇× jωL)L2(ΛL),

(4.4)

we have ∑
n∈N2:|n|>R

(DΦnλℓ(H
ω
L))

2

≤ 1

R4

∑
n∈N2

|n|4
∣∣∣∣ ∫

R2

dξσ̂(ξ)Φ̂n,L+Σ(ξ)

∫
ΛL

dy exp(i2πy · ξ)
∑

n′∈N2

Φn′,L(y)

En′,L
(Φn′,L,∇× jωL)L2(ΛL)

∣∣∣∣2
(4.5)

for any R ∈ (0,∞). Moreover, as

(4.6) |n|2Φ̂n,L+Σ(ξ) =
(L+Σ

π

)2
|2πξ|2Φ̂n,L+Σ(ξ) and

−∆Φn′,L

En′,L
= Φn′,L,

the right-hand side is (L+Σ

πR

)4 ∑
n∈N2

∣∣∣∣ ∫
R2

dξΦ̂n,L+Σ(ξ)σ̂(ξ)
̂(∇× jωL)(ξ)

∣∣∣∣2

≤
(L+Σ

πR

)4 ∫
R2

dξ|σ̂(ξ) ̂(∇× jωL)(ξ)|
2

≤
(L+Σ

πR

)4
∥σ∥2L1(R2)∥∇ × jωL∥2L2(ΛL).

(4.7)

The quantity ∥∇× jωL∥2L2(ΛL) was dominated in Lemma 3.1 of the previous paper [19]. Hence, we obtain∑
n∈N2:|n|≤R

(DΦnλℓ(H
ω
L))

2

≥ c1
Lm1(∥Bω∥2W 2,2(ΛL) +R)m2

Xω

( c2
Lm3(∥Bω∥2W 2,2(ΛL) +R)m4

, xω

)m5

− c3L
22(∥Bω∥2W 2,2(ΛL) +R)4/R4.

(4.8)
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In this inequality and in the following, {cj}j=1,2,... are universal constants distinct from those in the last

sections. Therefore, we obtain∑
n∈N2:|n|≤R(ω)

(DΦnλℓ(H
ω
L))

2

≥ c1
2Lm1(∥Bω∥2W 2,2(ΛL) +R)m2

Xω

( c2
Lm3(∥Bω∥2W 2,2(ΛL) +R)m4

, xω

)m5

(4.9)

by taking R as

(4.10) R(ω) =

{
2c3L

m1+22(∥Bω∥2W 2,2(ΛL) +R)m2+4

c1Xω

(
c2

Lm3 (∥Bω∥2
W2,2(ΛL)

+R)m4
, xω

)m5

}1/4

.

Thus, we modify the first estimate in Section 5 of the previous paper [19] as

Tr[χ[E−η,E+η](H
ω
L)]

≤c4
∑
ℓ

χ[(t(E)−η)∨t(0),t(E)+η](t(λℓ(H
ω
L)))L

m1

×
∑
m∈N

χ̃[m−1,m](∥Bω∥2W 2,2(ΛL) +R)mm2

×
∑

x∗∈(c5L−m3m−m4Z2)∩ΛL

Xω(c6L
−m3m−m4 , x∗)

−m5

×
∑
n∈N2

χ̃[0,∞)(R(m,x∗, ω)− |n|)(DΦnt(λℓ(H
ω
L)))

2,

(4.11)

where t(u) := (u+ 1)(5R)3/(5R+ u+ 1)3,

(4.12) R(m,x∗, ω) =

{
Lm1+22mm2+4

c7Xω(c6L−m3m−m4 , xω)m5

}1/4

,

and, for each interval I, χ̃I is a [0, 1]-valued smooth function on R such that χ̃I = 1 on I and χ̃I(x) = 0

if dist(x, I) ≥ 1. As in the previous paper [19], we next use∑
ℓ

χ[(t(E)−η)∨t(0),t(E)+η](t(λℓ(H
ω
L)))(DΦnt(λℓ(H

ω
L)))

2

≤D2
Φn

Tr[G(t(Hω
L))]− Tr[F (t(Hω

L))D
2
Φn
t(Hω

L)]

(4.13)

and estimate each term on the right-hand side under the condition

(4.14) ∥Bω∥2W 2,2(ΛL) +R ∈ [m− 2,m+ 1],

where F and G are functions on R such that F ′ = χ[(t(E)−η)∨t(0),t(E)+η], G
′ = F , and F = G = 0 on

(−∞, (t(E)− η) ∨ t(0)]. For this, we first prove

(4.15) ∥D2
Φn
t(Hω

L)∥L2(ΛL)→L2(ΛL) ≤ c8L
6
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using

(4.16) ∥DΦnA
ω
L∥L∞(ΛL) ≤ c9L

3.

Eq. (4.16) is proven by Lemma 3.3 in the previous paper [19] and Condition (A1) (i) as follows:

∥DΦnA
ω
L∥L∞(ΛL) ≤ c10L∥DΦnB

ω∥W 2,1(ΛL)

≤c11L
∑

α∈Z2
+:|α|1≤2

∫
ΛL

dx

∣∣∣∣ ∫ exp(i2πx · ξ)(2πξ)ασ̂(ξ)Φ̂n,L+Σ(ξ)dξ

∣∣∣∣
≤c11L

∑
α∈Z2

+:|α|1≤2

|ΛL|
(∫

|(2πξ)α|2β̂(ξ)dξ
)1/2

∥Φn,L+Σ∥.

(4.17)

The rest of the proof of Eq. (4.15) is simpler than the corresponding part in the previous paper [19]

because D2
Φn
Aω

L = 0.

Moreover, the remaining proof is also simpler than the corresponding part in the previous paper [19]

because our direction Φn of the H-differentiation is independent of ω; this independence simplifies the

application of the integration by parts on the Wiener space used to remove the H-differentiation from

Tr[G(t(Hω
L))].

5. Lifshitz tail

As stated in Section 1, the corollary of Theorem 1 is proven using the results regarding the Lifshitz

tail owing to Nakamura [12] and the theory of multi-scale analysis by Germinet and Klein [9]. However,

the Lifshitz-tail results in Nakamura [12] seem not to be applicable to the setting of this paper because

boundedness of the magnetic field is assumed in Nakamura [12].

In this section, we demonstrate that boundedness is not necessary and the results in Nakamura [12]

are extendible to a general setting including the Gaussian random magnetic field. Furthermore, we treat

the arbitrary dimensional setting: on a d-dimensional Euclidean space Rd and a general probability space

(Ω,F ,P), we consider a d×d skew-symmetric matrix-valued random field Bω = (Bω
jk(x))1≤j,k≤d,x∈Rd,ω∈Ω

satisfying the following:

(A3) (i) There exists on the probability space a group of metrically transitive transformations {Tx}x∈Rd

on Ω such that BTxω(y) = Bω(x+ y) for any x, y ∈ Rd.

(ii) For each ω ∈ Ω, the map Rd ∋ x 7→ Bω(x) is locally p-th integrable, where p = 2.

(iii) For each ω ∈ Ω, the 2-form Bω =
∑

j,k B
ω
jk(x)dxj∧dxk is closed in the sense of distributions.
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(iv) There exists a nonnegative decreasing function φ on the interval [0,∞) satisfying φ(t) → 0 as

t→ ∞ and the following: for any bounded subsets Λ1, Λ2 of Rd, ΣΛ1 -measurable essentially

bounded function g and ΣΛ2 -measurable integrable function f on Ω, we have

|E(fg)− E(f)E(g)| ≤ φ(d(Λ1,Λ2))∥f∥L1∥g∥L∞ ,

where d(·, ·) is the Euclidean distance and ΣΛ is the σ-algebra generated by {Bω(x)|x ∈ Λ}

for any Λ ⊂ Rd.

(v) There exist r ∈ (0,∞) and 1 ≤ j < k ≤ d such that

P
(

1

2π

∫
Djk(r)

Bω
jk(y)H2(dy) ̸∈ Z

)
> 0,

where H2 is the two-dimensional Hausdorff measure and Djk(r) = {y ∈ Rd : y2j + y2k ≤

r2, yh = 0 for h ̸= j, k}.

Under assumptions (A3) (ii) and (iii), there exists a Rd-valued random fieldAω
L = (Aω

L,j(x))1≤j≤d,x∈ΛL,ω∈Ω

for each L > 0 such that ΛL ∋ x 7→ Aω
L(x) is square integrable and is a vector potential of the magnetic

field Bω: d
∑d

j=1A
ω
L,j(x)dxj = Bω on ΛL, where d on the left-hand side is the exterior derivative in the

sense of distributions and ΛL = (−L/2, L/2)d. Indeed,

(5.1) Aω
L,j(x) =

∫ 1

0

d∑
k=1

(χΛL
Bω

kj)(x
L + t(x− xL))t(xk − xLk )dt

is one of the random fields satisfying these, where xL is an arbitrary fixed point apart from ΛL. We can

then define self-adjoint operators

(5.2) Hω,#
L :=

d∑
ι=1

(i∂ι +Aω
L,ι(x))

2

on L2(ΛL) with the Dirichlet and the Neumann boundary conditions for # = D and # = N , respectively.

For these operators, let N(E;Hω,#
L ) be the numbers of eigenvalues not exceeding E. These numbers are

determined only by the magnetic field Bω and are independent of the choice of Aω
L by gauge invariance.

Then, by Condition (A3) (i), the well-known limit

(5.3)
1

|ΛL|
N(E;Hω,#

L ) −→ N(E) as L→ ∞.

exists for almost every ω and defines a deterministic increasing function N(E) independent of # ∈ {D,N}

(Cf. Carmona and Lacroix [2], Doi, Iwatsuka, and Mine [3], Pastur and Figotin [14], Ueki [17]). This is

the integrated density of states for a Schrödinger operator with the magnetic field Bω. To represent the
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operator globally, we need a vector potential defined on Rd. For this it suffices to assume p > d/2 in

Condition (A3) (ii). Indeed, under this assumption, the Rd-valued random field

(5.4) Aω
j (x) =

∫ 1

0

d∑
k=1

Bω
kj(tx)txkdt

gives the vector potential such that the map Rd ∋ x 7→ Aω(x) is locally square integrable. Then, by

Leinfelder and Simader [11], the operator

(5.5) Hω :=

d∑
ι=1

(i∂ι +Aω
ι (x))

2

is essentially self-adjoint on C∞
0 (Rd), and (N(E))E∈[0,∞) is its integrated density of states.

The main statement in this section is then the following:

Theorem 2 (Lifshitz tail).

Under Condition (A3), the integrated density of states (N(E))E∈[0,∞) defined by Eq. (5.3) satisfies

(5.6) lim
E↓0

log(− logN(E))

logE
≤ −d

2
.

To prove this, we use the following:

Proposition 5.1 (Cf. Theorem 2 in Nakamura [12]).

For any r ∈ (0,∞), we define a function on Rd by

(5.7) Wω(x; r) =
2

d(d− 1)πr3

∑
1≤j<k≤d

∫
∂Djk(r)

H1(dz)d

(
1

2π

∫
Djk(r)

H2(dy)Bω
jk(x+ y + z),Z

)2

,

where d(a,Z) is the distance to the set of integers from a for any a ∈ R. Then, we have

(5.8) (ψ,Hω,N
L ψ) ≥ (ψ,Wω(·; r)ψ)

for any ψ ∈ Dom(Hω,N
L ) and L, r > 0.

The proof of this proposition is the same as that of Theorem 2 in Nakamura [12].

Proof of Theorem 2.

Clearly Wω(x; r) is bounded; it is also positive with a positive probability under Condition (A3) (v).

Thus, by Condition (A3) (iv), Theorem 4 in Kirsch and Martinelli [10] applies to the Schrödinger operator

(−∆+Wω(·; r))/2 without change, and its integrated density of statesN1(E) satisfies limE↓0E
d/2 logN1(E) <
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0. By the Abelian theorem, its Laplace–Stieltjes transform Ñ1(t) =
∫∞
0
e−tEdN1(E) satisfies limt→∞ t−d/(d+2) log Ñ1(t) <

0 (Cf. Lemma 3.2 (ii) in Ueki [18]). Let N2(E) be the integrated density of states obtained by

(5.9)
1

|ΛL|
N(E; (Hω,#

L +Wω(·; r))/2) −→ N2(E) as L→ ∞.

Then, by the Feynman–Kac–Itô formula and the stochastic Stokes theorem, its Laplace–Stieltjes trans-

form Ñ2(t) is represented as

Ñ2(t) = E
[
exp

(
− i

∑
1≤j<k≤d

∫ t

0

dSjk(s)

∫ 1

0

dv2vBω
jk(vw(s))

− 1

2

∫ t

0

Wω(w(s); r)ds
)∣∣∣∣w(t) = 0

]
1

(2πt)d/2

(5.10)

where w(s) = (w1(s), w2(s), . . . , wd(s)) is the d-dimensional Wiener process starting at the origin and

(5.11) Sjk(t) =
1

2

∫ t

0

(wj(s)dwk(s)− wk(s)dwj(s)).

By taking the absolute value of the integrand, we have Ñ2(t) ≤ Ñ1(t). Hence we have limt→∞ t−d/(d+2) log Ñ2(t) <

0. By the Tauberian theorem, we have limE↓0E
d/2 logN2(E) < 0 (Cf. Lemma 3.2 (i) in Ueki [18]). By

Proposition 5.1, we have N2(E) ≤ N(E). Therefore, we obtain limE↓0E
d/2 logN(E) < 0 and we can

complete the proof.

In Nakamura [12], the boundedness of the magnetic field was assumed to reduce the operator (−∆+

Wω(·; r))/2 without using the Laplace–Stieltjes transform of the integrated density of states.

Appendix A. Uniform nondegeneracy of the zeros of the Bessel functions

The Fourier transform of the functions σ in Example 1.1 is expressed in terms of the Bessel functions.

Indeed, in (i), by taking the appropriate coordinate, the function is expressed as

(A.1) σ(x) = (σ2 −
2∑

j=1

(ajxj)
2)ν+,

where {a2j}j=1,2 are the eigenvalues of the matrix (aij)1≤i,j≤2. Therefore, as in Section 2 of the previous

paper [19], its Fourier transform is expressed as

(A.2) σ̂(ξ) =
σν+1Γ(ν + 1)

|a1a2|πν |(ξ1/a1, ξ2/a2)|ν+1
Jν+1

(
2πσ

∣∣∣( ξ1
a1
,
ξ2
a2

)∣∣∣),
where

(A.3) Jν+1(t) =
∞∑

m=0

(−1)m(t/2)2m+ν+1

m!Γ(m+ ν + 2)
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is the Bessel function of order ν + 1 (Cf. Abramowitz and Stegun [1] 9.1.18 and 11.4.10). In (ii), if

σ1(x) = |x|ν1(σ1 − |x|)ν1
+ and σ2(x) = (σ2

2 − x2)ν2
+ , then their Fourier transforms are

(A.4) σ̂1(ξ) =
σ1

ν1+1/2Γ(ν1 + 1)

22ν1πν1 |ξ|ν1+1/2
cos(2πσ1|ξ|)Jν1+1/2(2πσ1|ξ|)

and

(A.5) σ̂2(ξ) =
σ2

ν2+1/2Γ(ν2 + 1)

πν2 |ξ|ν2+1/2
Jν2+1/2(2πσ2|ξ|)

(Cf. Erdélyi, Magnus, Oberhettinger, and Tricomi [4] 1.3.4 and 1.3.8).

To prove these examples satisfy Condition (A1) (ii), we use the following:

Proposition A.1.

There exist finite positive constants c1 and c2 depending only on ν such that

(A.6) |Jν(jν,s + z)||jν,s + z|c1 ≥ c2|z|

for any s ∈ N and z ∈ ((jν,s−1 − jν,s)/2, (jν,s+1 − jν,s)/2), where, for any s ∈ N, jnu,s is the s-th positive

zero of the Bessel function Jν , and jν,0 = −jν,1.

Proof. We first use the infinite products representation

(A.7) Jν(z) =
(z/2)ν

Γ(ν + 1)

∞∏
s=1

{
1−

( z

jν,s

)2}
and the asymptotic behavior; i.e., for any δ > 0, there exists s∗ ∈ N such that

(A.8)
∣∣∣jν,s − (s+ ν

2
− 1

4

)
π
∣∣∣ ≤ δ/2

for any s∗ ≤ s ∈ N (Cf. Abramowitz and Stegun [1] 9.5.10 and 9.5.12). We estimate each factor of

(A.9) |Jν(jν,s0 + z)| = |jν,s0 + z|ν

2νΓ(ν + 1)

∞∏
s=1

∣∣∣1− (jν,s0 + z

jν,s

)2∣∣∣
from below for s∗ < s0 ∈ N and z ∈ R satisfying |z| ≤ (infs∈N(jν,s+1 − jν,s)/2) ∧ (δ/4). For s = s0, we

estimate as

(A.10)
∣∣∣1− (jν,s0 + z

jν,s0

)2∣∣∣ ≥ (2jν,s0 + z)|z|
j2ν,s0

≥ |z|
jν,s0

≥ c1|z|
s0

.

For s0 < s ∈ N, we have

(A.11) 1−
(jν,s0 + z

jν,s

)2
≥ 1−

( jν,s0 + z

(s+ ν/2− 1/4)π − δ

)2
≥ 1−

( jν,s0 + z

⌊(s+ ν/2− 1/4)π − δ⌋(Z++1/2)π

)2
,

18



where ⌊t⌋(Z++1/2)π = max{[0, t] ∩ ((Z+ + 1/2)π)} for any t ≥ 0. For s ∈ N ∩ [s∗, s0), we have

(A.12)
(jν,s0 + z

jν,s

)2
− 1 ≥

( jν,s0 + z

(s+ ν/2− 1/4)π + δ

)2
− 1 ≥

( jν,s0 + z

⌈(s+ ν/2− 1/4)π + δ⌉(Z++1/2)π

)2
− 1,

where ⌈t⌉(Z++1/2)π = min{[t,∞) ∩ ((Z+ + 1/2)π)} for any t ≥ 0. We can also show

(A.13) ⌊(s0 + s+ ν/2− 1/4)π − δ⌋(Z++1/2)π = ⌊(s0 + ν/2− 1/4)π − δ⌋(Z++1/2)π + sπ

for any s ∈ N,

(A.14) ⌈(s0 − s+ ν/2− 1/4)π + δ⌉(Z++1/2)π = ⌈(s0 + ν/2− 1/4)π + δ⌉(Z++1/2)π − sπ

for any s0 − s∗ ≥ s ∈ N, and

⌈(s0 + ν/2− 1/4)π + δ⌉(Z++1/2)π − ⌊(s0 + ν/2− 1/4)π − δ⌋(Z++1/2)π

=


π if d((s0 + ν/2− 1/4)π, (Z+ + 1/2)π) ≥ δ

2π if d((s0 + ν/2− 1/4)π, (Z+ + 1/2)π) < δ.

(A.15)

If d((s0+ν/2−1/4)π, (Z++1/2)π) < δ, then we apply Eq. (A.11) for s0+2 ≤ s ∈ N and apply Eq. (A.12)

for s ∈ N ∩ [s∗, s0 − 2]. We apply

(A.16) 1−
(jν,s0 + z

jν,s0+1

)2
≥ (jν,s0 + jν,s0+1 + z)(jν,s0 − jν,s0+1 − z)

j2ν,s0+1

≥ c2
s0

for s = s0 + 1 and

(A.17)
(jν,s0 + z

jν,s0−1

)2
− 1 ≥ (jν,s0 + jν,s0−1 + z)(jν,s0 − jν,s0−1 + z)

j2ν,s0−1

≥ c2
s0

for s = s0 − 1. Next, we use the following estimate; there exists a finite positive constant c3 such that

(A.18)
∏

m0 ̸=m∈(Z++1/2)π

∣∣∣1− (w
m

)2∣∣∣ ≥ c3m0

for any m0 ∈ (Z+ + 1/2)π and w ∈ m0 + (π/2)(−1, 1). Indeed,,because

(A.19)
∏

m∈(Z++1/2)π

{
1−

(w
m

)2}
= cosw
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(Abramowitz and Stegun[1] 4.3.90), we have∏
m0 ̸=m∈(Z++1/2)π

∣∣∣1− (w
m

)2∣∣∣ = ∣∣∣∣cosw − cosm0

1− (w/m0)2

∣∣∣∣
=

m2
0

m0 + w

∣∣∣∣cosw − cosm0

w −m0

∣∣∣∣ ≥ m0

3

∣∣∣∣ ∫ 1

0

dt sin((1− t)m0 + tw)

∣∣∣∣
=
m0

3

∫ 1

0

dt| sin((1− t)m0 + tw)| ≥ m0

3

∫ 1/2

0

dt| sin((1− t)m0 + tw)|

≥m0

6
min

t∈m0+(π/4)[−1,1]
| sin t|.

(A.20)

We take m0 = ⌈(s0 − 1 + ν/2 − 1/4)π + δ⌉(Z++1/2)π = ⌊(s0 + 1 + ν/2 − 1/4)π − δ⌋(Z++1/2)π. Then we

have jν,s0 + z ∈ m0 + (π/2)(−1, 1) if δ ≤ 2π/9, as |z| ≤ δ/4. Therefore,

|Jν(jν,s0 + z)|

≥c4|z||jν,s0 + z|ν

s20

s∗−1∏
s=1

∣∣∣1− (jν,s0 + z

jν,s

)2∣∣∣
×
( ∏

⌈(s∗+ν/2−1/4)π+δ⌉(Z++1/2)π>m∈(Z++1/2)π

∣∣∣1− (jν,s0 + z

m

)2∣∣∣)−1

≥c5|z|/sc60 .

(A.21)

If d((s0+ν/2−1/4)π, (Z++1/2)π) ≥ δ, then d(jν,s0 , (Z++1/2)π) ≥ δ/2 and d(jν,s0+z, (Z++1/2)π) ≥ δ/4

as |z| ≤ δ/4. Then we apply Eqs. (A.11) and (A.12) for s0+1 ≤ s ∈ N and s ∈ N∩[s∗, s0−1], respectively,

and use Eq. (A.19). Then we have

|Jν(jν,s0 + z)|

≥c7
|z|
s0

|jν,s0 + z|ν | cos(jν,s0 + z)|
s∗−1∏
s=1

∣∣∣1− (jν,s0 + z

jν,s

)2∣∣∣
×
( ∏

⌈(s∗+ν/2−1/4)π+δ⌉(Z++1/2)π>m∈(Z++1/2)π

∣∣∣1− (jν,s0 + z

m

)2∣∣∣)−1

≥c8|z|/sc90 .

(A.22)

Therefore, we have shown

(A.23) |Jν(jν,s + z)||jν,s + z|c10 ≥ c11|z|

for s∗ < s ∈ N and z ∈ R satisfying |z| ≤ (infs∈N(jν,s+1 − jν,s)/2) ∧ (δ/4) =: ζ. By the same asymptotic

behavior as in Eq. (A.8), there exists s∗∗ ∈ N such that

(A.24)
∣∣∣jν,s − (s+ ν

2
− 1

4

)
π
∣∣∣ ≤ ζ

2
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for s∗∗ < s ∈ N. We also recall that

(A.25) Jν(t) =

√
2

πt

{
cos
(
t− 2ν + 1

4
π
)
+O

(1
t

)}
(Cf. Abramowitz and Stegun [1] 9.2.1). Then, we establish the existence of R∗ ∈ (0,∞) such that

(A.26) inf{|Jν(t)|
√
|t| : t ∈ [R∗,∞) \

∪
s∈N

(jν,s + (−ζ, ζ))} > 0.

Therefore, by changing the constants, we can complete the proof of this proposition.

Appendix B. Behavior of function σ at ∂ suppσ

In this section, we prove that the function σ in Example 1.1 (i) satisfies Condition (A2). We consider

only (iv) and (v) as the other conditions are easily checked. The fundamental lemma is the following:

Lemma B.1.

(B.1)
√
T (D + T ) ≤ H1(S(D,T )) ≤ 2

√
T (D + T )

for any D,T ≥ 0, where

(B.2) S(D,T ) := {(x1, x2) ∈ [D,D + T ]× [0,∞) : x21 + x22 = (D + T )2}.

Then, we can easily prove that Condition (A2) (iv) holds as suppσ is an ellipse: because the curvature

does not vanish. We have

{x ∈ suppσ : d(x, y) = s+ d(y, suppσ)}

⊂{x ∈ R2 : |y − x| = |y − yσ|+ s, (y − x) · (y − yσ) ≥ |y − yσ|2}
(B.3)

and

(B.4) H1({x ∈ suppσ : d(x, y) = s+ d(y, suppσ)}) ≤ 2H1(S(|y − yσ|, s)) ≤ cs1/2,

for any y ∈ R2 \ suppσ, where yσ ∈ ∂ suppσ is chosen so that |y− yσ| = d(y, suppσ). The uniqueness of

yσ is dues to the convexity of the ellipse.

To treat Condition (A2) (v), we dominate the function σ from below on the set

(B.5) Sσ(y, s, δ) := {x ∈ R2 : |y − x| = |y − yσ|+ s, (y − x) · (y − yσ) ≥ (|y − yσ|+ s(1− δ))|y − yσ|}

with some δ ∈ (0, 1). Any point of this set is represented as

(B.6) yσ − s(1− δ′)
y − yσ
|y − yσ|

±
√
(s(2− δ′) + 2|y − yσ|)sδ′v =: x(±, s, δ′),

21



where δ′ ∈ [0, δ] and v is one of the unit vectors perpendicular with y − yσ. We set Sσ,±(y, s, δ) :=

{x(±, s, δ′) : δ ∈ [0, δ]} We may assume σ is represented as Eq. (A.1) with a1 ≥ a2 > 0. Then, we have

σ1/ν(x(±, s, δ′)) = σ2 −
2∑

j=1

a2j (yσ,j − s(1− δ′)
yj − yσ,j
|y − yσ|

±
√
(s(2− δ′) + 2|y − yσ|)sδ′vj)2

=−
2∑

j=1

a2j (s(1− δ′)
yj − yσ,j
|y − yσ|

∓
√
(s(2− δ′) + 2|y − yσ|)sδ′vj)2

+ 2

2∑
j=1

a2jyσ,j(s(1− δ′)
yj − yσ,j
|y − yσ|

∓
√
(s(2− δ′) + 2|y − yσ|)sδ′vj)

≥− a21(s
2(1− δ′)2 + (s(2− δ′) + 2|y − yσ|)sδ′)

+ 2
2∑

j=1

a2jyσ,js(1− δ)
yj − yσ,j
|y − yσ|

∓ 2
√
(s(2− δ′) + 2|y − yσ|)sδ′

2∑
j=1

a2jyσ,jvj).

(B.7)

Thus, for an ϵ ∈ {+,−}, depending only on y and yσ, we have

(B.8) σ1/ν(x(ϵ, s, δ′)) ≥ −a21(s2 + 2|y − yσ|sδ) + 2a22s(1− δ)yσ · y − yσ
|y − yσ|

.

We can show that

(B.9)
yσ
|yσ|

· y − yσ
|y − yσ|

≥ 2a1a2
a21 + a22

.

Indeed, if we set yσ = (b1 cos θ, b2 sin θ), where bj = σ/aj , then an outward normal vector (b2 cos θ, b1 sin θ)

of ∂ suppσ at yσ is parallel with y − yσ,

(B.10)
y − yσ
|y − yσ|

= (b21 sin
2 θ + b22 cos

2 θ)−1/2

b2 cos θ
b1 sin θ


and

(B.11)
yσ
|yσ|

· y − yσ
|y − yσ|

= {(b21 sin2 θ + b22 cos
2 θ)(b21 cos

2 θ + b22 sin
2 θ)}−1/2b1b2 ≥ 2b1b2

b21 + b22
=

2a1a2
a21 + a22

.

Thus, we have

(B.12) σ1/ν(x(±, s, δ′)) ≥ 2(1− δ)σa1a
2
2s

a21 + a22

if s ≤ (1 − δ)σa22/(a1(a
2
1 + a22)) and |y − yσ| ≤ (1 − δ)σa22/(2δa1(a

2
1 + a22)). Therefore, for y ∈ Σ(0, (1 −

δ)σa22/(2δa1(a
2
1 + a22)), π) and s ∈ [0, (1− δ)σa22/(a1(a

2
1 + a22))], we have

(B.13)
{
x ∈ R2 : σ(x) ≥

{2(1− δ)σa1a
2
2s

a21 + a22

}ν

, d(x, y) = s+ d(y, suppσ)
}
⊃ Sσ,ϵ(y, s, δ)
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and

H1
({
x ∈ R2 : σ(x) ≥

{2(1− δ)σa1a
2
2s

a21 + a22

}ν

, d(x, y) = s+ d(y, suppσ)
})

≥H1(S(d(y, suppσ) + s(1− δ), sδ) ≥
√
sδ(d(y, suppσ) + s),

(B.14)

which implies Condition (A2) (v).
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