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Abstract. – Asymptotic behavior of the integrated density of states of a Schrödinger operator with

positive potentials located around all sample points of some random point field at the infimum of the

spectrum is investigated. The random point field is taken from a subclass of the class given by Shirai and

Takahashi in terms of the Fredholm determinant. In the subclass, the obtained leading orders are same

with the well known results for the Poisson point fields, and the character of the random field appears in

the leading constants. The random point field associated with the sine kernel and the Ginibre random

point field are well studied examples not included in the above subclass, though they are included in the

class by Shirai and Takahashi. By applying the results on asymptotics of the hole probability for these

random fields, the corresponding asymptotic behaviors of the densities of the states are also investigated

in the case where the single site potentials have compact supports. The same method also applies to

another well studied example, the zeros of a Gaussian random analytic function.

1. Introduction

In [24], Shirai and Takahashi introduced a class of random point fields by the character that the asso-

ciated Laplace transform is represented explicitly by Fredholm determinants of certain integral operators.

This representation may be regarded as analogies of that for the Poisson point process. For the Poisson

point process, the representation is the key to determine the asymptotic behavior of the integrated den-

sity of states. Indeed the famous proof of the Lifshits behavior by the Donsker-Varadhan’s theory is the

application of the theory to the representaion [5], [18]. In this paper we first intend to extend the results
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for the Poisson point process to random point fields in a suitable subclass of Shirai and Takahashi’s class.

The first attempt does not apply the most interesting examples in Shirai and Takahashi’s class. Those

are the random point field associated with the sine kernel and the Ginibre random point field. Then we

next intend to extend to these examples.

Let K be an integral operator with the kernel (K(x, y))x,y∈Rd such that

(i) (x, y) 7→ K(x, y) is continuous;

(ii) K(x, y) is square integrable in x and y for each fixed y and x,

respectively;

(iii) K(x+ x0, y + x0) = K(x, y) exp(iℓx0
(x− y)) for any x, y, x0 ∈ Rd,

where i =
√
−1 and ℓx0 is a real linear function depending on x0;

(iv) K is a nonnegative Hermitian operator.

We take α ∈ {2/m : m ∈ N}∪{−1/m : m ∈ N} so that I +αK is positive semi-definite if α < 0. For this

number α and the integrable operator K, let µα,K be the Borel probability measure on the space P(Rd)

of nonnegative integer valued Radon measures on Rd with vague topology such that∫
P(Rd)

µα,K(dξ) exp
(
−
∫
f(x)ξ(dx)

)
=exp

(−1

α
Tr log(I + α

√
1− e−fK

√
1− e−f )

)(1.1)

for any nonnegative continuous function f on Rd. On the existence of µ2,K , we do not have a general

theory for the complex setting (cf. [23]). However, if we restrict to a real valued K, then Theorem 1.8 of

Shirai and Takahashi [24] states that µ2,K is the Poisson point process with the intensity X(x)2dx, where

X is a centered Gaussian random field such that E[X(x)X(y)] = K(x, y). µ−1,K is the determinantal

point process with the kernel K. The existence of µ−1,K in a general complex setting is assured by

Theorem 3 of Soshinikov [26]. For any m ∈ N, µα/m,K is the m-fold convolution of µα,K/m (See the proof

of Lemma 3.3 in [24]). As α → 0, the quantity in (1.1) for µα,K converges to that for the Poisson point

process with the intensity K(0, 0)dx (See (1.4) in [24]).

At each sample point of the random measure ξ, we put a single site potential u, for which we assume

the boundedness, the nonnegativity, the continuity and the integrability: we define the random scalar

potential

Vξ(x) =

∫
u(x− y)ξ(dy),
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define the Schrödinger operator as the self-adjoint operator

(1.2) Hξ = −h∆+ Vξ

on the space L2(Rd) of the square integrable functions, and consider its integrated density of states N(λ)

(λ ∈ R) by the thermodynamic limit

(1.3)
1

|ΛR|
#{[0, λ] ∩ spec(HD

ξ,ΛR
)} −→ N(λ) as R→ ∞.

In (1.2) h is a positive constant to indicate the quantum effect. In (1.3) ΛR is a box (−R/2, R/2)d,

spec(A) is the spectral set for any self-adjoint operator A, and HD
ξ,ΛR

is the self-adjoint operator defined

by restricting Hξ to ΛR with the Dirichlet boundary condition. The existence and uniqueness of N(λ)

is proven by standard methods (cf. [3], [22]). This function increases only on the spectral set of Hξ and

the gradient reflects the density of the spectrum. Thus this function represents the distribution of the

spectrum. We here remark that the both of the spectrum σ(Hξ) of Hξ and the integrated density of states

N(λ) are proven to be independent of the sample value of ξ by the ergodicity. The spectrum of random

operator including Hξ is an important object in the research on the Anderson localization. However our

model Hξ is one of the random displacement models, for which the research on the Anderson localization

is given only for the Poisson case by a highly technical method based on Bourgain’s idea (cf. Germinet,

Hislop and Klein [10], [11], [12], Bourgain and Kenig [2]). For the proof of the Anderson localization, the

results on the behavior of the integrated density of states as in our paper are applied to obtain the initial

estimate to prove in the induction steps. As a more fundamental result, σ(Hξ) = [0,∞) is proven for the

Poisson case (Theorem (5.34) in Pastur and Figotin [22], Ando, Iwatsuka, Kaminaga and Nakano [1]).

Extending this result to our case is another remained problem.

In this paper we investigate the asymptotic behavior of N(λ) at the infimum of the spectrum of Hξ.

For this subject, we have many results in many situations [3], [15], [22], [31]. We first assume the strict

positivity

(P) I + αK is strictly positive definite if α < 0.

Then we can write the leading terms explicitly. The leading orders are same with those for the Poisson

point process and the differences appear in the leading constants. The leading constants also tend to

those for the Poisson point process as α tends to 0. The results are Theorems 1, 2, 3 below. If the strict

positivity (P) is not satisfied and α < 0, then we lost the explicit leading terms, from which we conjecture
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that the leading orders are also different with those for the Poisson point process. This case includes the

following well-studied cases: α = −1 and

(1.4) K(x, y) = Ks(x, y) :=
sinπ(x− y)

π(x− y)
for x, y ∈ R

or

K(x, y) = Kg(x, y)

:=
1

π
exp

(
− |x|2

2
− |y|2

2
+ (x1 − ix2)(y1 + iy2)

)
for x, y ∈ R2.

(1.5)

The kernel (1.4) is called the sine kernel, and µ−1,Kg
with the kernel (1.5) is called the Ginibre random

point field (cf.[13]). µ−1,Ks and µ−1,Kg describe the equilibrium states of the infinite number of Brownian

particles interacting via 1 and 2-dimensional Coulomb potentials, respectively. For these aspects and

other relating aspects, we refer Soshnikov [26]. In particular, the asymptotics of the hole probabilities

µ−1,Ks(ξ((−R,R)) = 0) and µ−1,Kg (ξ(B(R)) = 0) as R → ∞ are known, where B(R) = {x ∈ R2 : |x| <

R}. From these we know the leading terms of corresponding N(λ) as λ ↓ 0 if suppu is compact. The

results are Theorem 4 and (6.1) below. The asymptotics of the hole probability µ−1,Kg
(ξ(B(R)) = 0) to

obtain the asymptotics of the integrated density of states is same for another famous example, the case

that µ−1,Kg
is replaced by the probability distribution µGAF of

∑
a∈X δa for the sets X of the zeros of a

Gaussian analytic function

(1.6) fGFA(z) =

∞∑
n=0

(Xn + iYn)

√
Ln

n!
zn for z = x1 + ix2 ∈ C,

where L ∈ (0,∞) and {Xn, Yn}n are independently and identically distributed random valuables obeying

the normal distribution N(0,1/2) with the mean 0 and the valiance 1/2. Moreover the asymptotics of

N(λ) for the compact support single site potential is determined until the leading constant in the 1-

dimensional case and is determined until the leading order in the 2-dimensional case. Thus we state

the results in the general form as Theorems 4 and 5 below. In the higher dimensional cases, the author

conjecture that more precise information of the random field may be necessary since complex states may

contribute to the leading term of the asymptotics of N(λ). For this aspect, refer [8] for example. The

obtained leading orders for the sine kernel and the Ginibre field are different with those for the Poisson

point process, and the results mean that the low lying spectrum becomes thinner.

The difference of the behavior of these particle from those without interactions are studied recently (cf.

Osada [20]). If the interaction is absent, the Poisson point process can describe the equilibrium states.

For a milder interaction, Sznitman [28] determined the asymptotic behavior of the survival probability
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of the Brownian motion among the traps around the sample points of the corresponding Gibbs measure.

This result is equivalent with that of the asymptotic behavior of N(λ) as λ ↓ 0 is determined in the case

where µα,K is replaced by the Gibbs measure and suppu is compact. In this case, the leading order of the

corresponding asymptotics of the density of states are same with the Poisson case. The equivalence holds

for general random point fields and our results also determine the survival probability of the Brownian

motion among the traps around the sample points of our random point fields.

In the case that suppu is not compact, the sufficient upper estimate for the asymtotics of N(λ) as

λ ↓ 0 has been obtained by applying the Donsker and Varadhan’s large deviation theory for the Poisson

case [18], [19]. For the application, the key step is the compactification of the configuration space. In

a similar setting, the corresponding compactification is introduced in Section 10.C in [22], where the

same asymptotic problem is considered for the case that the potential is given as a smoothed square of

a Gaussian random field. However the same method seems to need extra conditions in our case if α < 0.

In this paper, we apply another compactification by Gärtner and König [9]. For this aspect, see Section

4 and Remark 4.1 below.

The organization of this paper is as follows. In the following three sections, we assume the positivity

(P) and give the leading term for the asymptotics of N(λ) as λ ↓ 0: in Section 2, we treat the case that

the effect of the potential is strong and the leading term is determined mainly by the classical effect. In

Section 3, we treat the case that the effect of the potential is weak and the leading term is determined

mainly by the quantum effect. In Section 4, we treat the critical case between the above two cases, where

the leading term is determined by both the classical and the quantum effects. This situation is common

with the same problem for the Poisson point process. In the last two sections, we treat cases without

the condition (P): in Section 5, we treat the random field µ−1,Ks
with the sine kernel Ks. In Section 6,

we treat the Ginibre random point field µ−1,Kg . In Appendix A, we determine the asymptotics of the

survival probability of the Brownian motion among the traps around the sample points of our random

point fields.

2. Slowly decreasing potentials with the condition (P)

Our first result is the following:
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Theorem 1. In the above setting, we further assume the condition (P), the positivity of u, and that

u(x) = C0|x|−β(1 + o(1)) as |x| → ∞ with some β ∈ (d, d+ 2). Then we have

(2.1) lim
λ↓0

λγ logN(λ) = −Cd,βC
γ
0C

γ+1
d,β,α,K ,

where γ = d/(β − d), Cd,β = (β − d)dγ/βγ+1,

(2.2) Cd,β,α,K = |Sd−1|
∫ ∞

0

drrd−1 1

α
{log(I + α(1− exp(−r−β))K)}(0, 0),

|Sd−1| is the d− 1-dimensional volume of the d− 1-dimensional unit surface Sd−1 = {x ∈ Rd : |x| = 1},

and ({log(I + α(1 − exp(−r−β))K)}(x, y))x,y∈Rd is the integral kernel of the operator log(I + α(1 −

exp(−r−β))K)

Remark 2.1. When K is the convolution operator defined by K(x, y) = k(x− y), the constant in (2.2) is

written in terms of the Fourier transform

k̂(ζ) =

∫
Rd

exp(−2πiζ · x)k(x)dx

as

1

α
{log(I + αtK)}(0, 0) =

∫
Rd

dζ
1

α
log(1 + αtk̂(ζ)),

since

Kn(0, 0) =

∫
k(−x1)

( n−2∏
j=1

k(xj − xj+1)
)
k(xn−1)

n∏
j=1

dxj

=

∫
exp

(
− 2πix1 · ζ1 +

n−2∑
j=1

2πi(xj − xj+1) · ζj

+ 2πixn−1 · ζn
)( n∏

j=1

k̂(ζj)dxjdζj

)

=

∫
exp

(
−

n−1∑
j=1

2πixj · (ζj − ζj+1)
)( n∏

j=1

k̂(ζj)dxjdζj

)
=

∫
k̂(ζ)ndζ

for any n ∈ N, where (Kn(x, y))x,y∈Rd is the integral kernel of the operator Kn.

The order γ is same the case that µα,K is replaced by the Poisson point process. The constant Cd,β,α,K

converges to that for the Poisson point process with the intensity K(0, 0)dx. The result in the Poisson
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case was proven by Pastur [21]. The results are independent of the constant h. In fact these asymptotics

coincide with those of the corresponding classical integrated density of states defined by

Nc(λ) =

∫
µα,K(dξ)[|{(x, p) ∈ ΛR × Rd : Hξ,c(x, p) ≤ λ}|](2π

√
hR)−d

for any R ∈ N, where | · | is the 2d-dimensional Lebesgue measure and

Hξ,c(x, p) =

d∑
j=1

p2j + Vξ(x)

is the classical Hamiltonian (cf. [16]). Therefore we may say that only the classical effect from the scalar

potential determines the leading term for β < d+ 2.

Proof. We first investigate the leading term as t→ ∞ of the Laplace transform of the integrated density

of states represented by the expectation of the diagonal part of the integral kernel of the heat semigroup

generated by the Schrödinger operator

(2.3) Ñ(t) :=

∫
R
e−tλdN(λ) =

∫
µα,K(dξ) exp(−tHξ)(0, 0)

((5.17) in [22]) and the Feynman-Kac formula

exp(−tHξ)(x, y)

=E2ht,y
0,x

[
exp

(
− 1

2h

∫ 2ht

0

Vξ(w(s))ds
)]

exp
(
− |x− y|2

4ht

) 1

(4πht)d/2
,

where E2ht,y
0,x is the expectation with respect to the d-dimensional Brownian motion w conditioned that

w(0) = x and w(2ht) = y.

For the upper estimate, we use the bound

(2.4) Ñ(t) ≤ Ñ1(t)(4πht)
−d/2

in Theorem (9.6) in [22], where

Ñ1(t) =

∫
µα,K(dξ) exp(−tVξ(0)).

By (1.1), this is rewritten as

(2.5) Ñ1(t) = exp
(−1

α
Tr log(I + α

√
1− e−tu(−·)K

√
1− e−tu(−·))

)
.
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By Mercer’s theorem, we have

Tr[(
√
1− e−tu(−·)K

√
1− e−tu(−·))n]

=

∫
Rdn

( n∏
j=1

dxj(1− e−tu(−xj)
)
K(x1, x2)K(x2, x3) · · ·K(xn, x1)

for any n ∈ N. By changing the variable as x1 → t1/βx1, the right hand side is rewritten as

td/β
∫
Rd

dx1(1− e−tu(−t1/βx1))

∫
Rd(n−1)

( n∏
j=2

dxj(1− e−tu(−xj)
)

×K(t1/βx1, x2)K(x2, x3) · · ·K(xn, t
1/βx1).

By changing the variable as xj − t1/βx1 → xj for 2 ≤ j ≤ n, this is rewritten as

td/β
∫
Rd

dx1(1− e−tu(−t1/βx1))

∫
Rd(n−1)

( n∏
j=2

dxj(1− e−tu(−xj−t1/βx1)
)

×K(0, x2)K(x2, x3) · · ·K(xn−1, xn)K(xn, 0).

By the square integrability of K(x, y) in each variable, we have

lim
t→∞

t−d/β Tr[(
√
1− e−tu(−·)K

√
1− e−tu(−·))n]

=

∫
Rd

dx(1− exp(−C0|x|−β))nKn(0, 0).

(2.6)

Since the function log(1 + αt)/(αt) of the variable t is uniformly approximated by polynomials on the

interval [0, ∥K∥op], we have

lim
t→∞

t−d/β 1

α
Tr log(I + α

√
1− e−tu(−·)K

√
1− e−tu(−·))

=C
d/β
0 Cd,β,α,K .

(2.7)

Indeed (2.7) is proven as follows: for any ε > 0, there exists N ∈ N such that

sup
t∈[0,∥K∥op]

∣∣∣∣∣ 1αt log(1 + αt)−
N∑

n=0

(−αt)n

n+ 1

∣∣∣∣∣ < ε.

Then we have∣∣∣∣ 1

td/β
Tr log(I + α

√
1− e−tu(−·)K

√
1− e−tu(−·))− 1

α

∫
Rd

dx{log(I + α(1− exp(−C0|x|−β))K)}(0, 0)
∣∣∣∣

≤ I1 + I2 + I3,
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where

I1 =

∣∣∣∣ 1

td/β
Tr log(I + α

√
1− e−tu(−·)K

√
1− e−tu(−·))

−
N∑

n=0

(−α)n

(n+ 1)td/β
Tr[(

√
1− e−tu(−·)K

√
1− e−tu(−·))n+1]

∣∣∣∣
I2 =

∣∣∣∣ N∑
n=0

(−α)n

(n+ 1)td/β
Tr[(

√
1− e−tu(−·)K

√
1− e−tu(−·))n+1]

−
∫
Rd

dx

N∑
n=0

(−α)n

n+ 1
(1− exp(−C0|x|−β))n+1Kn+1(0, 0)

∣∣∣∣
and

I3 =

∣∣∣∣ ∫
Rd

dx

N∑
n=0

(−α)n

n+ 1
(1− exp(−C0|x|−β))n+1Kn+1(0, 0)

− 1

α

∫
Rd

dx{log(I + α(1− exp(−C0|x|−β))K)}(0, 0)
∣∣∣∣

By (2.6) with n = 1, we have

I1 ≤ ε

td/β
Tr[

√
1− e−tu(−·)K

√
1− e−tu(−·)] ≤ c1ε

with some c1 ∈ (0,∞) independent of t. By (2.6) with general n, we have I2 → 0 as t → ∞. We also

have

I3 ≤ ε

∫
Rd

dx{log(I + α(1− exp(−C0|x|−β))K)}(0, 0).

By these we obtain (2.7). From (2.7), we have

lim
t→∞

t−d/β log Ñ(t) ≤ lim
t→∞

t−d/β log Ñ1(t) ≤ −Cd/β
0 Cd,β,α,K ,

where ∥ · ∥op is the operator norm.

For the lower estimate, we use the bound

(2.8) Ñ(t) ≥ R−d exp(−th∥∇ψR∥22)Ñ2(t)

which holds for any R ≥ 1 and ψ1 ∈ C∞
0 (Λ1) such that ∥ψ1∥2 = 1, where ψR = ψ1(·/R)/Rd/2, ∥ · ∥2 is

the L2-norm, and

Ñ2(t) =

∫
µα,K(dξ) exp

(
− t

∫
dxψR(x)

2Vξ(x)
)

(Theorem (9.6) in [22]). As in (2.5), we have

Ñ2(t) = exp

(
−1

α
Tr log

(
I + α

{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

))
.
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We take R as t1/β . Then, as in the upper estimate, we have

Tr

[({
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

)n]
=td/β

∫
Rd

dy1

{
1− exp

(
−
∫
dx1ψ1(x1)

2tu(t1/β(x1 − y1))
)}

×
∫
Rd(n−1)

( n∏
j=2

dyj

{
1− exp

(
−
∫
dxjψ1(xj)

2tu(t1/β(xj − y1)− yj))
)}

×K(0, y2)K(y2, y3) · · ·K(yn−1, yn)K(yn, 0)

and

lim
t→∞

t−d/β Tr

[({
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

)n]
=

∫
Rd

dy
(
1− exp

(
−
∫
dxC0ψ1(x)

2

|x− y|β
))n

Kn(0, 0)

for any n ∈ N. Thus we have

lim
t→∞

t−d/β 1

α
Tr log

(
I + α

{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

)
=
1

α

∫
Rd

dy
{
log

(
I + α

(
1− exp

(
−

∫
dxC0ψ1(x)

2

|x− y|β
))
K
)}

(0, 0),

(2.9)

where ({
log

(
I + α

(
1− exp

(
−
∫
dxC0ψ1(x)

2

|x− y|β
))
K
}
(x′, y′)

)
x′,y′∈Rd

is the integral kernel of the operator

log
(
I + α

(
1− exp

(
−
∫
dxC0ψ1(x)

2

|x− y|β
))
K
)
.

Since β < d+ 2, we have

lim
t→∞

t−d/β log Ñ(t) ≥ lim
t→∞

t−d/β log Ñ2(t)

≥− 1

α

∫
Rd

dy
{
log

(
I + α

(
1− exp

(
−
∫
dxC0ψ1(x)

2

|x− y|β
))
K
)}

(0, 0).

Since ψ1 is arbitrary, we have

lim
t→∞

t−d/β log Ñ(t) = −Cd/β
0 Cd,β,α,K .

Now we can complete the proof by the Tauberian theorem. 2
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3. Rapidly decreasing potentials with the condition (P)

Our second result is the following:

Theorem 2. In the above setting, we further assume the condition (P), the nonnegativity of u, the

existence of ε0, r0 > 0 such that u ≥ ε0 on B(r0), and that u(x) = o(|x|−d−2) as |x| → ∞. Then we have

(3.1) lim
λ↓0

λd/2 logN(λ) = −hd/2λ1(−∆B(1))
d/2Cα,K |B(1)|,

where

Cα,K =
1

α
{log(I + αK)}(0, 0),

({log(I + αK)}(x, y))x,y∈Rd is the integral kernel of the operator log(1 + αK), |B(1)| is the volume of

the d-dimensional unit ball B(1) = {x ∈ Rd : |x| ≤ 1}, −∆B(1) is the Dirichlet Laplacian on B(1) and

λ1(−∆B(1)) is the least eigenvalue of −∆B(1).

The result is also same with that for the case that µα,K is replaced by the Poisson point process

with the intensity Cα,K . That theorem is well known as one of the successful application of the Donsker

and Varadhan’s large deviation theorem: Nakao [18] showed that the behavior was essentially proved in

Donsker and Varadhan [6].

Contrarily to the results in the last subsection, the result in these theorems depend on h and the right

hand side of (3.1) are strictly less than that of (2.1). Therefore we may say that the quantum effect

appears in Theorem 2. The existence of such behavior was pointed out by the physicist, Lifschits [17]

and is called the Lifschitz behavior.

Proof.

As in the last subsection, we investigate the leading term as t→ ∞ of the Laplace transform Ñ(t) and

use the Tauberian theorem.
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For the lower estimate, we still use the bound (2.8). In this case, we take R = t1/(d+2). Then we have

lim
t→∞

t−d/(d+2) Tr

[({
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

)n]
=| suppψ1|Kn(0, 0),

lim
t→∞

t−d/(d+2) 1

α
Tr log

(
I + α

{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

×K
{
1− exp

(
− t

∫
dxψR(x)

2u(x− ·)
)}1/2

)
=Cα,K | suppψ1|,

and

lim
t→∞

t−d/(d+2) log Ñ(t) ≥ −h∥∇ψ1∥22 + lim
t→∞

t−d/(d+2) log Ñ2(t)

≥− h∥∇ψ1∥22 − Cα,K | suppψ1|.

We here used also the condition u ≥ ε0 on B(r0). Since ψ1 is arbitrary, we have

lim
t→∞

t−d/(d+2) log Ñ(t) ≥ − inf
R>0

{hλ1(−∆D
B(1))

R2
+ Cα,KR

d|B(1)|
}

=− (Cα,K |B(1)|)2/(d+2) d+ 2

2

(2
d
hλ1(−∆D

B(1))
)d/(d+2)

=: −Cα,K,d,h.

The upper estimate was firstly obtained by the Donsker and Varadhan’s large deviation theory for the

Poisson case. By the same theory, we can treat the present case as in our proof of the next theorem,

Theorem 3. We here discuss a second proof following Sznitman’s coarse graining method for the Poisson

case [29]: we follow the second version of the upper bound in Section 4.5 in [29]. This method is useful

when the single site potential u has a compact support. Moreover the vantage point of this method is

applicable to the case that the single site potentials u around the sample points of ξ are replaced by the

Dirichlet boundary condition on the nonpolar sets around the sample points. For these aspects, refer

Appendix A below. As in [18] and [29], the problem is reduced to the upper estimate of

(3.2) Ñ3(t) =

∫
µα,K(dξ)E

[
exp

(
− 1

2h

∫ 2ht

0

Vξ(w(s))ds
)]
,

where E is the expectation with respect to the d-dimensional Brownian motion w starting at 0. It is

enough to show

lim
t→∞

t−d/(d+2) log Ñ3(t) ≤ −Cα,K,d,h=1/2

12



in the case that h = 1/2 and u = C01B(r0) for some C0, r0 ∈ (0,∞), where B(r0) = {x ∈ R2 : |x| < r0}.

As in [29], we take ε = t−1/(d+2) and use the scaling property of the Brownian motion to rewrite as

(3.3) Ñ3(t) =

∫
µα,Kε(dξ)E

[
exp

(
−
∫ τ

0

ds

∫
ξ(dx)uε(w(s)− x)

)]
,

where τ = td/(d+2), Kε is the integral operator with the kernel (K(x/ε, y/ε)/εd)x,y∈Rd , and uε =

u(·/ε)/ε2. Now the only difference with the Poisson case is the law of the point process ξ. Thus we

have only to modify Proposition 4.2 and the probabilistic estimate in (5.81) in Chapter 4 of [29] if d ≥ 2.

A sufficient modification can be obtained since the following property means our point process behaves

similarly as the original Poisson point process with the intensity Cα,K/ε
d: for any Borel set A in Rd with

|A| <∞, we have

µα,Kε
(ξ(A) = 0) = lim

s→∞

∫
µα,Kε

(dξ) exp(−sξ(A))

= lim
s→∞

exp
(−1

α
Tr log(I + α

√
1− exp(−s1A)Kε

√
1− exp(−s1A))

)
=exp

(−1

α
Tr log(I + α1AKε1A)

)
and

(3.4) lim
t→∞

εd logµα,Kε
(ξ(A) = 0) = −Cα,K |A|

as in (2.7). The proof for the case of d = 1 is given by Theorem 3.1 in Chapter 3 of [29]. 2

4. Critically decreasing potentials with the condition (P)

For the critical case between the last two subsections, we prove the following:

Theorem 3. In the above setting, we further assume the condition (P), the positivity of u, and that

u(x) = C0|x|−d−2(1 + o(1)) as |x| → ∞. Then we have

lim
λ↓0

λd/2 logN(λ) =
−2dd/2

(d+ 2)1+d/2
C(h,C0, α,K)1+d/2,

where C(h,C0, α,K) is

inf
{
h

∫
Rd

|∇ψ(x)|2dx+Φ(ψ2) : ψ ∈ C∞(Rd),

∫
ψ(x)2dx = 1

}
,

Φ(ϕ)

:=

∫
Rd

dy
1

α

{
log

(
I + α

(
1− exp

(
− C0

∫
Rd

ϕ(x)dx

|x− y|d+2

))
K
)}

(0, 0)

(4.1)
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for any nonnegative integrable function ϕ, and({
log

(
I + α

(
1− exp

(
− C0

∫
Rd

ϕ(x)dx

|x− y|d+2

))
K
)}

(x′, y′)
)
x′,y′∈Rd

is the integral kernel of the operator

log
(
I + α

(
1− exp

(
− C0

∫
Rd

ϕ(x)dx

|x− y|d+2

))
K
)
.

The order d/2 is also same with that for the case that µα,K is replaced by the Poisson point process

with the intensity Cα,K . The quantity C(h,C0, α,K) also converges to that for the Poisson point process

with the intensity K(0, 0)dx. The result for the Poisson case was obtained in Ôkura [19]. The results

show that both of the quantum effect and the potential appear in the leading term.

Proof.

As in the last two subsections, we investigate the leading term as t → ∞ of the Laplace transform

Ñ(t) and use the Tauberian theorem.

For the lower estimate we modify the proof for the lower estimate of Theorem 1 as ψ1 ∈ C∞
0 (Λs) for

any s ≥ 1 and R = t1/(d+2). Then we obtain

lim
t→∞

t−d/(d+2) log Ñ(t) ≥ −C ′(h,C0, α,K),

where C ′(h,C0, α,K) is the quantity obtained by replacing C∞(Rd) by the space C∞
0 (Rd) of all smooth

functions with compact supports in the definition of C(h,C0, α,K). Since Φ(ψ2) < ∞ for any ψ ∈

C∞
0 (Rd), we have C(h,C0, α,K) ≤ C ′(h,C0, α,K) <∞. For any ε > 0, we have ψε ∈ C∞(Rd) such that

∥ψε∥2 = 1 and h∥∇ψε∥22 + Φ(ψ2
ε) ≤ C(h,C0, α,K) + ε. By the integrability, we have Rε ∈ (0,∞) such

that ∥1B(Rε)cψε∥2 ≤ ε. We now take ζε ∈ C∞
0 (Rd) such that ζε = 1 on B(Rε) and |∇ζε| ≤ ε. Then we

have ψ̃ε := ζεψε/∥ζεψε∥2 ∈ C∞
0 (Rd) such that ∥ψ̃ε∥2 = 1. By a simple calculation, we have ∥∇ψ̃ε∥2 ≤

(∥∇ψε∥2+ ε)/(1− ε). We also have Φ(ψ̃ε

2
) ≤ Φ(ψ2

ε/∥ζεψε∥22) = Ψ(ψ2
ε)(1+o(1)) as ε ↓ 0. Thus we obtain

h∥∇ψ̃ε∥22 + Φ(ψ̃ε

2
) ≤ C(h,C0, α,K)(1 + o(1)) as ε ↓ 0. Therefore C ′(h,C0, α,K) = C(h,C0, α,K) and

we obtained the necessary lower estimate.

To obtain the upper estimate, we apply the Donsker and Varadhan’s large deviation theory as in

Gärtner and König [9] for the seccond term for the negative Poisson potential. The idea of Gärtner

and König is to apply the estimate (4.3) below. Before this, we use the reduction in Ôkura [19]: for

arbitrarily fixed C1 ∈ (0, C0), we take a nonnegative continuous function ρ and a nonnegative Borel

measurable function v such that
∫
ρ(x)dx = 1, supp ρ ⊂ B(1), v(x) = C1|x|−d−2(1 + o(1)) as |x| → ∞,
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and u ≥ ρ ∗ v, where (ρ ∗ v)(x) =
∫
ρ(x− y)v(y)dy is the convolution. Then the proof is reduced to show

lim
t→∞

t−d/(d+2) log Ñ1(t) ≤ −C(h,C1, α,K),

where Ñ1(t) is the Laplace transform of the integrated density of states for the operator Hξ where the

single site potential u is replaced by ρ ∗ v. As in (3.3), we take ε = t−1/(d+2) and τ = td/(d+2) and use

the scaling property of the Brownian motion to rewrite as

Ñ1(t) =

∫
µα,Kε

(dξ)E2hτ,0
0,0

[
exp

(
− 1

2h

∫ 2hτ

0

dsV ε
ξ (w(s))

)] 1

(4πht)d/2
,

where

V ε
ξ (x) =

∫
ξ(dy)

∫
dzρε(x− y − z)vε(z),

ρε(x) = ρ(x/ε)/εd and vε(x) = v(x/ε)/ε2. For R(t) = tR with a positive constant R, we have

P 2hτ,0
0,0

(
sup

0≤s≤2hτ
|w(s)| ≥ R(hτ)

) 1

(4πht)d/2
≤ exp(−c1τR2),

which decays faster than Ñ(t) if R is sufficiently large. Thus the problem is reduced to the asymptotics

of

Ñ2(t) =

∫
µα,Kε(dξ)E

2hτ,0
0,0

[
exp

(
− 1

2h

∫ 2hτ

0

dsV ε
ξ (w(s))

)
: sup
0≤s≤2hτ

|w(s)| < R(hτ)
] 1

(4πht)d/2
.

By ∫ 2hτ

0

dsV ε
ξ (w(s)) ≥

∫ 2hτ−δ

δ

dsV ε
ξ (w(s))

and

eδ∆/2(x, y) ≤ 1/(2πδ)d/2,

with small δ > 0, the problem is reduced to the asymptotics of

Ñ3(t) =

∫
µα,Kε

(dξ)

∫
B(R(hτ))

dx1

∫
B(R(hτ))

dx2

× exp
(
− |x1 − x2|2

4hτ

) 1

(4πhτ)d/2

× E2hτ,x2

0,x1

[
exp

(
− 1

2h

∫ 2hτ

0

dsV ε
ξ (w(s))

)
: sup
0≤s≤2hτ

|w(s)| < R(hτ)
]
.

(4.2)

We now apply the estimate in Proposition 1 in Gärtner and König [9]: by (3.2) in [9],∫
Λr

dθ

|Λr|

∫ 2hτ

0

dsΦr(w(s)− θ) ≤ c2h
2τ

r
,
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where

Φr(x) =
∑
k∈Zd

h|∇η(rk + x)|2

and η is a real smooth function such that η = 1 on Λr−1, η = 0 on Λc
r+1 and

∑
k∈Zd

η(rk + x)2 = 1

on Rd. By this estimate and and the Jensen inequality, we have

Ñ3(t) ≤ exp
(c2hτ

2r

)∫
Λr

dθ

|Λr|

∫
µα,Kε(dξ)

∫
B(R(hτ))

dx1

∫
B(R(hτ))

dx2

× exp
(
− |x1 − x2|2

4hτ

) 1

(4πhτ)d/2

× E2hτ,x2

0,x1

[
exp

(
− 1

2h

∫ 2hτ

0

ds(Φr(w(s)− θ) + V ε
ξ (w(s)))

)
: sup
0≤s≤2hτ

|w(s)| < R(hτ)
]

≤ exp
(c2hτ

2r

)
|B(R(hτ))|

∫
Λr

dθ

|Λr|

∫
µα,Kε

(dξ)

× exp
(
− τλ1(−h∆+Φr(· − θ) + V ε

ξ )B(R(hτ))

)
.

By (3.1) in [9], we have

λ1(−h∆+Φr(· − θ) + V ε
ξ )B(R(hτ))

≥ inf{λ1(−h∆+ V ε
ξ )Λr+1(rk+θ) : k ∈ Zd s.t. Λr+1(rk + θ) ∩B(R(hτ)) ̸= ∅}.

(4.3)

By using also the stationarity of our random field, we have

Ñ3(t) ≤
c3R(hτ)

2d

rd
exp

(c2hτ
2r

)∫
µα,Kε

(dξ) exp(−τλ1(−h∆+ V ε
ξ )Λr+1

).

Now, for the uniform ergodicity condition (U) in P-113 of [4] for the large deviation theory, we will replace

the Dirichlet condition by the periodic boundary condition:

λ1(−h∆+ V ε
ξ )Λr+1 ≥ λ1(−h∆+ V ε

ξ )
p
Λr+1

,

where (−h∆ + V ε
ξ )

P
Λr+1

is the self-adjoint operator associated to the closed extension of the quadratic

form

C∞
P (Λr+1)× C∞

P (Λr+1) ∋ (ϕ, ψ) 7→
∫
Λr+1

dx{h(∇ϕ(x)) · (∇ψ(x)) + V ε
ξ (x)ϕ(x)ψ(x)}
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on C∞
P (Λr+1) = {ϕ : Λr+1 → R : C∞, ϕ = ϕ̃ on Λr+1 for some ϕ̃ ∈ C∞(Td

r+1)} and Td
r+1 = (R/((r +

1)Z))d is the torus. Thus we obtain

Ñ3(t) ≤
c3R(hτ)

2d

rd
exp

(c2hτ
2r

)∫
µα,Kε(dξ)Tr[exp(−τ(−h∆+ V ε

ξ )
P
Λr+1

)].

As in (4.2), the problem is reduced to the asymptotics of

Ñ4(t) =
c3R(hτ)

2d

rd
exp

(c2hτ
2r

)∫
µα,Kε

(dξ)

∫
Λr+1

dx

∫
Λr+1

dx′

× exp(−τ(−h∆+ V ε
ξ )

P
Λr+1

)(x, x′)

=
c3R(hτ)

2d

rd
exp

(c2hτ
2r

)∫
Λr+1

dxE0,x[exp(−τVt(Rεℓ2hτ ))],

where

Vt(ϕ) =
−1

τ
log

∫
µα,Kε(dξ) exp

(
− τ

∫∫
ϕ(y + z)ξ(dy)vε(z)dz

)
=

1

ατ
Tr log

{
I + α

(
1− exp

(
− τ

∫
ϕ(·+ z)vε(z)dz

))1/2

×Kε

(
1− exp

(
− τ

∫
ϕ(·+ z)vε(z)dz

))1/2}
is the functional on the space L1(Td

r+1 → [0,∞)) of all nonnegative integrable functions ϕ on Td
r+1, Rε is

the integral operator from the space P(Td
r+1) of all probability measures µ on Td

r+1 to L1(Td
r+1 → [0,∞))

defined by

(Rεµ)(x) =

∫
ρε(y − x)µ(dy),

and E0,x is the expectation of the local time

ℓ2hτ (dx) =
1

2hτ

∫ 2hτ

0

δw(s)(dx)

of the Brownian motion {w(s) : 0 ≤ s ≤ 2hτ} on Td
r+1 starting from x. Now we will apply a Varadhan’s

lemma on large deviations as Proposition (10.7) in Pastur and Figotin [22]:

(4.4) lim
t→∞

1

τ
log Ñ4(t) ≤

c2h

2r
− inf

{
I(ϕ) + V(ϕ) : ϕ ∈ L1(Td

r+1 → [0,∞)),

∫
ϕ(x)dx = 1

}
,

where

I(ϕ) =

∫
h|∇

√
ϕ(x)|2dx

and

V(ϕ) =
∫
Rd

dx
1

α

{
log

(
I + α

(
1− exp

(
−

∫
Td
r+1

C0ϕ(y)dy

|x− y|d+2

))
K
)}

(0, 0).
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For (4.4), we should show the sufficient condition:

(4.5) lim
t→∞

Vt(ϕτ ) ≥ V(ϕ∞)

for any {ϕτ}τ∈[1,∞] ⊂ L1(Td
r+1 → [0,∞)) such that ∥ϕτ∥L1 = 1, ϕτ → ϕ∞ in L1 as τ → ∞, and

I(ϕ∞) <∞. The condition (4.5) is reduced to

(4.6) lim
t→∞

Vη
t (ϕτ ) = V(ϕ∞)

since Vt ≥ Vη
t , where η > 0,

Vη
t (ϕ) =

−1

τ
log

∫
µα,Kε(dξ) exp

(
− τ

∫
ϕ(y + z)ξ(dy)(ζηv)

ε(z)dz
)

=
1

ατ
Tr log

{
I + α

(
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2

×Kε

(
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2}

,

and ζη is a [0, 1]-valued continuous function on Rd such that ζη(x) = 1 on {x : |x| ≥ 2η} and ζη(x) = 0

on {x : |x| ≤ η}. For any δ > 0, we take a polynomial Pδ such that

sup
s∈[0,∥K∥op]

∣∣∣ log(1 + αs)

αs
− Pδ(s)

∣∣∣ ≤ δ

and define

Vη,δ
t (ϕ) =

1

τ
Tr

[
P̃δ

((
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2

Kε

×
(
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2)]

,

and

Vδ(ϕ) =

∫
Rd

dx
{
P̃δ

((
1− exp

(
−
∫
Td
r+1

C0ϕ(y)dy

|x− y|d+2

))
K
)}

(0, 0),

where P̃δ(s) = sPδ(s). Then we have

sup
ϕ∈L1(Td

r+1→[0,∞)):∥ϕ∥L1=1,t≥1

|Vη,δ
t (ϕ)− Vη

t (ϕ)| ≤ c4δ.

and

sup
ϕ∈L1(Td

r+1→[0,∞)):∥ϕ∥L1=1,t≥1

|V(ϕ)− Vδ(ϕ)| ≤ c4δ.

Thus the condition (4.6) is reduced to

(4.7) lim
t→∞

Vη,n
t (ϕτ ) = Vn(ϕ∞)
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for any n ∈ N. where

Vη,n
t (ϕ) =

1

τ
Tr

[((
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2

Kε

×
(
1− exp

(
− τ

∫
ϕ(·+ z)(ζηv)

ε(z)dz
))1/2)n]

,

and

Vn(ϕ) =

∫
Rd

dx
{((

1− exp
(
−

∫
Td
r+1

C0ϕ(y)dy

|x− y|d+2

))
K
)n}

(0, 0).

(4.7) is straightforward and we obtain (4.4). Since r is arbitrary, we can complete the proof. 2

Remark 4.1. In (4.4), the error term by the compactification appears in a simple form c2h/(2r). This

is negligible without extra conditions. However if we follow the method in Section 10.c in [22], then

the error term may depend on t, and extra conditions on K may be necessary to show that the term is

negligible.

5. The sine kernel

We next treat examples not satisfying the condition (P). We first treat 1-dimensional cases. We assume

α = −1, the compactness of suppu,

(5.1) lim
x↓0

∫ x

0

u(y)
dy

x
> 0, lim

x↓0

∫ 0

−x

u(y)
dy

x
> 0,

and that K is the sine kernel (1.4). Then we will prove

lim
λ↓0

λ logN(λ) =
−π4h

8
.

For the proof, the key fact is

(5.2) µ−1,Ks
(ξ([0, R]) = 0) = exp

(
− π2R2

8
(1 + o(1))

)
as R→ ∞

(Dyson [7], Widom [34]). The same asymptotics where the constant π2/8 is replaced by other positive

constants are obtained for a generalization called as the point process Sineβ . As for the definition and

properties of the point process Sineβ , see Valkó and Virág [32]. β = 2 corresponds to our process µ−1,Ks
.

Thus we summarize the result in a general form:

Theorem 4. Let µ be any Borel probability measure on the space P(R) of nonnegative integer valued

Radon measures on R with vague topology such that µ is stationary and ergodic under the shift of the

space valuable: µ(ξ ◦ τa ∈ B) is independent of a ∈ R and any Borel subset B of P(R) such that

µ({ξ : ξ ◦ τa ∈ B}△B) = 0 for any a ∈ R are trivial as µ(B) = 0 or 1, where τa is the transform

19



τax = x+ a for any x ∈ R, and B△B′ = (B \B′)∪ (B′ \B) for any Borel subsets B,B′ of P(R). Under

this probability µ, we consider the Schrödinger operator Hξ in (1.2) and its integrated density of states

N(λ) (λ ∈ R) defined by (1.3). We further assume d = 1, the compactness of suppu, (5.1), and that µ

satisfy

(5.3) µ(ξ([0, R]) = 0) = exp(−RH(H ′ + o(1))) as R→ ∞

with some H and H ′ ∈ (0,∞). Then we have

lim
λ↓0

λH/2 logN(λ) = −H ′(π
√
h)H .

This result coincides with that of Theorem 2 when µ = µα,K .

Proof.

By the Dirichlet and Neumann bracketing, we have

1

|ΛL|

∫
µ(dξ)#{[0, λ] ∩ spec(Hξ,D

ΛL
)}

≤ N(λ)

≤ 1

|ΛL|

∫
µ(dξ)#{[0, λ] ∩ spec(Hξ,N

ΛL
)}

(5.4)

((5.41) in [22]). From the upper bound, we have

N(λ) ≤ µ(λ1(H
ξ,N
ΛL

) ≤ λ)#{[0, λ] ∩ spec(−h∆N
ΛL

)}

((10.10) in [22]). We easily obtain

#{[0, λ] ∩ spec(−h∆N
ΛL

)} ≤ Tr[exp(1 + h∆N
ΛL
/λ)] = e

∫
ΛL

exp(h∆N
ΛL
/λ)(x, x)dx ≤ c0L

√
λ

h
.

We now apply Theorem 3.1 in the page 123 in [29]:

λ1(H
ξ,N
ΛL

) ≥ hπ2

(supk |Ik|+ c1)2

for any L ≥ c0, where {Ik}k is the random open intervals such that
∑

k Ik = ΛL \ supp ξ. Then we have

µ(λ1(H
ξ,N
ΛL

) ≤ λ)

≤µ
(
sup
k

|Ik| ≥ π

√
h

λ
− c1

)
≤

∑
p∈Z∩ΛL

µ
(
ξ
([
p, p+ π

√
h

λ
− c1 − 2

])
= 0

)

≤c2|ΛL|µ
(
ξ
([

0, π

√
h

λ
− c1 − 2

])
= 0

)
.

(5.5)

20



Here the choice of L is not restrictive. We choose L = π2h/λ so that |ΛL| is not so big and the probability

event in the above inequality is not empty. Then we obtain

lim
λ↓0

λH/2 logN(λ) ≤ −H ′(π
√
h)H .

From the lower bound, we have

N(λ) ≥ 1

|ΛL|
µ(λ1(H

ξ,D
ΛL

) ≤ λ).

If ξ(ΛL + suppu) = 0, then

λ1(H
ξ,D
ΛL

) = λ1((−h∆D
ΛL

) = h
( π

|ΛL|

)2

.

Thus by taking L = π
√
h/λ, we have

N(λ) ≥ 1

π

√
λ

h
µ(ξ(Λ

π
√

h/λ
+ suppu) = 0).

Thus we obtain

lim
λ↓0

λH/2 logN(λ) ≥ −H ′(π
√
h)H .

2

6. 2 dimensional examples: the Ginibre random point field and the zeros of a Gaussian

analytic function

We next treat a 2-dimensional example: in the above setting, we further assume d = 2, α = −1, the

compactness of suppu, u ≥ ε01B(r0) with some ε0, r0 ∈ (0, 1), and that K is given by (1.5): µ−1,Kg
is the

Ginibre random point field. Then we will prove

(6.1) lim
λ↓0

log | logN(λ)|
log λ

= −2.

For the proof, the key fact is

(6.2) lim
r→∞

1

r4
logµ(ξ(B(r)) = 0) =

−1

4
.

when µ = µ−1,Kg (cf. Proposition 7.2.1 in [14]). The same asymptotics is known for another famous

example, the case that µ is replaced by the probability distribution µGAF of
∑

a∈X δa for the sets X of

the zeros of a Gaussian analytic function

(6.3) fGFA(z) =

∞∑
n=0

(Xn + iYn)

√
Ln

n!
zn,
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where L ∈ (0,∞) and {Xn, Yn}n are independently and identically distributed random valuables obeying

the normal distribution N(0,1/2) with the mean 0 and the valiance 1/2. This is a result obtained by

Sodin and Tsirelson [25] (cf. Theorem 7.2.3 in [14]). Thus we summarize the result in the general form.

Theorem 5. Let µ be any Borel probability measure on the space P(R2) of nonnegative integer valued

Radon measures on R2 with vague topology such that µ is stationary and ergodic under the shift of the

space valuable: µ(ξ ◦ τa ∈ B) is independent of a ∈ R2 and any Borel subset B of P(R2) such that

µ({ξ : ξ ◦ τa ∈ B}△B) = 0 for any a ∈ R2 are trivial as µ(B) = 0 or 1, where τa is the transform

τax = x + a for any x ∈ Rd, and B△B′ = (B \ B′) ∪ (B′ \ B) for any Borel subsets B,B′ of P(R2).

Under this probability µ, we consider the Schrödinger operator Hξ in (1.2) and its integrated density of

states N(λ) (λ ∈ R) defined by (1.3). We further assume the compactness of suppu, u ≥ ε01B(r0) with

some ε0, r0 ∈ (0, 1), and that µ satisfy the asymptotics

(6.4) lim
r→∞

1

rH
logµ(ξ(B(r)) = 0) = −H ′.

with some H and H ′ ∈ (0,∞). Then we have

(6.5) lim
λ↓0

log | logN(λ)|
log λ

= −H
2
.

Remark 6.1. (i) This result coincides with that from Theorem 2 when µ = µα,K .

(ii) More detailed upper and lower bounds are obtained as in (6.6) and (6.7).

(iii) For the probability µGAF associated with the zeros of a Gaussian analytic function (6.3), the

stationarity and the ergodicity under the shift τa, a ∈ R2 are proven, for example, in Propositions 2.3.4

and 2.3.7 in [14]. In the statement of Proposition 2.3.7, the invariance under the rotations are also

assumed, However the rotations invariance are not used in the proof.

For the upper bound in Theorem 5, we apply the following:

Lemma 6.1. For any c0, r0 ∈ (0,∞), there exists R(c0, r0) ∈ (0,∞) depending only on c0 and r0 such

that infb∈ΛR
λ1(−∆ + c01B(b,r0))

N
ΛR

≥ 1/(4R2 logR) for any R ≥ R(c0, r0), where B(b, r0) = {x ∈ R2 :

|x− b| < r0}.

This is a version of Lemma 3.15 in [8].

Proof of Theorem 5.

22



We use also the Dirichlet and Neumann bracketing (5.4). For the upper bound, we apply

#
{[

0,
h

4R2 logR

]
∩ spec(−h∆N

ΛR
)
}
≤ Tr[exp(1 + (4R2 logR)∆N

ΛR
)]

= e

∫
ΛL

exp((4R2 logR)∆N
ΛR

)(x, x)dx ≤ c0
logR

≤ c0

and Lemma 6.1 to obtain

N
( h

4R2 logR

)
≤c0µ

(
λ1(λ : Hξ,N

ΛR
) ≤ h

4R2 logR

)
≤c0µ(ξ(ΛR) = 0)

≤c0µ(ξ(B(R/2)) = 0)

if R ≥ R(ε0/h, r0). Thus by (6.4), for any ε > 0, there exists R(ε, h) ∈ (0,∞) such that

1

RH
logN

( h

4R2 logR

)
≤ −H ′ + ε

2H

for any R ≥ R(ε, h) ∨R(ε0/h, r0). This is interpreted as

1

R−1(h/(4λ))H
logN(λ) ≤ −H ′ + ε

2H

if h/(4λ) ≥ R(R(ε, h) ∨R(ε0/h, r0)), where R(R) = R2 logR and R−1 is its inverse function. Since

R−1
( h

4λ

)
=

√
h

2λ(log h− log(4λ)− log logR−1(h/(4λ)))
,

we have

(6.6) lim
λ↓0

(
λ log

1

λ

)H/2

logN(λ) ≤ −H ′ h
H/2

23H/2
.

For the lower bound, we proceed as in the proof of Theorem 4: if ξ(ΛL + suppu) = 0, then

λ1(λ : Hξ,D
ΛL

) = λ1(−h∆D
ΛL

) =
2hπ2

|ΛL|
.

Thus by taking L = π
√
2h/λ, we have

N(λ) ≥ 1

|ΛL|
µ(λ1(λ : Hξ,D

ΛL
) ≤ λ)

≥ λ

2hπ2
µ(ξ(Λ

π
√

2h/λ
+ suppu) = 0).

Thus we obtain

(6.7) lim
λ↓0

λH/2 logN(λ) ≥ −H ′π
HhH/2

2H/2
.

2
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Appendix A. The survival probability of the Brownian motion in our random point

fields

In this section, we interpret the results in this paper to those on the survival probability of the Brownian

motion among the traps around the sample points of our random point fields.

Let P0 be the probability measure of the standard d-dimensional Brownian motion {w(t)}t≥0 indepen-

dent with the random point field µα,K . Let τO be its hitting time to

Oξ :=
∪

a∈supp ξ

(a+O),

where O is a nonpolar compact set. Our object in this subsection is the asymptotic behavior of

Sα,K(t) := (µα,K ⊗ P0)(τO ≥ t)

as t→ ∞.

The results are the following:

Proposition A.1.

(i) Under the condition (P), we have

lim
t→∞

t−d/(d+2) logSα,K(t)

= − d+ 2

2dd/(d+2)
λ1(−∆B(1))

d/(d+2)C
2/(d+2)
α,K |B(1)|2/(d+2),

(A.1)

where Cα,K is the constant introduced in Theorem 2.

(ii) For any Borel probability measure µ on the space P(R) such that µ is stationary and ergodic under

the shift of the space valuable a ∈ R and that the asymptotics (5.3) holds, we have

(A.2) lim
t→∞

t−H/(2+H) logS(t) = −2 +H

2
π2H/(2+H)(H ′)2/(2+H)H−H/(2+H),

where

(A.3) S(t) := (µ⊗ P0)(τO ≥ t).

(iii) For any Borel probability measure µ on the space P(R2) such that µ is stationary and ergodic

under the shift of the space valuable a ∈ R2 and that the asymptotics (6.4) holds, we have

(A.4) lim
t→∞

log | logS(t)|
log t

=
H

2 +H
,

where S(t) is defined as in (A.3).
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In (iii), the more precise bounds are obtained in (A.9) and (A.10) below. The results in (ii) and (iii)

coincides with those from (i) when µ = µα,K .

Proof.

(i) Our Sα,K(t) corresponds to Ñ3(t) in (3.2) with h = 1/2 and u = ∞1O. The upper estimate of

Sα,K(t) is also proven as in Section 3 and the second version of the upper bound in Section 4.5 in [29].

The lower estimate is easily obtained by

(A.5) Sα,K(t) ≥ µα,K(ξ(B(R+ r0)) = 0)(exp(t∆D
B(R)/2)1)(0)

for any R ≥ 1, where r0 is a number such that O ⊂ B(r0). Indeed λ1(−∆D
B(R)) = λ1(−∆D

B(1))/R
2 and

logµα,K(ξ(B(R)) = 0) =
−1

α
Tr log(I + α1B(R)K1B(R)) = −Cα,K |B(R)|(1 + o(1))

as R→ ∞. Therefore, by taking R appropriately, we can give the lower bound.

(ii) We apply an estimate of probability of exit time of the Brownian motion to obtain

S(t) ≤ S̃(t) + c1e
−c2t,

where

S̃(t) =

∫
µ(dξ)(exp(t∆D

B(t)\Oξ/2)1)(0).

By (1.9) in [29], for any ε1 ∈ (0, 1), there exists cε1 ∈ (0,∞) such that

(A.6) S̃(t) ≤ cε1

∫
µ(dξ) exp(−t(1− ε1)λ1(−∆D

B(t)\Oξ)/2).

We easily see that

λ1(−∆D
B(t)\Oξ) ≥

π2

supk |Ik|2
,

where {Ik}k is the random open intervals such that
∑

k Ik = B(t) \ supp ξ. Then we have

S̃(t) ≤ cε1

[t]∑
m=0

µ(m < sup
k

|Ik| ≤ m+ 1) exp
(−t(1− ε1)π

2

2(m+ 1)2

)
.

As in (5.5), we have

µ
(
m < sup

k
|Ik|

)
≤ tµ(ξ([0, (m− 2)+]) = 0).

Thus we have

(A.7) S̃(t) ≤ cε1t
2 sup
m≥0

{
µ(ξ([0, (m− 2)+]) = 0) exp

(−t(1− ε1)π
2

2(m+ 1)2

)}
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By (5.3), for any ε2 > 0, there exists mε2 ∈ (0,∞) such that

µ(ξ([0, (m− 2)+]) = 0) ≤ exp(−H ′mH(1− ε2))

and m+ 1 ≤ (1 + ε2)m for any m ≥ mε2 . There exists tε2 ∈ (0,∞) such that the supremum in (A.7) is

attained in (mε2 ,∞). Then we have

S̃(t) ≤cε1t2 exp
(
− inf

m≥0

(
H ′mH(1− ε2) +

t(1− ε1)π
2

2(1 + ε2)2m2

))
=cε1t

2 exp
(
− (H ′(1− ε2))

2/(2+H)
( t(1 + ε1)π

2

H(1 + ε2)2

)H/(2+H) 2 +H

2

for t ≥ tε2 . Thus we obtain

lim
t→∞

t−H/(2+H) logS(t) ≤ −2 +H

2
π2H/(2+H)(H ′)2/(2+H)H−H/(2+H)

For the lower estimate, we apply (A.5) and (5.3) to obtain

lim
t→∞

t−H/(2+H) logS(t) ≥ −2 +H

2
π2H/(2+H)(H ′)2/(2+H)H−H/(2+H).

(iii) We use the capacity Cap relative to the operator −∆ on R2. Then by an extension of Propositions

2.3 and 2.4 in [30], we have

inf
b∈B(1/8)

λ1(−∆N,D
B(1/4),b+K) ≥ c0Cap(K)

where, for any R > 0 and any compact set K in B(1/8), −∆N,D
B(R),b+K is the minus Laplacian with the

Neumann and the Dirichlet boundary conditions on ∂B(R) and b + ∂K, respectively: −∆N,D
B(R),b+K is

the self-adjoint operator associated with the closure of the quadratic form (∇ϕ,∇ψ) with the domain

ϕ, ψ ∈ {ϕ : B(R) → R : smooth, ϕ = 0 on b+K}. By the scaling, we can modify Lemma 6.1 as

inf
b∈B(R/2)

λ1(−∆N,D
B(R),b+O)

=
1

(4R)2
inf

b∈B(1/8)
λ1(−∆N,D

B(R),b+O/(4R))

≥ c0
(4R)2

Cap
( O

4R

)
.

for any R > 0 such that O ⊂ B(R/2). The variational principle in Theorem 4.9 in Sznitman [29] gives

Cap(K)

=

{
inf

{∫
1

2π

(
log

1

|x− y|

)
µ(dx)µ(dy)

∣∣∣ µ : a probability measure on K
}}−1

.

Thus we obtain

(A.8) inf
b∈B(R/2)

λ1(−∆N,D
B(R),b+O) ≥

c1
R2 logR

.
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for any R ≥ c2.

Since

λ1(−∆D
B(t)\Oξ) ≥ c3 min

a∈B(t)∩(R/2)Z2
λ1(−∆N,D

B(a,R),Oξ),

we have

S̃(t) ≤ cε1
∑

a∈B(t)∩(R/2)Z2

∫
µ(dξ) exp(−t(1− ε1)c3λ1(−∆N,D

B(a,R),Oξ)/2)

and

log S̃(t) ≤ (logµ(ξ(B(R/2)) = 0)) ∨ −t(1− ε1)c1c3
2R2 logR

+ log cε1

( t
R

)2

.

By (6.4), we have

logµ(ξ(B(R/2)) = 0) ≤ −H ′(R/2)H(1− ε2)

for sufficiently large R. Thus by taking

R =
( t(1− ε1)c1c32

H−1

(1− ε2) logR
)1/(2+H),

we have

(A.9) lim
t→∞

( log t
t

)H/(2+H)

logS(t) ≤ −H ′(c1c3(2 +H))H/(2+H)

23H/(2+H)
.

For the lower estimate, we apply (A.5) and (6.4) to obtain

(A.10) lim
t→∞

t−H/(2+H) logS(t) ≥ −2 +H

2
λ1(−∆D

B(1))
2/(2+H)(H ′)2/(H+2)H−H/(2+H).
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