Wegner estimate for Gaussian random magnetic fields

Naomasa Ueki

ABSTRACT. — For the Schrédinger operator on L?(R?) with the magnetic field which is a sample path
of a stationary Gaussian random field, a Wegner type estimate applicable for the proof of the Anderson
localization is proven by referring a recent method by Erdos and Hasler, and the theory of the Malliavin

calculus.

1. INTRODUCTION

For any L > 1 and w in a probability space, we consider the self-adjoint operator

2

(1.1) Hy =Y (i0, + A} ,(z))?
=1

with the Dirichlet boundary condition on the open square Ay, = (—L/2, L/2)? with the side length L and
0 as its center, where i = v/—1 and A is a C'-map from Ap, to R? satisfying Vx A} := 91 A7 , — 0, A} | =
B“. Its spectrum depends only on B and is independent of the choice of the vector potential A5. This
is the Schrodinger operator with the magnetic field B“.

As the magnetic field BY, we take a Gaussian random field on R%2. We assume B“(x) is stationary
with respect to the shift in the space variable z € R?: the random fields B¥(-) and B*(x + -) have a same

law. Moreover we assume its covariance function V(z — y) = Cov(B“(z), B“(y)) is

(1.2) V(z) = / 5z — 9)3(y)dy,

where
(1.3) 5(z) = P(A)o(a),
(1.4) o(z) = (@ —|z[*)1,

ay = max{a,0} is the positive part, & € (0,00), v € (3/2,00), A = 9? + 92 and P is a non-zero
polynomial of the degree less than (v — 3/2)/2. This special form of the covariance makes possible to

apply the theory on the Bessel functions. The condition v > 3/2 guarantees that the sample path of B“



belongs to the local Sobolev space Wli’f

(R2) of the functions whose derivatives of order < 2 are locally
p-th power integrable for any p € [1,00). Thus B*(x) is C* in x by the Sobolev imbedding theorem (see
e.g. [1] Theorem 4.12 Part I Case C).

In this paper, we prove the following:

Theorem 1. Under the above assumptions, there exist positive finite constants Cy,Cy and Csy such that
(1.5) E[Tr[X 5y 54n (HF))] < CoR*nL
for any R € [1,00), L >RV Cy and E,n > 0 satisfying E +n < R.

By this theorem and the Lifschitz behavior shown by Theorem 4.3 in [21], the multi scale analysis

works well and we obtain the following (cf. [8, 20]):

Corollary . Let F¥(z) be a stationary Gaussian random field with the covariance

Coo(F¥(z), F*(a')) = / o(@ — gole - y)dy,

where o is the function defined in (1.4) with v > 7/2. Then the operator

2

H® =) (i0, + A ())?

=1

with a C! vector potential AY on R? such that V x AY = —AF¥ eghibits the Anderson localization in the
low energies as follows: there exists a positive finite constant €y such that [0,e¢] is included in the pure

point spectrum of H¥, the corresponding eigenfunctions decay exponentially, and

E[sup H|x|pe—”Hw 1I(H“’)1K‘
t

L2(R2)—>L2(R2):|
for any p € (0,00), I C [0,20] and any compact set K in R?, where || - | L2 (®2)— L2 (R2) is the operator

norm of bounded operators on L*(R?).

In the original Wegner’s estimate [23] for the Anderson model, the motivation was to bound the density
of states and the idea was to use the monotone dependence of the eigenvalues with respect to the random
elements. To obtain the bound of the density of states, we need the linear dependence in the volume: C}
in (1.5) should be 2. On the other hand the above weak type estimates are known to be sufficient for the
proof of the Anderson localization by the multi scale analysis initiated by Frohlich and Spencer [7] and
these estimates have been extended to many models [3, 17, 20]. However the main property of the model

to prove the estimates has been the monotone dependence of the eigenvalues with respect to the random
2



elements. The Schrodinger operator with random magnetic fields never have such a monotonicity. Until
recent, the magnetic case had been treated mainly by Klopp’s method [9, 11, 13, 14, 22]. His method uses
the homogeneity with respect to the random element of the eigenvalues of the corresponding Birman-
Schwinger operator. However to obtain the homogeneity in the magnetic case, the corresponding random
vector potential had been assumed to be small. Very recently, Erdos and Hasler [4, 5, 6] gave a new
method to obtain the Wegner type estimate by posing conditions only on the magnetic fields. This is
more preferable since the gauge invariance implies that the spectral structure of the magnetic Schrédinger
operator depends only on the magnetic field. Their method use the non-degeneracy of the gradient of
eigenvalues with respect to the random elements. To obtain the non-degeneracy they assume that the
random magnetic field has fine alloy type structures and is dominated from above and below by positive
finite constants. In this paper we extend their theory to the above simple Gaussian random fields. Now
Gaussian random fields are not bounded and not positive. The unboundedness brings no serious problem
since Gaussian random fields decay exponentially at infinity. Now the non-positivity brings the essential
problem. Instead of the positivity, we show a non-degeneracy estimate in Section 4 below for our special
Gaussian random fields. The key point of this estimate is the existence of a bound which is a quadratic
forms of the white noise with infinite rank. Since the rank is infinity, we can show the probability of the
decay of the random field is small enough. This is a same situation with that where the non-degeneracy
of the Malliavin covariance is proven [12, 15, 16, 19]. Another key point for the Wegner estimate is the
integration by parts on the probability space. This is also the key point of the Malliavin calculus. Then

we use the same notation used in the Malliavin calculus: as in Nualart [16]
B¥(z) = B+ B*(z),B € R and B*(z) = w(5(z — -)),

where w is the isonormal Gaussian process (w(h))per2(r2): for any h € L?(R?), w(h) is a Gaussian random
variable such that

Elw(h)] =0 and Elw(h)w(h')] = (h, ) L2®2).
This w is also called as the white noise and the notation
B(o) = [ |5l yhuldy
R2

is also used (cf. [16] p.8). The o-field of the probability space is given by that generated by {w(h) : h €

L?(R?)} (cf. [16] p.5). Then the measurability of the operator HY is obtained as in [3] Chapter 5. To



reduce the proof of the theorem to the estimates on the non-degeneracy, we apply also the theory on the
Bessel functions.

In the following, we mainly consider the case that

Il
Q

(1.6) &

for simplicity. The extension to the case of (1.3) is explained in Remarks 2.1 and 4.1 below. All the
estimates in this paper are given as systematic simpler estimates rather than as sharp estimates. As the

vector potential, we take as
(L.7) A7 1 (x) = (02FF)(x) and AT 5(x) = —(01F)(2)
on Ar, where

(18) Fe)= Y Tmr® / Do 1 () B (1) dy,

neN? En.1
and
2
Enp= (#)2 and ®,, 1(z) = le_[lsin (nﬂr(% + %))
forn = (n1,n2) € N2, {En.Ls Pn. L nene is the eigenvalues and a complete orthonormal system consisting
of the eigenfunctions of the negative Dirichlet Laplacian —AEL (cf. [18], p-266).

The organization of this paper is as follows. In Section 2, we dominate the norm of the gradient of
the eigenvalue from below in terms of the magnetic field. In Section 3, we modify the theory by Erdés
and Hasler to prove the estimates of the current used in Section 2. In Section 4, we prove the necessary
estimate on the non-degeneracy of the Gaussian random field. In Section 5, we modify the theory by

Erdos and Hasler to prove Theorem 1.

2. A LOWER BOUND OF THE NORM OF THE GRADIENT OF THE EIGENVALUE

Let A¢(HY) be the (-th eigenvalue of the operator HY, which is a functional of the isonormal Gaussian
process w = (w(-)).cz2(r?)- In Definition 2.6 in [19], the notion of the H-differentiability of a functional

F(w) at a sample path wq is defined as the existence of DF(wg) € L?(R?) such that

tim {F((wo() + £(®, )).e2ze) — F(wo)} /e = (DF(wn), @) o)

for any ® € L?(R?). \¢(HY) is H-differentiable everywhere in this sense since & — A\o(H¥ %) is complex

analytic for any ® € L?(R?) by the regular perturbation theory (cf. [18]§XIIL.2).



In this section, we dominate the norm of the derivative restricted to a finite dimensional subspace from

below in terms of the magnetic field. The object is (2.8) below. The derivative is represented as

(DA(HE), ®) 2z = / (@) - (DAL (2), ®) p2(ae da,

8 n,
(DAfJ(Jf),‘I’)L?(R?):Z 2 mbT) L) /dy@nL /a(y—z)@(z)dz
neN?
and

(91 (I)n L (x)

(DA o). D)oy = = 3 AP [ ayp,10) [ oty =)0

neN?

F W N

where j“(x) = (3% (x), 7§ (z)) is the current of the eigenfunction v, of the eigenvalue A\;(HY) defined by
(2.1) J(x) = 2Re g (id, + AT, (2))r.

As the direction ® of the derivative, we take ®¢ 1 (z) defined by 0 on A§; and

| Isin(én(=+ =
rll L2
on Ay, for & = (&1,&) € R2. Since suppo(y — -) C A, for any y € Ap if L > &, we have

[ o= 2Bes =5 (5 ) Ferm),

where
o) = / exp(—2mi€ - x)o(z)dx
R2
is the Fourier transform. In a special form of (1.4), the transform is written as

R —1/+1F 1 -
516) = T e (2,

where
oo t/2)2m+l/+1
Tt Z
F'm+v+2)

is the Bessel function of the order v+1 (cf. [2] 9.1.18 and 11.4.10). The function t=~1.J,41(t) is even, and

is known that the zero points {j, 41,5 }sen on the interval (0, 00) are simple and satisfy the asymptotics

22 o= s 5+ Drvo(?)

(cf. [2] 9.5.12). We should take £ so that 275|¢|/(2L) is apart from the zero points {j,+1,s}s- On the

other hand, we should take the set of £ so that this set includes sufficiently various elements to obtain a



positive lower bound of the norm of the derivatives. One candidate is N? since {®,, 1 }nenz is complete

in L?(R?). Now we modify N? as {(n;e, L) }nenz C (0,00)?, where

7-L .V R .V s - 8
{1+ £ }n if |In| € [LJ +1 7LJ s +3/ )
ol

87T |n| o

for some s € N,

(2.3) (n;e, L) = {1_ ejL }n " |n‘€(LJu+1,s:J/8’LJu+1,s)
Yixea

87T |n| o

for some s € N,

n otherwise,

Ji=infsen(jut1.5+1 — Jo+1.5) A Ju+1.1, and € € (0,1) is specified later. Then we have

_ . €j . ej
77|(nie, D)I/L € 0,000\ | (Jrsre = Zdurrs + 3 ) =2 0.
seN

The asymptotics of the Bessel function itself is known as

(2.4) Jo(t) = \/Z{ cos (t - 21/:3”> +O(%)}

(cf. [2] 9.2.1). Thus we can show that

(2.5) [VtJ,11(t)] = cre on G- N [j/2,00)

for some positive constant ¢;. Indeed we can take 7% € (0, 00) such that |j,1,s—(s+v/2+1/4)7| < €j/(16)
and |\/7t/2J, 41 (t) —cos(t — (v+ 1) /2 — m/4)| < €j/(167) if (s +v/2+1/4)7, t > T by (2.2) and (2.4).
Thus we have | cos(t— (v+1)7/2—7/4)| > €5 /(87) and |\/7t/2.J,41(t)| > €j/(167) on G N [T: +7/2,00).
By the compactness of [j/2, T. + /2] and the simplicity of j,1, s, we obtain (2.5) (cf. [2] 9.5). By noting

also inf}y = o Ju41(t) /T > 0, we have

_/(ne, v41/2
(")) ™) )

Thus, as the direction of the derivatives, we take {5(n;57L),L (QU)}neNz:WSR7 where the restricting positive

number R is for the estimates in Section 5 below. Then we have

(DXHE), Biey ) zceo| 22 (((5) ) 1)

/ dx(V x ) (2)
AL

(I)m’L(LE)

X L Ay ®on 1 (1) P . .
m%j:w Eum.r /AL Y L(y) (,s,L),L(y)



By |®(ner)r — Pnr| <€jL/(4T), Emp > (/L)% and Enp < (7R/L)?, we have

Z (DAE(HL) (nsL) L)L2(]R2)

neN2:|n|<R
AR ael@) | Z (Lo )
Je2LOR2

WHV X Jj ||L2(AL }

By (3.2) below, we have

s L?(| B[22 (a ) + B > IV(V % ) 17204,

2
= Z Z (0.(V x jw)v(pii,)L)zLQ(AL) = Z (W‘Ln') (V X §*, ®n1)i2a,)

t=1 neN? neN?

ﬂ-R 2 ‘W 2
= (T) Y. (VX5 Pnn)ia,),
neN2:n|>R

where, for each ¢ € {1,2},

<I>(L) 2 z, 1 : zr 1
(6 2+ ) (e (2 )

is a complete orthonormal system of the orthogonal complement of {¢ € L?(Az) : ¢ is independent of

2,} in L2(Az), and T =2 and 2 = 1. By using also (3.1) below, we have

> (DM(HE), (e 1),0) 72 @2
neN2:n|<R

(T A () (19— 0 o <0

- C5€2L24R2(HBWH%V2,2(AL) + R)4}

Moreover we use V - j¥ = 01j¢ + 0278 = 0 and Lemma 3.2 below to change the bound so that its

derivatives in w have simpler representations:

T 2 ¢s
IV % 332, = V50320, = (T3 le2an) > FoBl@e,w),

Z 76
where
C7L_11(HBW||€Vz‘2(AL)+R)_2 dr
Bz, w) ::/ —
0 27‘[‘7"
(2.6) 2
X / B¥(x)dx
B(er L= (1B (172,24, T R) ~2@air)

and z, € Z* such that c; L™ (||BY[|32.2 ap t R)™ 2z, € Ar,. We now take R and ¢ as

263

1/2L15 BY 2 R 38 —-1/2
(1B [Fy22(a, ) + B)* Bl w)

7

R(zw,w) = (

m2cq



and

ce \1/2 _ _ -
6(37*’(»0) = (465) B(l'*yw)l/QL 13R($*,W) 3(||BWH%}V2’2(AL) +R) ?
cg \1/2 1 m2cgN3/2 27 —58 /|| pw||2 -1

:(a) (203) B(@s,w)2L (| B |}z, + B) 71,

respectively. This e(z,,w) is small enough for the definition (2.3) since we deduce
£(z4,w) < cgLTMORT

from

-2

er LT (B ya VB2 03
(2.7) Ba.w) < [ O B e, S 0L MR,
0

Then we obtain

Z (D)‘Z(H‘[Aj%(Fi)(n;s(w*,w),L),L)%g(Rg)
(28) neN2: | n|<R(z.,w)

26106(1‘*,w)u+15/2L—28u—192(”Bw”%VQ)Q(AL) + R)_6”_37.
The integral B(z,,w) of the magnetic field in the right hand side is dominated from below in Section 4

below.

Remark 2.1. To extend the results of this section to the case where o is replaced by & defined in (1.3), we
have only to avoid not only the set {¢ € R? : J, 1 (77|¢|/L)} but also the set {& € R? : P(—(n|¢]/L)?)}
in the definition (2.3) of (n;e, L).

3. THE ESTIMATES OF THE CURRENT

In this section we modify the proof of Lemmas 6.1 and 6.2 in Erdos and Hasler [4] to prove the

following:

Lemma 3.1. There exist finite positive constants ¢; and co such that

(3.1) IV % 3“Nz2an) < AL’(1BX (22, + R)?
and
(3.2) IV(V % i) 2ar) < 2L (1B [z a,y + R)?

forany L > 2, R > 1 and the current j* of the normalized eigenfunction of the operator HY with the

etgenvalue less than R.



Lemma 3.2. There exist finite positive constants ¢; and co, and xog € Ap, such that

/ ()P > / () Pde
AL B(wo0,ca LM (1B= 2,00, | +R)2)
CzL_u(HBerévz,z(A >+R)_2 24
=/ | o]
0 B(zoo0,7) wr

for any xoo € B(:co,CQL_H(HBWH%VQ,Q(AL) + R)72), L >2, R>1 and the current j* of the normalized
eigenfunction of the operator HY with the eigenvalue less than R, where B(a,r) = {z € R?: |[x —a| <1}

for any a € R? and r > 0.
Before proving these, we first prepare the following:

Lemma 3.3. There exist finite constants c1, co and c3 such that

(3.3) IAZ [l Loe(ar) < e Ll B [lw21(a,) < c2L?| B |lw22(a )
and

(3.4) IVAZlz2(ar) < esllBY[lr2(ar)

for any L > 2.

Proof. By the integration by parts, we have

/ dy®n, 1(y)B“ (y)
Ar

_ 2L > (_Tl)nl(—TQ)"sz(Tlé,TQE)

- 2
ningm a1} 9 9
L/2 I X
Y1
b 5 o) ens(3 )
(3.5) +/_L/2 hn Z (=7)"20 Y1, 75 ) cosmm( 7 +2
Te{l,—1}
L/2 I .
+/ dy2 Z (77-)n182Bw(7-i’y2> COSTlQﬂ'(yj*l**)
—L/2 2 L 92
Te{l,—1}
2 1
+ N dyd10,B* (y) Hcosnm(% + 5) }
=1
Thus we have
ClL C2L2
dy®p, 1 (y)B* ‘< B ||y, < BY|lw2z2(a,)
’/AL Yy L(y)B(y)| < nins I ||W21(AL)—n1n2|| lwe2(ap)

Since

||al¢n7L||Loo(AL) = 277,17TL72 and H5'2<I>n,L||Loo(AL) = 27127TL72,



we obtain (3.3). For (3.4), we use the property that {0%®,, L }nenz constitutes an orthogonal system in

L*(Ap) for any o € Z2:

IVAZIZ2 4,y = IV¥*FE N2 4,

2

[VE2Pp 11225 )
=2 E2 e / D, 1(y) B (y)dy
neN? n,L Ar
2
<o Y | [ 0nr)B )| = elB e,
nenz | /AL

Proof of Lemma 3.1. By (2.1), we have

IV x ¥ S 2|V x (§(iV + AL )he| < 2|V ee|? + 4| AS| Vool |he] + 2| B[]

IV x5l 2 an) < (Ve Faga,y + AL oo (an) IV el Laan) 19ell Lo (a )
(3.6)

B[l ay 1ell7aa )

For the derivative, we have
[V(V x 59| <AV ][] + 4V ALV ebe|[tbe] + 4| AT ||V F2e 9]

+ 4| AL [Vepe|* + 2|V B |[ipe|* + 4| B*|| Vb [t

and
IV(V x 392 a)
<ca(IVEPell Laapy 1vellacarn) + IVALI 2o Vel oo o) 1¥ell oo (a )
+ AL oo A V220t Laapy [Well Lacagy + 1A oo a ) Vel Faa )

+HIVBllL2an Vel Lo a,) + 1Bz an) IVellacar) el o ary)-

By the Sobolev inequality, we have

(3.8) ellLoe(ar) < ealllvellzaarny + IVYellLaar)),
(3.9) [VibellLoe(ar) < es(IVellLaar) + IV ellLacaL))
and

(3.10) 1Bl (ar) < call BYlw22(a)

10



(cf.[1] Theorem 4.12 Part I Case C). In (3.8) and (3.9), we may choose arbitrary LP norms with p > 2.

However p = 4 is enough for the present purpose. For any p € [1,00), we have

(3.11) IVl Lras) < epll AellLr(ar)

by the Calderon-Zygmund inequality in the form of Corollary 9.10 in [10]. Since we can derive
(3.12) Adpy = 20A3 - Vibe + (JAZ[” = Ne(HE)) e

from the eigenequation by V - AY =0, we have

1Al zaa,) < 20480 e ap) Vel zaa,) + (AL N Z e (a,y + B2l Lo aL)-

By the Gagliardo-Nirenberg inequality (cf.[1] Theorem 4.31 with m = 1) and the Calderon-Zygmund

inequality, we have
IVYellLaa,) < esllAvellpassa,)-

Since (3.12) is rewritten as
(3.13) Ay = 247 - (iV + AP — (|AL]” + Ne(HE))e,
we have

1A%el|pass(ay)
(3.14) < 2| A7 Nl e (an) L2 NGV + Aol 22(a,) + (HALZ”%OO(AL) +R)L'/?

< e L2 (|| B2 [faaa,) + R)
by using also Lemma 3.3. Thus we have
(3.15) Vel Laa,) < C7L4+1/2(||Bw||%/v2’2(AL) + R).
Similarly we have

IVellpaan,y < NGV + AD)YellLarsa,) + 1AZ el Larsa,)
(3.16) <SLVA([|(6V + A2 el p2(ag) + 12 2 a )
< LPH2(|1B 2, + B

and

(3.17) el Laar)y < coll Vel parma,) < crol 2B f2aa,) + RV

11



Thus we have
(3.18) A%l Laa,) < cr LSV (| B 322(a, ) + R/

By applying (3.8)—(3.11), (3.15), (3.17) and (3.18) to each factor in the right hand side of (3.6) and (3.7),
we can complete the proof. O
Proof of Lemma 3.2. As in [4], we take xg € AL so that |1)(xo)| = maxa, [1)e], and we set

dx dzr
(Vo) := /B(aco,l) W(l‘)@v (V) = /B(:co,l) VW(x)ﬁ

and
f(@) = he(x) = (be) — (Vi) - (x — 20)

for x € B(xg,!). Then we have

sup |f(z)| < crll|A%ellL2(B(ao,1))

zg,l

as in [4]. By (3.18) and (3.15), we have
1A%l L2 (Bao,1) < coVUIAYe| (B0 < 2VIIAYE|La(a,)
Scs\/lLHlm(HBw||%/V2=2(AL) + R)*?
and
(V)| < call Vel o (an)/l < esLP(I|B¥ 322, ) + R)/L-

Thus by putting [ = L‘3/5(||B°"||€V2,2(AL) + R)~Y/%|x — x0|>/®, we have
[Ye(@) = (e)] < L2 (|B [fyaaqa,y + B)Pla — aol°
on B(xg, L™ 2,2 +R)™ . en we see that
B(wo, L7 (B [[}y22,) + B)7'/?). Th h

1
|'l/)é(l')| > ﬁ on B(x()vR*)’

where R, := cr L™ (|| BY|[y2.2(4,y + B) 72 As in (7.18) in [4], we have

1
/ @l > 777 A5(@) - V0u(0) o
B(x00,R+/2) AL B(zoo,R+/2)

for any xgg € B(zg, R«/2). By the same proof of Lemma 7.2 in [4], we obtain

/ B¥(z)dx
B(zo00,7)

R/2 gy 2

A% (x) — VO (x deZ/
/B AT = S0 -

12



4. NON-DEGENERACY OF THE (GAUSSIAN RANDOM FIELD

X(R)/OR /B(T) B (z)dz

where B(r) = B(0,r) = {z € R? : |z| < r} for any r > 0.

Let
2 dr

2mr’

In this section, we prove the following:

Lemma 4.1. For any R € (0,00), there exist ¢, ¢ € (0,00) such that
P(X(R) < t) < exp(—cRv+5)/(2v+4) 41/ (2v+4))
for any R € (0, R] and t € (0, R**+5].
As its corollary we have the following;:

Corollary . For any p, R € (0,00), there exists ¢ € (0,00) such that
E(X(R)™?) < cR—P(2v+5)

for any R € (0, R].
To obtain Lemma 4.1, it is enough to show the following:

Lemma 4.2. For any R € (0,00), there exists ¢ € (0,00) such that
E(exp(—sX(R))) < exp(—cRs'/ (2 +5))

for any s € [1,00) and R € (0, R] satisfying Rs'/(?¥*5) > 1.

In the rest of this section, we prove this lemma. The condition v > 3/2 can be extended to v > 1 in

the following proof. For any 0 < Ry < R, we have

X(R) — X(R1)

L
:/ 7/ de“(x)—l—/ dx(B
m 277 | (R B(r)\B(R1)

" /B(R1+0) ol yldu) /B(R1+U)c olw = y)w(dy))

2

13



The key point is that w on B(R; + 7)€ is independent of X (R;), B¥(z) on B(R;) and w on B(Ry + 7).

To use this property, we proceed as follows:

E(exp(—sX(R)))

:E[exp{ —sX(Rl)+i/1:dw(r)\/§</B(Rl)de“’(m)
+/B(T)\B(Rl d:z:(BJr/B(Rl+U)cr(x y)w (d;,)))

-|-z dw )/ — / dx/ olx —y)w (dy)H
Ry T JB(r)\B(R1) B(R1+7)¢

where w(-) is a 1-dimensional Wiener process independent of w. By taking the expectation with respect

to w on B(R; +7)¢, we have

E(exp(—sX(R)))

:E[exp{ —SX(Ry) +i }: dw(r)ﬁ(/}g(&) de B ()
* /B(r)\B(Rl) e (B * /B(RlJra) oo y)w(dy)))

- %Ew {( /1: dw(r)\/Z/B(r)\B(Rl) o /J3(R1+a)c oz = y)w(dy))z} }] ’

where E“ is the expectation with respect to w. By taking the absolute value, we have

E(exp(—sX(R))) < E(exp(—sX(R1)))F (R, Ry; s),

F(R,Ry;s) := E[exp{ - %E“ [(/I:dw(r)\/z

. /B(r)\B(Rl) o ~/B(R1+o)“ 7@ y)w(dy))2] H
e (5 f N2 [ i e 7 100
T e |

For any sequence R = Ry > Ry > Ry > --- > R,, | 0, we have

where

(4.1) E(exp(— H R;_1,R;;s).

We next estimate each F(R;_1, R;;s): if we set

Ri—1 gy 2
X(R;j-1,Ry) ::/ </ dm/ J(x—y)w(dy)> ,
R, 2 \JBw©\B(R,) JB(R47)"

14



then

1= F(Rj1, Rj; )
=E[sX(R;-1, R;)]

1 t1
— E|:82X(Rj_1,Rj)2/ dtl / dtQ eXp(—tng(Rj_l,Rj))
0 0

32

>SE[X (Rj 1, By)] — S E[X (R; 1, R;)°]
Since the 4-th moment of a centered Gaussian random variable is proportional to the square of the

variance of the Gaussian variable, we have

E[X(R;-1, R;)?]

Rj_1 d 491/2 2
S(/ —TE{(/ dw/ J(x—y)w(dy)) } )
r; 27 N IBenBRy)  B(RA)e

=3E[X (R;j—1, R;)]*.
By the polar coordinate, we have

B R = [ a( [ daoa—y))’
j—1, L5 )] = = olr —
e R, 277 JB(R;45)e B(r\B(R;)

R;_ 0o T 27
=1
= / @ d’l"()?“o(/ dT‘l’I“l/ db; ((5—7‘1 +7“0)(E+7”1 —7‘0)
R, 0

R; " JRj4+7

01 2\ V\ 2
frlr()(?sin 5) )+>
Rj71 d 2 T E-‘r(’l‘l/\’l‘z)
:/ —T(H/ errL)/ droro
R; "N Z1 YR, o+R;
2 27
QL 2\ Vv
X <H/0 d&b((ﬁ—n—i—m)(ﬁ—ﬁ—h—ro)—nro(2sin5) ) )
=1

+

By changing the variables, we have

E[X(Rj-1, R;)]

= /01 Rjd:-(fé;ll_Réi)r (Lli/or dr,(Rj—1 — R;)(R; + (Rj—1 — Rj)n))

T1AT2
(4.2) X / dro(Rj—1 — R;)(@ + R; + (Rj—1 — R;)ro)
0

x (ﬁ {(20 = (Rj—1 = Ry)(re = 10)) (Rj—1 — Ry)(r, o)}/
21 AR+ (Rj—1 — Ryj)r) (@ + Ry + (Rj—1 — Rj)ro) }1/?

« Q/OWR” a6, (1~ (2R, sin 272])2)+)

15



where

R, .= { (B + (Rj—1 — Rj)r,)(@ + R; + (Rj—1 — Rj)ro) }1/2
V(20 = (Rjo1 — Rj)(r, —10))(Rj—1 — Ry)(r. — o)}

Since 26/7 < sinf < 0§ for 0 < 0 < 7/2, we have

() rlnmn) = [ (- (o) < [

Moreover by R; < R; + (Rj—1 — R;)r, < Rj_; for any ¢ € {0, 1,2}, we obtain

R;
Rj_l

)3 <E[X(Rj-1,R;)] < ea(Rj1 — Rﬂw(hf

e (Rj—1 — Rj)2"+5( I3
J

and

F(Rj_1,R;;s)

R; \3 3c3s> R:_1\%
<1—cys(Rj_1 — Rﬁ”“(ﬁ) + o Ry — Ry (]{Tl)
J— J

if Rj_l — Rj <go.
We now take {R;}; as follows: taking ¢ € (0, (g A 1)/2) and preparing the sequence

1—-2¢
e ) =21
gk=M1/¢1 for k € ([1/e],00) NN,

for k €10,[1/e]] NN,

whose elements are in (0, e) and whose sum is 1, we set Ry = R and

bx R , v v
Bi = B = tpaizarsy for g € (k= 1)|Rs"/ v 49) | k| Rs"/ 49 ] AN,

where |a] = max{(—o00,a]NZ} and [a] = min{[a,00) NZ} for any a € R. Then we have R;_1 — R; <&

and
(43) ijl/Rj S ]./E.

Indeed, we have

J 1 -2 . 1/(2v+5)
1-— fi 1
R( | Rs!/(2v+5) | (1,5)(1/(?}) or j € [0, [1/e]|Rs JINN,
k—r1/e1( _E _ J
P (= + LRsl/(2V+5)J>
;=

for j € ((k —1)|Rs"/(2»+9) | k| Rs'/(¥+5) || NN

with k € ([1/e],00) NN.

16



If 5 € [0,[1/e]|Rs*/*+5) || NN, then

Ry 1— 92 j 1—2¢
B =1 e e/ (U e o)

takes its maximum at j = [1/¢]| Rs'/(?**5) | and the maximum is

1+

1-2e <o<?
| Rsl/(2v+5) |e[1/e] — "~ €

If j € 24 (k — 1)|RsY/¥*5) | k| Rs'/?»+9) || NN with k € ([1/¢],00) NN, then

R4 . 1 € J
R, L+ | Rsl/(2v+5) | /(1 — +k- | Rsl/(2v+5) | )

takes its maximum at j = k| Rs'/(?**5) | and the maximum is

1+

1—¢ < 1
[R5/ @] ¢

Finally if j = 1 + (k — 1)|RsY/(?*+5) | with k € ([1/€],00) NN, then

Rek—T1/¢]
Fo =

1 1
Ry — (Riy — R:) = ReF-T1/] _
Rj=Rj 1 — (Rj—1 — Rj) = Re (1_5 LRS1/(2V+5)J)

and

R, 1 1 1 1
= —_ < —.
R; 1*6/(1*6 LRsl/(2V+5)J) T e
Therefore we obtain (4.3).

Since v > 1, by taking ¢ sufficiently small, we have
log F(Rj_1, Rj;s) < —czby”™?

for j € ((k — 1)|RsY/(¥*+9)| k| Rs'/(?*+5) || " N. By applying this to the right hand side of (4.1), we
obtain

log E(exp(—sX(R))) < —cs »_ by +° | Rs'/ v 49) | < —cyRs!/ (V7).
k=1

Remark 4.1. The results of this section is extended to the case where o is replaced by

17



and P is a bounded function on R? such that P(zo) # 0 for some o € R? satisfying |zo| = & and that

P is continuous at any points of a neighborhood of xg. In this case, the equation (4.2) is changed to

E[X(R;j-1, R;)]
1 dT’(Rj_l *Rj) 2 T
= dLR,_ —RIR; +(R;_1 — R .
/0 Rj+(Rj1—Rj)T(L1:[1/O ruBoy = By) (B o+ (B ’)T))
T1AT2 B o2 deo
X d?“o(Rj_l — Rj)(O’ + R, + (Rj_l — Rj)’l“o) o
0 0 Y

x (ﬁ {(25 — (Rj—1 — Rj)(r, — m0))(Rj—1 — R;)(r, — 1)} '/
22 AR+ (Rj—1 = Ry)r)(@ + Rj + (Rj—1 — Rj)ro) }1/2

TR, v
x /0 "d0,(1- (2R, sin 279{%]4)2)+

« Te{%‘f_}ﬁ((Rj + (Ryo — Ry (cos (6 + ;f;),sm (60 + 729] )

— (@ + Rj + (Rj—1 — Rj)ro)(cos Ho,sinﬁo))>.
The upper estimate of this is obtained by the same method. To obtain the lower estimate, we restrict
the integral with respect to 6y to an interval I such that inf{7P(z) : |x +7(cosf,sind)| < ¢ for some § €
I} >0 for some § >0 and 7 € {+,—}.

This extension is applicable to the case of (1.3). Indeed if the degree of P is m, then v > 2m + 3/2
and 5(z) = Q(|z])(a% — |z[) ™, where Q is a polynomial of the degree 2m. By the factor theorem, we
can write Q(r) = (@ — r)"Q(r), where h € Z N [0,2m] and Q is a polynomial of the degree 2m — h such
that Q(7) # 0. Then, since &(z) = (@ — |z[2)4" 2" Q(|2]) @ + |2)~", Q(jz|)(7 + |=|)~" is bounded on

B(7) and Q(7)(25) " # 0, the results in this section hold for this case if v is replaced by v — 2m + h.

5. PROOF OF THEOREM 1

In this section we modify Erdés and Hasler [4] to prove Theorem 1 by applying the results proved in
the preceding sections.

We first cut off high energies:

(5.1) Tr[X(E—n, B4+ (HL)] < TYX[(t(B)—n)vi(0),t(E)+n) (E(HT))]

18



for any E, n > 0 such that E + 7 < R, where t(u) := (u+ 1)(5R)?/(5R + u + 1)3. By (2.8) and

inf,e0,r) t'(v) > 0, the right hand side of (5.1) is less than or equal to

CLY X[((B)—mve(0),(8) ) (EAe (HE))) L2212
l

<3 Rt (1B 322 (a, ) + RYmO 57
meN

X Z B(m, 2., w) v 15/2

T €(ca L= 1'm—2Z2)NAL

XY Xio.so) (R(m, 2, ) — [0 (DEA(HE)), Prase . w).1).2)°

neN?
where
62L—1177,L—2 2 d
B(m,x*,w)z/ / B¥(z)dz —T,
0 B(x«,r) 27r
R(m, Ty, w) = csLPm>B(m, z.,w) "2,
(5.2) ( ) ( )

e(m, x,,w) = caB(m, 2, ) 2L Bm™2R(m, 2, w) ™3

= 040535’(m7 Ty, w)2L78m
and, for each interval I, X1 is a [0, 1]-valued smooth function on R such that ¥y =1 on I and x(z) =0
if dist(z,I) > 1. Let F' and G be functions on R such that F' = X[ (z)—n)ve(0).t(E)+n, G' = F, and
F=G=0on (—o0o,(t(FE) —n) Vt0)]. Then we have
X[t (B) )i (0) 4 (E)+n) (Ee(HE))) (Dnt(Ae(HE)))?
=D7G(t(\(HY))) — F(t(Ae(HE)) Dat(\e(H7)),

where lN)n() = (D(-), :IS(n;E(m)I*)w)7L),L)L2(R2). As shown in Lemma 5.2 of [4], we have

(5.3) > F(HN(HE))DEt(A\(HY)) > Tr[F(t(HY)) Dat(HY))]
¢
and
(5.4) > DLG(M\(HY)) = D3 Tr[G(H(HY)))-
¢

We proceed to estimate the terms including the right hand side of (5.3) under the condition that
(5.5) B[22,y + R € [m—2,m+1].

As in [4], we first show
ID2t(HE) | 2ay)—r2(8g) < €5 L2
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by decomposing as
Dy t(HY)
=(5R)*(D2H¥)(5R+ 1+ Hy)™®

3
5R)*> (DnHf)(5R+ 1+ HY) *(DpHY)(5R + 1 + Hy)~*+*
k=1

3
5R)*> (Hf + 1)(5R+1+ HY) M(DLHY)(5R+ 1+ Hy )~
k=1

+2(5R)* > (HY +1)(5R+1+ HY) M(DpHY)(5R+ 1+ HE) ™"

1<k,k/<4
E+k/ <4

X (DpHE)(BR + 1 + HY) 5 Hh+k,
For this, we use
DnHY = 2(iV + A%) - (DpAL) = 2(Dp A%) - (iV + A%),
DL H} = 2|(Dn A7) +2(iV + A7) - (D, A7)
= 2|Dn A7) + 2(D}AT) - (iV + AF),
16V + AD)BR+ 1+ HE) 2 2y )22 (a)ec? < 1

and the following estimates obtained from Lemma 3.3:

(5.6) 1Dn AT |2, < cL?
and

~ w Cyr
(5.7) 1R AE Nl (re) < Fraz 5373

To prove (5.7), we also use

C9

1D7 B lw21(as) < L Dn®(micim,. )02l (hsr) < T175, 5373

which is proven by the following: since we have

€10
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and
|DnB(m, z.,w))|

oL~ 11m =2 dr
‘ / — dz' B¥(z")
0 T JB(z.,r)

(5.9)
X / d.’E/ dyU(iL’ - y)(AI;(n;e(m,ac*,w),L),L(y)
B(z.,r) R2
C11
= 45,,15/2
under the condition (5.5) by the same method for (2.7), we have
C12
< L147,,53/2°

| Dne(m, ., w)| = 204cg36(m,x*,w)L*58m711|5nB(m,x*,w)|

|l~)n(n;6(m,x*,w),L)|
Tiln ~ ( )

— _Dpe(m, z,,w

8raln| "

= > X (T@@nl/L — i)
T€{+,7},SEN

c
< 13
= [146,,,53/2°

and
|lf5n(’1\;(n;s(m,m*,w),L),L|

2 o z, 1
:‘L;COS ((n;a(m,x*,w),L)Lw(fL+§)>

T 1 L 1\ ~
4 5))m (5 + 5 ) Danie(m, w.,w), 1)

S1 ; ww), L) (
><b1n((n,a(m,x w), L)em 715

C
<14
=T 147,,53/2

Thus we obtain
| Te[F(t(HE))D2t(HY)]| < csL* Te[F(t(HY))).

(E) in (bR/2 — 1,00) for E € (0,5R/2 — 1). This is solved as

Let E*(E) be the root of t(E*)

E*(E)
2(5R)3 .

VE+1)2(E+15R+1)2+45BR3}(E+1)+ (E+1)(E+15R+1)

< (5R)%/2,
Since t/(u) > #'(R) > 5%/7* > 1/(20) for u € (0, R), F(t(A\e(HY))) # 0 implies

(E —20n)4 < \(HY)) < E*((E — 209)5).
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By F < 2n and applying the Weyl bound as in [4], we have
Te[F(t(HE))] < 2n#{spec(H) N[0, E*((E — 20n) )]}
< eisnLPE*((E = 200)4) < cignl”RY2.
We next estimate the terms including the right hand side of (5.4). For this we apply the theory of

the Malliavin calculus. For any separable Hilbert space H, p € (1,00), k € Z, and any element F of

polynomial functionals

PH) ={F(w)= ) pm(w(pr),w(p2),--,w(pn))hm : M, N €N,

NE

m=1
P1,P2, ... : polynomials, @1, @y, ... € L*(R?),hy, h,... € H},

we define a norm by

IFllpew ey = IIFN el o @) + HIDYFll 2 @e)yerem Lo @),

and a Banach space D¥P(H) by the completion of P(H) with respect to this norm. Let (D~%4(H),| -
lp-#.asr)) be its dual space, where ¢ € (1,00) such that 1/p+1/q =1 (cf. [12] Chapter V §8, [16] §1.2,
§1.3, [19] §4.2). We abbreviate as D*?(R) = D¥P. The derivative operator D can be extended to a
continuous operator from D¥P(H) to D*~1P(L?(R?) @ H) for any k € Z (cf. [12] Chapter V Theorem
8.5, [19] Proposition 4.13). Let ¢ be its dual operator: E[(6(G), F)u] = E[(G, DF)12wr2)gn] for any
G € D*1L4(L2(R?)® H) and F € D¥P(H). This is also a continuous operator from DF+19(L2(R?)® H)
to D*4(H) for any k € Z. Now we apply this fact as follows:

E[(D(D Tr[G(t(HY))), ®r,1) 12 (m2)> Praop) 12 (r2) T (w)]

=E[(D Tr[G(t(H}))], B, 0) 12 (2)6 (¥ () D5, 1 )]

=E[Tr[G(t(H))]6(5(P(w)Ps,1)Pr.1)]

and
B[ TG (H7)I06(0(@)Pr,1)Pr.0) |
<|| Te[GEHE) | s 2y 15 (8(0 () B75. 1) P, 1) || o2 ()
(5.10) <crr|| TG (HE) | s ) 108 (W) @75, 1) Bz, 1 | ptore (12 (2

<c1s|| TG HE)) | 1o ) |9 (@) P, 1 lp2rs (12 (B2 | B, | mra (2 2

<crol| Te[GAHE) Lor ) € (W) [Ip225 |07, L IB2.0a (12 (R2) )
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where n := (n;s(m,x*,w),L), P1,DP2,D3,P4,P5 € (1700) Satisfying 1/271 + ]-/p2 = 1,1/273 + 1/104 = 1/102,
1/p4 + 1/]95 = 1/p3, and

() = Xt m) (1B 220, + R)Xi0,00) (RO, 20, 0) = [ B, ) ™12,

To justify this estimate, we should show Tr[G(t(H%))] € LP* (P), ¥(w) € D?P5 and &5 ;, € D?P+(L2(R2)).
This is reduced to show the finiteness of the norms by Proposition 4.21 in [19].
We next proceed to estimates of each norm in the right hand side of (5.10). For the first norm, a
sufficient uniform estimate
Tr[G(t(HY))] < caoR*nL?.
is obtained by applying the Feynman-Kac-It6 formula and the diamagnetic inequality as in [4]. By the

Holder inequality, we have

¥ (w)l[p2.vs
) <Vt 1B Byacary + Bl
~ R B B —v—15/2
X [[X[0,00) (R(m, 25, w) = 1)) |27 [ B(m, 24 w) [
where pg, p7,ps € (1,00) satisfying 1/pg + 1/p7 + 1/ps = 1/ps. Since
Dzi[mfl,m](HBw”‘Z/VZZ(AL) + R)
:Xl[mq,m](HBwH%VM(AL) + R)(D”BwHIQ/sz(AL))@Q
+ X[y (I BI5 + R)D?||B¥|}
[m—1,m] W22(AL) W2.2(AL)
ID(|6% B |72 (a1 72 z2)
2
:/ dy‘2/ dz(0° B*)(2)(0%0)(x — y)| < caamL?
R2 Ap
and
I1D?[|0° B2\ 72( ) |72 g2y 22
2
:/ dy/ dy’ 2/ dz(0%0)(z — y)(0%0)(x —y)| < caol?
R? R2 Az

under (5.5) for any o = (a1, a0) € Z2 satisfying a; + oo < 2, we have
Xt 1,m) (1B [fy2.2(a ) + B)llp2rs

<eormL?P(|| B [a,) + R € [m—2,m +1))1/7e.
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The probability is estimated as
]P’(||B“’H12,V2,2(AL) +Re[m—2,m+1])
<SL*P((m — R —2)/L* < ||B*|[fy22(,))
<L*Elexp(caz (| B [fy22(a,) — (m — R = 2)/L?))]
<ca3L? exp(—(m — R —2)/L?))
by Chebyshev’s inequality and Fernique’s theorem (cf. [12] p.402). Thus we have
IRt (1B s + )0 < eaim?#2/0% exp(—(m — R~ 1)/(Epe))).
Similarly we have
1K (0,00) (R, 2, 0) = 2] 20
< easP(R(m, 2, w) — | € [=1,00)Y7* (1 + [[[|IDR(m, 4, w) |22 (g ll 10 (8)

+IND*R(m, @, w)ll L2@)s2 | Lr1o )

and

R 9 1\3po1l/p
P(R(m, .)€ [-1,00)) /7 <[ (FEeel 22y ]
SHR(mvx*’w) + 1“%3P9(P)/|n|37
where pg, p1o € (1, 00) satisfying 1/pg + 1/p10 = 1/p7. Thus the remained estimates for || ¥(w)||p2.rs are
those of [|[[D¥B(m, z.,w) ™ "|p2®)er || Lo @) with (k, h,p) € {0,1,2} x (0,00) x (1,00). Since

IDB(m, z.,w) ||2LQ(R2)

el Hm™ g :
b Ll [T ], e
R2 0 T JB(x.,r) B(zw,m)
026|\Bw||%oc(3(x*,1))
>~ L88m16
and
ID?B(1, 24, ) |72 5222
eeL™Hm™ g
:/R2 aly/IRz dy' / r
0
(5.13) ’
x / dzo(z —y) / da'o (" —y)
B(w*,r) B(Z*,T)
Cay
STSmio
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are deduced as in (2.7), we have

NDB(m, v, w) ™" || 12 yer Lo ey

hc1/2 o "
SLTangHB(m,m*,w) g 1HLP'(]P’)H||B HL°°(B(1*,1))HLP”(]P’)

and

IID*B(m, z.,w) " 2@yes | Lo @)

h(h =+ 1)826 g w
= [88,,16 HB(m,x*,w) 4 QHLP,(IP)HHB HLOO(B(w*,l))HiZ:D”(I[D)
heal? Che
+ L442:ng||6(m7x*aw) " 1||L”(IP’)7

where p/,p” € (1,00) such that 1/p’ +1/p” = 1/p. We here do not use the condition (5.5) as in (5.8) and

(5.9), since we have a simpler estimate

(5.14) 1Bl e 0 ) Loy < o
We can now apply the corollary of Lemma 4.1 to obtain

(5.15) IB(m, 24, w0) ™ Loy < cp(LMm?)?+0

for any p € [1,00). Finally, since
| De(m, x4, w)| 12 (r2) = 284053[/_5877’1_113(’”1,$*,w)||DB(m,.’L‘*,w)HLz(Rz)

< Cosl| B |7 o0 (B 1y L HOMT

and
||D25(m,x*,w)||L2(R2)®2
o, —37—58 11 2 2
726403 L m (”DB(m?x*aw)HLQ(]RZ) + B(max*’w)HD B(m’w*vw)||L2(R2)®2)
<es|| B |7 (B(anayy L”HOm T
are deduced from (5.2), (5.12), (5.13) and B(m, z,,w) < CQQHBWH%M(B(w* 1))L_44m_8, we have
|D2®5 1 || 12 (o) es
<eso(L?|| De(m, 2., w)|[72(za) + LI D*e(m, 2, w)| 2 2 22)
SC31(”Bw||?:°°(B(a:*,1))L7290m754 + ”Bw‘|%°°(B(;c*,1))L7145m727)
and
||‘T’ﬁ,L||D2,p4(L2(R2)) < e32

by (5.14).
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Thus we obtain

E[Tr[X(5—n,z4+n (HL)]]

<eggnRPLE Y m exp(—(m — R—1)/(L?ps)) Y |n| ™

meN neN?

<csgnR2Le

for L > VRV ¢ss.

10.

11.

12.

13.

14.
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