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ABSTRACT. — The Wegner estimate for the Hamiltonian of the Anderson model for the special Gaussian
random magnetic field is extended to more general magnetic fields. The Lifshitz tail upper bounds of
the integrated density of states as analyzed by Nakamura are reviewed and extended so that Gaussian
random magnetic fields can be treated. By these and multiscale analysis, the Anderson localization at

low energies is proven.

1. INTRODUCTION

For any L > 1 and w in a probability space, we consider the self-adjoint operator

2

(1.1) Hy = (i0, + A} ,(z))?

=1

with the Dirichlet boundary condition on the open square A; = (—L/2,L/2)? centered on the origin
and with side length L; here i = v/—1 and AY is a Cl-map from Aj to R? satisfying V x AY :=
0147 5 — 02 A7 | = B*. Its spectrum depends only on B and is independent of the choice of the vector
potential AY. This is the Schrédinger operator for the magnetic field B“.

For B¥, we take a Gaussian random field on R%. We assume B“(z) is stationary with respect to the
shift in the space variable € R?: the random fields B“(-) and B“(x + -) obey a similar law. Moreover,

we assume its covariance function V(x — y) = Cov(B¥“(x), B¥(y)) is

(12) V() = [ oo - oy,
where o is a function satisfying the following conditions:
(A1) (1) [F(OP(1+[E)* € LY(R?),
(if) limejoSupgrep o0y [{€ € R? : €] < R, [G(EP(1 + €)™ < e}]/(R?e*) = 0 for some 1 € (0,00)

and m € (8, 00),



where

(1.3) fle) = / exp(~2mi€ - 2)f(x)d

is the Fourier transform of an integrable function f.
(A2) Jey,e9,c1,...,¢5 € (0,00),0, € R/(27Z), v > 3/2 s.t.
(i) o(x) > 0 for any z € R?,
(ii) suppo is compact and dsupp o is a finite union of piecewise C* closed curves,
(iii) o(z) < cyd(x,dsupp o) for any x € supp o,
(iv) Vs € [0,e1] and y € {y : 0 < d(y,suppo) < 1},
H'({x € suppo : d(z,y) = s+ d(y,suppo)}) < ca5/?,
(v) Vs €]0,e1] and y € X(0,,e1,€2),
H ({z: o(z) > c35”,d(z,y) = s + d(y,suppo)}) > cs5/2,
(vi) HY{y € X(b4,1,¢2) : d(y,suppo) =t} > c5 for Vt € [0,¢1],
where d(-,-) is the Euclidean distance, H! is the one-dimensional Hausdorff measure, (., e1,¢2) = {y :
0 < d(y,supp o) < e1,|argy — 0] < e2} and argy € R such that y = |y|(cosargy, sinargy).

In this paper, we prove the following:

Theorem 1 (Wegner estimate).

Under the above assumptions, there exist positive finite constants Cy, C1, and Co such that
(1.4) E[TY[X[E—TJ,E-&-H](HEJ)H < 00R277LC1

for any R € [1,00), L >RV Cy and E,n > 0 satisfying E +n < R.

By this theorem, the results regarding the Lifshitz tail owing to Nakamura [12] and the theory on the

multi-scale analysis by Germinet and Klein [9], we obtain the following:

Corollary (Anderson localization).

Under the same assumptions in the last theorem, the operator

2

(1.5) H® =) (i0, + A ())?

=1

with a Ct vector potential A on R? such that V x A* = B¥ exhibits Anderson localization at low energies

defined by the following: there exists a positive finite constant ey such that [0,¢e¢] is included in the pure



point spectrum of H¥, the corresponding eigenfunctions decay exponentially, and

(1.6) E[supH|x|p6_itHw1[(H‘”)1K‘ < 00
¢

LZ(RQ)ALQ(RQ):|
for any p € (0,00), I C [0,e0], and any compact set K in R?, where || - |L2(r2)— 12 (R2) is the operator

norm of bounded operators on L*(R?).

The above theorem and its corollary are generalizations of results in a previous paper [19] for the

following typical example:

(L.7) vww=/5@—yﬁ@m%
where

(1.8) F(x) =P(A)@ —|l)f,

a; = max{a,0} is the positive part, & € (0,00), v € (3/2,00), A = 97 + 03, and P is a non-zero
polynomial of degree less than (v — 3/2)/2.

As discussed in the previous paper [19], this work is based on Erdés and Hasler’s Wegner estimate
for special random magnetic fields [5, 6, 7]: because the Schrédinger operator for random magnetic
fields does not feature monotonicity used in the original work by Wegner’s estimate [20], Erdés and
Hasler made it possible to apply integration by parts twice under a nondegeneracy condition. The
nondegeneracy condition is analogous to the nondegeneracy in the Malliavin sense used to prove the
regularity of the probability density function of the solution of the stochastic differential equation of Ito
type. The importance of the integration by parts on the probability space is also common in Malliavin
calculus. Hence, we shall also use Malliavin calculus. However, we use a different representation of the

Gaussian random field given by

N cos(2mx€) R sin(2mx€)
19) @ =5+ [ [ReE©) +n(E(©) wlde),
— sin(27x€) cos(2mxg)
where w = *(w1,ws), and wy and wy are independent copies of white noise on R? (Cf. Nualart [13]). This
is the so-called spectral representation of stationary random fields. By this representation we do not need
the special form of Eq. (1.8). Then, our probability space is the Wiener space D’(R?) @ D’(R?) with the
Cameron—Martin space L*(R?) & L?(R?). The (-th eigenvalue A\¢(HY) is a smooth Wiener functional on

this space and the following estimate of the H-derivative DA¢(HY) is one of the key estimates in this

paper (Cf. Shigekawa [16]):



Lemma 1.1 (A bound of the gradient norm by a quadratic form).

Under Condition (A1), there exist universal constants ci,ca, myi, ma, M3, myg, ms € (0,00) such that for
any L and w, one can choose a x, € Ay so that for any R € (0,00), the following inequality holds
whenever A\g(HY) < R and o satisfies |xo — | < CQL_m?’(HB‘“H%Vz,z((AL)) + R)"™4:

IDXe(HE)I7 2 2y 12 2y

(1.10) o

Cco
> Xo
L (1B aagny, + B (e

m amo) J-
Wee(a,) T R)™

In this inequality, X, (R,x) is the quadratic form in w defined by

R 2 dr
(1.11) Xw(R,z):/ ’/ B (2 + y)dy| —
0 ly|<r 27r
for any R and x € R?, and || - lw22(a,) is the norm of the Sobolev space of functions on Ar whose

derivatives of order < 2 are square integrable.

This is essentially the estimate on nondegeneracy obtained by Erdds and Hasler [5] in their special
case. We extended it to the special case Eq. (1.7) in the previous paper [19] using the known information
on the behavior of the Bessel function. In this paper, we extend it to the general setting of Eq. (1.2)
using the spectral representation Eq. (1.9). Contrary to the case of Erdés and Hasler, the right-hand side

of Eq. (1.10) still may attain zero. Therefore, we prepare the following as in the previous paper [19]:

Lemma 1.2 (Non degeneracy of a quadratic form).
Under Condition (A2), there exists a finite positive constant R such that, for any p € [1,00), there exists

¢ € (0,00) satisfying

1 c
(1.12) E[X(R)p} < Rp(2v+5)(2v+4)/(2v+3)

for any R € (0,R), where X(R) = X,(R,0).

This is a simple extension of the corollary of Lemma 4.1 in the previous paper [19]. As examples

satisfying both Conditions (A1) and (A2), we have the following:

Ezxample 1.1.
In the representation Eq. (1.2), we can take o as follows:

(i) (An elliptic case) o(z) = (3% — Z?,k:l aji(z — 2%);(x — 2°))%, where v € (3/2,00), (aji) is a

0

positive symmetric matrix, z° is a point in R?, and ay := a V 0 is the positive part for any a € R.



(ii) (A case where the variables are separated) o(x) = o1((z —2°)-v1)o2((z —2°) - ve), where {v1, v2} is
an orthonormal base of R?, ¥ is a point in R? and o; are functions on R of the form o;(t) = |t (77 —|t])%’
or ;(t) = (;2 — t*)% with some 5;,v; € (0,00).

(iii) We can also construct such functions o by repeating appropriately taking either the convolution

or the sum with functions of the form in (i) or (ii) above.

To prove these examples satisfy Condition (Al), we use the uniform nondegeneracy of the Bessel
function proven in Appendix A below. Appendix B is devoted to the proof of the fact that the example
in (i) satisfies Condition (A2). This condition is easily checked for the example in (ii).

The organization of this paper is as follows. The next three sections are devoted to the proof of the
Wegner estimate: in Sections 2 and 3, we prove Lemmas 1.1 and 1.2, respectively. In Section 4, we use
these lemmas to prove Theorem 1. In Section 5, we proceed to prove the Lifshitz tail for the corollary of

Theorem 1. In Appendices A and B, we prove results used in the above explanation for Example 1.1.

2. PROOF OF LEMMA 1.1

As in the previous paper [19], we take the vector potential as
(2.1) 71(x) = (02FF)(x) and A 5(z) = — (91 FF)(x)
on Ap, where

(2.2) Py = Y nelr) /A D1 () B (4)dy,

neN? En’L

and

2
w|n|\ 2 2 . z, 1
(2.3) E,1 = (%) and @, 1 (z) = I Ll;[lsm (nﬂr(z + 5))
for m = (n1,n2) € N2 {Ep 1, ®n 1 tnenz are the eigenvalues and a complete orthonormal basis consisting
of the eigenfunctions of the negative Dirichlet Laplacian *A?L (Cf. Reed and Simon [15], p. 266). We

take also the current j¢(z) = (j{;(),75 () of the normalized eigenfunction ¢, of the eigenvalue

Ae(HY) defined by

(2.4) 3 () = 2Re ¥y (i0, + AF ().

Then, by the Feynman—Hellmann theorem, we have

(25) (DA(HE), ®) 1222y 12 (x2) = /A J9(2) - (DA% (@), ®) 12 ey 12 (x2) A,
L

5



(DAY 1 (), ®) L2(r2)p12(R2) = Z M/A dyq)n,L(y)/

En,L

cos(2m
(Re(a@)) (2rue)

nenN? R — sin(27y¢)
(2.6)
in(2mryé
e [ ) B(e)ie
cos(2myé)
and
0,9, R cos(2my¢)
(D47 5(0) B)reeoyorniesy = — S LD [ ) | <Re<a<5>> !
neN? n, AL R —sin(2myé)
(2.7)
in(27
ey [ O ) - ®B(e)de
cos(2myé)
for any ® € L*(R?) ® L?(R?). Thus, we have
N cos(2myé)
(DA(HE), ®) 12 (r2)0L2(R2) :/]R? dE®(S) /A dy<Re(U(§)) o)
L —sin(27y€
(2.8)
in(2wyé
(e | ) Etl) (g, ¥ i) ieins
cos(2myé) nenz ol

where V x ji = 0175, — 02771, Subsequently,

(2.9 IDAHE) reorsen = [ EBOITF R
where 3(¢) := |5(£)|? and

w @ 3 y W
(2.10) JE(y) = E ZVLLL )((I’mL, V X ji)r2(AL)-
neN? n

We now take R € [1,00) and € € (0,1)—to be specified later—to obtain the estimate

w -~ Tw £ o
Q1) IDMED e = [ dBOEOP 2 oo [ delBzR
IE|<R.B(E)>e CR)™ Jig|<r Ble)ze

where 3(€) = B(€)(1 + |¢)™ and m is the number in Condition (A1) (ii). We divide the right-hand side

as
2.12 G AGI AGE dELT2 (6)]2.
1) [ TR = 1T e — [ T OF - [ adp o)

The first term is ||J°L"||2LQ(AL). By (3.1) in the previous paper [19], the second term is estimated as

T ()2 1 45002 o IV XijQ o L'® w2 4
18) [ TP S g | adelOF < g < S (B s, + )




In this inequality and in the following, {¢;};=12, .. are universal constants. By Condition (A1) (ii), for

any 7 € (0, 1), there exists €, € (0,1) such that
(2.14) {€ € B : 6] <R B(€) < e} < yR%e”
for any € € (0,¢,) and R € [1,00). Then, the third term is estimated as

(2.15) [l < urve s Tz )
IEISR,B(£)<e 13
By En. > (n/L)? and (3.1) in the previous paper [19], we have

sgleE(ﬁ)F < W2 ar) < L2IVE N 2(a,)
(2.16)

< ﬁHV X JL||%2(AL) < L*(||B ”%/V?az(AL) +R)*%.
Thus we have

/ Gk
[EI<R,B(&)>e

> T2 g = o (1B raaqa,) + B — a2 LA (1B aaa,) + B)"

(2.17)

We here take R = (261)1/4L9/2(||Bw||%V272(AL)+R)||Jf||221(/13L) so that the second term becomes ||J¢ ||%2(AL)/2.
By going back to the estimate Eq. (2.18), we have

IDX(HE) 7 2y 1 (2

2
035||Jf‘|T2/(AL) canet L33

Z {JwQ o Ale Bw27 +R6}
D (B Ty, + By U N0 = o (1B e, + F)

(2.18)

We here take

w3
(2.19) e = { 1TE N Z2a ) }1/”
20417L33(||B‘*’||%V2,2(AL) + R)®

so that the terms in the last bracket become HJEHQLQ(AL)/Z. We here note that € < ¢, is satisfied for large

L by (3.1) in the previous paper [19]. Then, we have

243/ p+2
05||Jf\\T2/(AL)/M

||22 2 2(R2 2 .
L2(R2)®L2(R?) nl/ﬂLgm/2+33/u(||Bw||%V212(AL) + R)m+6/,u

(2.20) [DAe(HY)

We next introduce £ € (1,00) to obtain the estimate

172200y = D (557) @noee VX 803200,

neN? 7T|n|

>(2) X @ VxR = (o2) (IV <58 B = 3 @ne ¥ %5500,

In|<L In|>L

(2.21)



As in Section 2 of the previous paper [19], we have

- L24 "
(2.22) Z (Pn,, V x ]L)%Q(AL) < CGF(HB ||%/V2~2(AL) +R)°.
In|>L

By taking £ so that the right-hand side becomes ||V x jj-j||2L2(AL)/2 and using [V x jf|r2a,) =
IViEllLzany = (7/DIGE L2 aL), we have

er||V x jf||6L2(AL) 08||jf|\%2(AL)
(BByazn,, + B2 = (B By, + B

(2.23) ||JZJ||%2(AL) =z T4

Finally, we use Lemma 3.2 as in Section 2 of the previous paper [19] to complete the proof. For this

proof, Condition (A1) is not used.

3. PROOF OF LEMMA 1.2

As in Section 4 of the previous paper [19], we have only to prove

Lemma 3.1.

Under Condition (A2), there exist R,c € (0,00) such that

(3.1) E(exp(—sX (R))) < exp(—cRZv+1)(2v+3) 41/(2v+5))

for any s € [1,00) and R € (0, R].

In the rest of this section, we prove this lemma. We also represent the Gaussian random magnetic

field by

(3.2) B(x) = B+ / ol +y)(dy)

as in the previous paper [19], where w represents white noise. The condition v > 3/2 is extendible to

v > 1 in the following proof. For any 0 < R; < R, we have

X(R) — X(B1)

R
d
(3.3) :/ & / de“(m)+/ dx(B
' Ry 277 | JB(Ry) B(r)\B(F1)

+ / oz +y)w(dy) + / oz + ylw(dy) )
(supp o) ((supp o)*1)e

where B(R;) = {x € R? : |z| < R;) and (suppo)® = {z € R? : d(z,suppo) < R;}. The key point is

2

)

that w on ((suppo)f)¢ is independent of X (R;), B“(z) on B(R;), and w on (suppo)ft. Thus, as in



Section 4 of the previous paper [19], we have

(3.4) E(exp(~sX(R))) < E(exp(~sX (R1)))F(R, Ri: ),
where

(3.5) F(R, Ri3s) = Elexp{~sX (R, R1)}]

and

R dr

2
(3.6) X(R, Ry) ;:/ (/ da:/ U(ery)w(dy)) .
Ry 277 \JBeN\B(Ry)  J((suppa)Pir)e

Using the property that the distribution of a centered Gaussian random variable is determined by the
variance, as in Section 4 of the previous paper [19], we have

352 9
Thus, we have only to dominate the integral

R 2
d
(3.8) slx(rm) = [ o0 dy( / dxa<x+y>)
Ry 277 J((supp o) 1 )e B(r)\B(R1)

from above and below. For the upper estimate, we first use Condition (A2) (iii) to obtain

E[X (R, Ry)]

R ar 2
Sc?/ —/ dy(/ dxd(x,asuppa)”) )
Ry 277 J(supp o)™\ (supp o) B2 (B(y:r)\B(y:d(y,supp o))Nsupp &

where B(y : r) = y + B(r). By Condition (A2) (iv), the previous factor is estimated as

(3.9)

/ dzd(z,dsupp 0)”
(B(y:r)\B(y:d(y,supp o))Nsupp o

:/ ds/ H' (dx)d(x,dsupp o)’
d(y,supp o) S1(y:s)Nsupp o

(3.10) i
</ ds(s — d(y, supp @)} H' (S (y : ) N supp o)
d(y,supp o)
<cy / ds(s — d(y,supp o))" /2,
d(y,supp o)



where S*(y : s) = {x € R? : |z — y| = s}. Thus, we use also (A2) (ii) to obtain

R dr r—d(y,supp o)
E[X(R,Ry)] < cs/ —/ dy(/ s”+1/2ds)
Ry T J(suppo)r\(suppo)F1 0

R
dr
—e [ dy(r — d(y, supp @)+
Ry T J(suppo)r\(suppo)F1

2

(3.11) Lo 1
— C7/ ﬁ/ dt(?"—t)2y+3/ H (dy)
R T JRy {yeR?:d(y,supp o)=t} |Vd(y7bupp U)|
R T
dr / 9 cy
<es | L ar—pt3— 9 (R_ R,
= /Rl " Jr, (r=1) (R, R1>2u+4( )
where
1 2v+4 -
(2v +5)r dr
3.12 R,Ri)op1q := —_
( ) < ) 1>2 +4 (\/0 R1+T(R—R1)

is a harmonic mean of the probability distribution (2v + 5)r2***dr on the interval [Ry, R]. For the lower

estimate, we first use Condition (A2) (i) to restrict as

R 2
d
(3.13) E[X (R, Ry)] > / —T/ dy‘ / dzo ()
Ry 277 Js0. erea\Gupp o)™ | Bly,\B(y,d(y supp o)
By assuming R < e; and using Condition (A2) (v), the last factor is estimated as
/dxa(x) :/ dt/ H (dz)o ()
d(y,supp o St(y:t
(3.14) BN Bwdsuppo)) T TS0
T
- Cm/ dt(t — d(y,supp 0))"*1/2 > c11 (r — d(y, supp o))" +*/?
d(y,supp o)
Next, we use also (ii) and (vi) in Condition (A2) to obtain
®dr 2v+3
E[X(R, R1)] Zc1z | — dy(r — d(y,supp o))
R T 3(04,e1,e2)\ (supp o) i1
R T 1
d d
(315) =ci9 / ar / dt(?" _ t)2u+3 / M
R T JRr, {yeX(0.,c1,62):d(y,supp o)=t} |Vd(y,supp U)l
R r
dr C14 Qw45
2613/ —/ dt(r —t)*t3 = ——= (R~ Ry)*™.
Rt T JR, (R, R1)2v+4

Egs. (3.11) and (3.15) mean that their right-hand sides are the leading terms up to constants.
As in the proof of Lemma 4.2 in the previous paper [19], we take {R;}, as follows: taking ¢ € (0,1/2)
and introducing the sequence

1-—-2¢
(3.16) b =4 (L—¢)[1/e]
ek=T/e1 for k € ([1/€],00) NN,

for k € 0,[1/e]] NN,

10



whose elements are in (0, e) and whose sum is 1, we set Ry = R and

bR

(3.17) Rj_1 —R; = [Rs/@75)]

for j € ((k — 1)|RsY/®*+9) | k| RsY/?*+5) | NN,

where |a] = max{(—o00,a] NZ} and [a] = min{[a, 00) N Z} for any a € R. For

. SC14 2045
3.18 FR,_1,R;:s)<1— ——F——(R;_1 — R;
( ) ( j—1) 1Y) ) 2<Rj—17Rj>2V+4( j—1 J)
and
(3.19) log F(Rj_1, R, : 5) < e (Rj_1 — R;)?+?

= 2(Rj_1,Rj)aua

to be satisfied, it suffices that

(3.20) s(Rj_1 — R))*™ < c15R;
for some ¢;15 € (0,00), and subsequently

(3.21) e < c16RY 2v+3)

for some c16 € (0,00). Then we have

log E[exp(—sX(R))] < ZlogF(Rj,l,Rj :s)
(3.22) =

oo

R. . — R;))%vt5

< - SCl?Z ( J 1R ]) < _018€2u+481/(2y+5).
j=1 -1

For the above first inequality, we need only X (R) > > (X(R;-1) — X(R;)). By taking € as c1RY/ (2v+3))

we can complete the proof.

4. PROOF OF THEOREM 1

We first note that our Cameron—Martin space L?(R?) @ L?(R?) may be replaced by a smaller space,

Re 5
(4.1) FL(Ap,s)
Im

by Eq. (1.9), where ¥ = 25up, ,ccuppo |7 —¥loo and F is the Fourier transform on L?(R?). As its complete

orthonormal basis, we take

(4.2) P, = ®

11



for n € N2, where <I>n’L+§ is the function appeared in Eq. (2.2) where L is replaced by L + Y. Then, we
have

(4.3) IDXe(HE T2 2y 12 (m2) = Z (Da, Me(HE))?,

neN?

where Dg  A(HY) := (DX\(HY), ®n)r2r2)or2r?)- We modify Lemma 1.1 so that the left-hand side of
Eq. (1.10) is replaced by a partial finite sum of the right-hand side of the preceding equation. In the

previous paper [19], this step was done in Section 2. Because

(4.4) P
— . 1y "
—re [ 650, (0 [ dyesplizny-© ¥ T @00V x i),
L nienz T
we have
Y. (D A(HP))
neN2:|n|>R
(4.5
— . q)n’,L(y) ) 2
dfa( )2, 11 5(&) [ dyexp(i2my - €) Z Ei(q)n’,Lav X J1)r2(aL)
nEN2 AL ' EN? n’,L
for any R € (0,00). Moreover, as
— L—Fi 2 — —A® 'L
(4.6) P, (O = (T ) 2eeP e, (€ and T = b,

the right-hand side is

2
/ de®,, (OO x 72)(E)

ESP>

E€N2

o < L+2 4/ 5 = w 2
<( — ) [ dela(©)( < T7)(©)
L+X\4 N
<(Tg) Tollden IV < 52 Baa,

The quantity ||V x j¢[|3, (A,) Was dominated in Lemma 3.1 of the previous paper [19]. Hence, we obtain

Y (D, A(HE))?

neN2:|n|<R

(48) 2 a Xw ( = 5 qu>m5
TL (B [yeaa,y + BTN (1B [,y + B)™

- 03L22(HBWH%/V22(AL) +R)*/R.

12



In this inequality and in the following, {cj } j=1,2,... are universal constants distinct from those in the last

sections. Therefore, we obtain

Y. (De,M(HE))?
(49) neN2:|n|<R(w)

> o X, ( €2 T )mo
_2Lml(“Bw”%/V?’2(AL)+R)m2 Lm3(||BwH%V2,2(AL)+R)m47

by taking R as

(4.10) R(w) = { 2l TR B e,y + R }1/4
. - ms
Cc2
Cle <L7n3(HBw|‘€V212(AL)+R)T‘H,4 7-1?4;.1)

Thus, we modify the first estimate in Section 5 of the previous paper [19] as
Tr[X[Efn,EJrn] (Hf)]

<ea Y X((u(E) —nve(o).t(E)+m (EA(HE))) L™
14

~m7 m Bw 2 2,2 R m2
(4.11) X%X[ L) (1B w22 (a ) + R)M

X Z Xo(cgL™Mm™ ™4 g, )”™s

T E(cs L™™3m ™ m4Z2)NAL

X ) Xjo.00)(R(m, 2, w) = [n])(Da,, t(Ae(HE)))?,

neN?

where t(u) := (u+1)(5R)3/(5R +u + 1)3,

Lm1+22 mo—+4 1/4
(4.12) ‘memmz{ = )m} ,

7 Xw(cgL=m3sm=—m4 g,
and, for each interval I, X1 is a [0, 1]-valued smooth function on R such that ¥y =1 on I and x7(z) =0

if dist(z,I) > 1. As in the previous paper [19], we next use

Z X(#(E)—m)ve(0) £ (E)+n) (EA(HE))) (Da, t (A (HY)))?
(4.13) ¢

<Dg,, Tr[G(t(H}))] - Te[F(t(HE)) D, t(HE)]

and estimate each term on the right-hand side under the condition
(4.14) 1B 2yaza,y + R € [m—2,m + 1]

where I and G are functions on R such that ' = X[¢(m)—n)ve(0),t(E)4n, G = F, and F' = G = 0 on

(—o0, (t(E) —n) V t(0)]. For this, we first prove
(4.15) 1D, HH 28y 2 (ar) < csL®
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using
(416) ||D<I>nAf||L°°(AL) § Cng.

Eq. (4.16) is proven by Lemma 3.3 in the previous paper [19] and Condition (A1) (i) as follows:

|Ds,, A7 ||~ (a,) < c10L]|Da,, BY||wz1(a,)

ScllL Z / dz
Ar

(417) a€Z?|al1<2

[ extizns -€)(2n) T, ()i

R 1/2
<ent 30 Wl [flen PRas) 12,50,

a€Z% a1 <2
The rest of the proof of Eq. (4.15) is simpler than the corresponding part in the previous paper [19]
because D3 Af = 0.
Moreover, the remaining proof is also simpler than the corresponding part in the previous paper [19]
because our direction ®,, of the H-differentiation is independent of w; this independence simplifies the
application of the integration by parts on the Wiener space used to remove the H-differentiation from

Tr[G(H(HE))]-
5. LIFSHITZ TAIL

As stated in Section 1, the corollary of Theorem 1 is proven using the results regarding the Lifshitz
tail owing to Nakamura [12] and the theory of multi-scale analysis by Germinet and Klein [9]. However,
the Lifshitz-tail results in Nakamura [12] seem not to be applicable to the setting of this paper because
boundedness of the magnetic field is assumed in Nakamura [12].

In this section, we demonstrate that boundedness is not necessary and the results in Nakamura [12]
are extendible to a general setting including the Gaussian random magnetic field. Furthermore, we treat
the arbitrary dimensional setting: on a d-dimensional Euclidean space R? and a general probability space
(92, F,P), we consider a d x d skew-symmetric matrix-valued random field B* = (B%, (%)) 1< k<d,zer¢ wen
satisfying the following:

(A3) (i) There exists on the probability space a group of metrically transitive transformations {7} ,cpa

on €2 such that BT=%(y) = B¥(x +y) for any z,y € R%.
(ii) For each w € €, the map R? > x +— B“(z) is locally p-th integrable, where p = 2.

(iif) For each w € €, the 2-form B* =}, B% (z)dx; Adzy is closed in the sense of distributions.

14



(iv) There exists a nonnegative decreasing function ¢ on the interval [0, co) satisfying ¢(t) — 0 as
t — oo and the following: for any bounded subsets Ay, Ay of R, Y5 -measurable essentially

bounded function g and ¥ 5,-measurable integrable function f on 2, we have

[E(f9) = E(S)E(9)] < @(d(Ar, A2)) 1 f ][ llgll =,

where d(-,-) is the Euclidean distance and X, is the o-algebra generated by {B“(z)|x € A}
for any A C R,

(v) There exist r € (0,00) and 1 < j < k < d such that

1 w
P(% /DMT) k(W) (dy) §ZZ> >0,

where H? is the two-dimensional Hausdorff measure and Dy (r) = {y € R? : y? + 47 <

r?,yn =0 for h # j,k}.
Under assumptions (A3) (i) and (iii), there exists a R%valued random field AY = (A% ;(@)1<j<dzer, wen
for each L > 0 such that A 5> z — AY(x) is square integrable and is a vector potential of the magnetic
field B«: dz;lzl Af j(z)dz; = B on A, where d on the left-hand side is the exterior derivative in the

sense of distributions and Az = (—L/2, L/2)%. Indeed,

d

(5.1) Y () = /
k

(ear Biy)(@" + t(a — "))ty — o)t
1

is one of the random fields satisfying these, where z, is an arbitrary fixed point apart from Ap. We can

then define self-adjoint operators

d
(5.2) Hy# = "(i0, + A7, (2))?

=1

on L%(Ay) with the Dirichlet and the Neumann boundary conditions for # = D and # = N, respectively.
For these operators, let N(E; Hf#) be the numbers of eigenvalues not exceeding F. These numbers are
determined only by the magnetic field B and are independent of the choice of A} by gauge invariance.
Then, by Condition (A3) (i), the well-known limit

1
(5.3) mN(E; HY?) — N(E)  as L — .
L

exists for almost every w and defines a deterministic increasing function N (FE) independent of # € {D, N}
(Cf. Carmona and Lacroix [2], Doi, Iwatsuka, and Mine [3], Pastur and Figotin [14], Ueki [17]). This is

the integrated density of states for a Schrédinger operator with the magnetic field B“. To represent the



operator globally, we need a vector potential defined on R. For this it suffices to assume p > d/2 in

Condition (A3) (ii). Indeed, under this assumption, the R%-valued random field

1 d

(5.4) A% (z) = / > By (ta)taydt

0 k=1

gives the vector potential such that the map R? > x +— A¥(x) is locally square integrable. Then, by

Leinfelder and Simader [11], the operator

d

(5.5) H =) (i0, + A(x))?

=1

is essentially self-adjoint on C§°(R?), and (N (E))peo,c0) i its integrated density of states.

The main statement in this section is then the following:

Theorem 2 (Lifshitz tail).
Under Condition (A3), the integrated density of states (N(E))pejo,00) defined by Eq. (5.3) satisfies

—log(—logN(E)) _ d
. T 2B\ 08 VW) &
(5-6) B0 logE =73

To prove this, we use the following:

Proposition 5.1 (Cf. Theorem 2 in Nakamura [12]).

For any r € (0,00), we define a function on R by

2 1 ?
(5.7) We(z;r) = —v—— / ’Hl(dz)d( / H2(dy) B, (z +y + 2), Z) ,
d(d— 1)mrd Kgcgd S~ 27 /o, ;

where d(a,Z) is the distance to the set of integers from a for any a € R. Then, we have

(5.8) (0, HY N ) > (0, W (7))

for any ¢ € Dom(Hf’N) and L,r > 0.

The proof of this proposition is the same as that of Theorem 2 in Nakamura [12].
Proof of Theorem 2.

Clearly W (x;r) is bounded; it is also positive with a positive probability under Condition (A3) (v).
Thus, by Condition (A3) (iv), Theorem 4 in Kirsch and Martinelli [10] applies to the Schrédinger operator

(—=A+W*¥(-;7))/2 without change, and its integrated density of states N (E) satisfies limg o E%2log N1(E) <

16



0. By the Abelian theorem, its Laplace-Stieltjes transform Ny (t) = [;° e "FdN1(E) satisfies lim; o t=4/(@+2) 1og Ny () <
0 (Cf. Lemma 3.2 (ii) in Ueki [18]). Let N3(E) be the integrated density of states obtained by

1

(5.9) sl

N(E;(HPF +W*(5r))/2) — Na(E)  as L — oo,

Then, by the Feynman—Kac—It6 formula and the stochastic Stokes theorem, its Laplace—Stieltjes trans-
form E(t) is represented as

No(t) = {exp 3 /dsjk /dv2vB;"k (ww(s))

(5.10) 1<j<k<d

1 . 1
where w(s) = (w1 (s), wa(s), ..., wq(s)) is the d-dimensional Wiener process starting at the origin and
1 t
(5.11) Siu(t) = 5 | (wy(s)dun(s) = wi(s)dus(s).
0

By taking the absolute value of the integrand, we have j\};(t) < ],\},1 (t). Hence we have lim;_, t—4/(d+2) Jog ]Vg(t) <
0. By the Tauberian theorem, we have limg o E%/?log No(E) < 0 (Cf. Lemma 3.2 (i) in Ueki [18]). By
Proposition 5.1, we have Ny(E) < N(E). Therefore, we obtain limg o E%?1log N(E) < 0 and we can
complete the proof.

In Nakamura [12], the boundedness of the magnetic field was assumed to reduce the operator (—A +

W< (-;r))/2 without using the Laplace-Stieltjes transform of the integrated density of states.

APPENDIX A. UNIFORM NONDEGENERACY OF THE ZEROS OF THE BESSEL FUNCTIONS

The Fourier transform of the functions ¢ in Example 1.1 is expressed in terms of the Bessel functions.
Indeed, in (i), by taking the appropriate coordinate, the function is expressed as
2
—2 2
(A.1) o(w) = (@ =) _(aza;)*)",
j=1
where {a7};=1 2 are the eigenvalues of the matrix (a;;)1<i j<2. Therefore, as in Section 2 of the previous

paper [19], its Fourier transform is expressed as

VM0 (v +1)

o SRS
(A.2) 7(§) = laraz|m¥|(&1/a1,E2/az) [T VH(%U’(‘” GZ)D
where

B oo 1) t/2)2m+u+1
(A.3) Jua(t *T; m!T(m + v+ 2)



is the Bessel function of order v + 1 (Cf. Abramowitz and Stegun [1] 9.1.18 and 11.4.10). In (i), if
o1(z) = |z["1 (o7 — |z])} and o2(z) = (02° — 22)"?, then their Fourier transforms are

e 0_—11/1-1-1/21-\(1/1 4 1) o o
(A.4) o1(¢) = CETE TRy cos(2m71[€]) Jy, +1/2(27571€])

27220 (1 4 1)
V2 |§|l/2+1/2

(A.5) 72(8) = Jvy1/2(27521E])

(Cf. Erdélyi, Magnus, Oberhettinger, and Tricomi [4] 1.3.4 and 1.3.8).

To prove these examples satisfy Condition (A1) (ii), we use the following:

Proposition A.1.

There exist finite positive constants ¢y and co depending only on v such that
(A.6) [y (s + 2)[|Jv,s + 2| = ealz]

forany s € N and z € ((Ju,s—1 — Ju.s)/2, (Gu,s+1 — Ju.s)/2), where, for any s € N, s is the s-th positive

zero of the Bessel function J,, and j,o0 = —ju1.
Proof. We first use the infinite products representation

(A.7) Jy(z):%ﬁ{l_(_z )2}

Ju,s

and the asymptotic behavior; i.e., for any § > 0, there exists s, € N such that

(A.8) s — (g + % - %)w‘ <6/2

for any s, < s € N (Cf. Abramowitz and Stegun [1] 9.5.10 and 9.5.12). We estimate each factor of

, |ju,s0 + 2|” Juse + 22
A i +2)| = gt =5 T = (22
(4.9) uluso + 2 = 90813 H Juns

from below for s, < sp € N and z € R satistying |z| < (infsen(fu,s+1 — Ju.s)/2) A (§/4). For s = so, we

estimate as

, ) ,
(A.10) ‘1 _ (JV’SO +Z> ‘ > (vso +2)I2 o 12l o C1|Z|'

- 5 Z =
Jv,so Jv,s0 Jv,so S0

For sp < s € N, we have

Juso + 22 Juso T2 2 Juso +2 2
All) 1—-(—/—) >1- . >1- :
( ) ( Ju.s ) - <(s+y/2— 1/4)71'—5) - (I_(S+V/2— 1/4)7T—5J(Z++1/2)7T) ’
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where [t]z, 41/2)r = max{[0,t] N ((Z4 + 1/2)7)} for any t > 0. For s € NN [s., 50), we have

Juso 2\ Juso T2 2 Juso T2 2
Al2) (Tmse TV g ’ 1> ’ 1,
( ) ( Jus ) - ((3—|—V/2—1/4)7T—|—6) - (f(s+y/2—1/4)7r—|—5-|(z++1/2),r>

where [t](z, 41/2)x = min{[t,00) N ((Z4 +1/2)7)} for any ¢ > 0. We can also show

(A.13) [(so+s+v/2=1/4)7 =6z 41/2)x = [(S0 + /2 = 1/4)7 — ]z, 41/2)x + 57
for any s € N,
(A14) ((50 — S+ l//2 — ]./4)71’ + (ﬂ (Zy+1/2)n = ((SQ + l//2 — 1/4)7‘( + (ﬂ (Zy+1/2)n — ST

for any sg — s« > s € N, and
[(s0+v/2=1/0)7 + 6z, +1/2)x — [(S0 +v/2 = 1/D)7 — 0]z, +1/2)=
(A.15) mif d((so +v/2 — 1/, (Zy +1/2)7) > 6
om if d((so +v/2 — 1/4)m, (Zy +1/2)7) < 6.

Ifd((so+v/2—1/4)7,(Z++1/2)7) < §, then we apply Eq. (A.11) for so+2 < s € N and apply Eq. (A.12)

for s € NN [, 50 — 2]. We apply

(A.16) 1— (M)z > (ju,so + Jv,so+1 +.22')(jz/,so — Juso+l — z) > C2
Jv,so+1 Jv,s0+1 S0

for s = 59 + 1 and
(A_17) (M)2 1> (ju,so +jv7so—1 +.2Z)(ju,so _ju,so—l + Z) > 2
ju,sofl .71/’50—1 S0

for s = sy — 1. Next, we use the following estimate; there exists a finite positive constant cs such that

(A.18) I1 - (Z)Q( > camo

mo#me(Z4+1/2)m

for any mg € (Z4 + 1/2)7 and w € mg + (7/2)(—1,1). Indeed,,because

(A.19) H {1— (%)Z}ZCOSU)

me(Z4++1/2)m
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(Abramowitz and Stegun[1] 4.3.90), we have

I -]

COSW — COSMy

mo#Ame(Zy+1/2)w 1= (w/mo)>
2 _ 1
__ Mg |cosw —cosmol  mo / dtsin((1 — t)mg + tw)‘
(A.Q()) mo +w w — Mo 0
mo [ mo [2
:?/ dt|sin((1 — t)mgo + tw)| > 3 / dt| sin((1 — t)mo + tw)|
0 0

> |sint|.
6 t6m0+(7r/4)[ 1,1]

We take mg = [(so — 1 +v/2 = 1/4)7 + 0]z, 41/2)r = (S0 + 1 +1v/2 = 1/4)7 — 6](z,+1/2)x- Then we

have j, s, +2 € mo + (7/2)(—1,1) if § < 27/9, as |z| < 6/4. Therefore,

[T (Jvse + 2)]

264‘Z||j,150+2 H ’1 (]VSU+Z> ’
Ju,s

g I - (1)

[(sxtv/2=1/0)7+0T (2, 41/2)n >ME(Zy +1/2)7

(A.21)

>cs|z] /s
fd((so+v/2—1/4)m, (Z4++1/2)7) > 6, then d(ju. sy, (Z4+1/2)w) > 6/2 and d(jy 50+ 2, (Z4+1/2)7) > 6/4
as |z| < 6/4. Then we apply Eqgs. (A.11) and (A.12) for sp+1 < s € Nand s € NN[s,, s9—1], respectively,

and use Eq. (A.19). Then we have
[Ty (Gvso + 2)]

ju,so 1 2\ 2
"mw+dkww%+MIIh (et
Jv,s
Juso +2\2\
x - ()
( Il e

[(ssu+v/2—1/4)7+5] (z++1/2)-ﬂ->m€(Z++1/2)7‘r

(A.22)

>cs|z|/ s

Therefore, we have shown
(A.23) |y (s + 2)[|Ju,s + 20 = cnn]2]

for s, < s € N and z € R satisfying |z| < (infsen(ju,s+1 — Ju,s)/2) A (6/4) =: ¢. By the same asymptotic

behavior as in Eq. (A.8), there exists s,. € N such that

1
ju,s_(s'*‘z_*)ﬂ—‘gg

(A.24) -~ >
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for s,. < s € N. We also recall that

(A.25) Ju(t) = \/Z{ COoS (t — 21/2— 17r> —1—0(%)}

(Cf. Abramowitz and Stegun [1] 9.2.1). Then, we establish the existence of R, € (0,00) such that

(A.26) nf {7, (8)[V/[t] : ¢ € [Re; 00) \ [ (s + (=€ Q))} > 0.

seN

Therefore, by changing the constants, we can complete the proof of this proposition.

APPENDIX B. BEHAVIOR OF FUNCTION o AT Osupp o

In this section, we prove that the function ¢ in Example 1.1 (i) satisfies Condition (A2). We consider

only (iv) and (v) as the other conditions are easily checked. The fundamental lemma is the following:

Lemma B.1.
(B.1) VT(D+T) <HYS(D,T)) <2/T(D+T)
for any D, T > 0, where

(B.2) S(D,T) :={(x1,22) € [D, D +T] x [0,00) : 25 + 23 = (D + T)?}.

Then, we can easily prove that Condition (A2) (iv) holds as supp o is an ellipse: because the curvature

does not vanish. We have

{z € suppo : d(z,y) = s + d(y,suppo)}

(B.3)
ClzeR:jy—a|=ly—yo|+s @y —2) Y—vo) > |y — vo|*}
and
(B.4) H({x € suppo : d(z,y) = s+ d(y,supp o) }) < 2H (S(|y — yo |, 5)) < cs/2,

for any y € R? \ supp o, where y, € dsupp o is chosen so that |y — y,| = d(y,supp o). The uniqueness of
Yo is dues to the convexity of the ellipse.

To treat Condition (A2) (v), we dominate the function o from below on the set

(B.5) Sy(y,8,0) :={zx eR*: ly—a| =y —yo| + 5y —2) (y —¥o) = (ly — yo| + 5(1 = 8))ly — vol}

with some § € (0,1). Any point of this set is represented as

(B.6) Yo — s(1— &) é - z"| £ /(52— 0) + 2]y — yo|)s0'v =: x(+, 5,8,
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where ¢’ € [0,0] and v is one of the unit vectors perpendicular with y — y,. We set S, +(y,s,0) :=

{z(£,s,0") : 6 €[0,6]} We may assume o is represented as Eq. (A.1) with a; > ag > 0. Then, we have

oV (x(£,5,8)) =07 —Za Yo, — 175’)%:|:\/ 5(2—0") + 2|y — yo|)s0'v;)?
y—y

2
== 2 a0 - 8) = 5 V@ =8 + 2y — ue)s)?
j=1

Y= Yol
B.7 o
(B.7) —I—QZay(w 1—5,)%:!:\/ $(2—9") + 2|y — yo|)sd'v;)

> —a2(s2(1 =02+ (s(2 = &) + 2ly — yo|)sd)

2
+2Zayw (1-8) =020 20 /(5(2 = 3) + 2ly — ya)s0" Y a2y ;).

v =y Z

Thus, for an € € {+, —}, depending only on y and y,, we have

(B.8) oMY (x(e,5,8")) > —a2(s? + 2|y — yo|56) + 2a2s(1 — 6y, lZ:zdl.

We can show that

(Bg) yio' . Y—Yo Z 22(11(122 )
Yol |y —yo| — af + a3

Indeed, if we set y, = (b1 cos 6, by sin @), where b; = /a;, then an outward normal vector (ba cos 6, by sin 6)

of dsuppo at y, is parallel with y — y,,

_ by cos 0
(B.10) =Y _ (b2 sin® 0 + b2 cos 0) /2
[y = ol by siné
and
Yo Y—Yo . 2 . 9 2b1by 2a1 a9
(B 2 S (i 6+ b os )0 cos? + sind 0)) 2y > 30 — B0

Thus, we have

N 2(1 —d)zaa3s

(Bl?) 0'1/ (Z‘(i,s,é/)) > W

if s < (1—96)7a3/(a1(a? + ad)) and |y — yo| < (1 — 8)7a3/(20a1(a? + a3)). Therefore, for y € (0, (1 —
§)za3/(20ay(a? + a3)),7) and s € [0, (1 — 6)Ta3/(a1(a? + a3))], we have

2(1 — 6)Taja3s ¥

(B.13) {:z: cR?:0(z) > { e } ,d(z,y) = s+ d(y,supp 0)} D Soe(y,s,0)
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and

{ 2(1 — §)zaa3s

1 2.
’H({xER co(x) > Tra

51 } ,d(z,y) = s+ d(y, supp U)})

>H! (S(d(y, supp o) + s(1 — 8),50) > /s8(d(y, suppo) + s),

which implies Condition (A2) (v).
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